2021 - 2022 MATH2058 Tutorial 2 - Sequences, Convergence, Divergence

1 Recall: The Natural Numbers

Theorem 1.1 (Archimedean Property). Let X =N C R be the set of natural numbers. Then X is
not bounded above.

Corollary 1.2 (e- characterization of the Archimedean Property). Let € > 0. Then there exists
N € N such that 1/N < e. In other words, inf{1/n:n € N} =0.

Example 1.3. Let X := {1/n? : n € N}. Show that inf X = 0.

Solution. First 0 is a lower bound of X clearly. It remains to show that 0 approximates X by the
e—characterization of infimum. Let € > 0. Then by the Archimediean Property, there exists N € N
such that 1/N < e. Since N > 1 as N € N, we have N < N? (why?). Therefore, it follows that
1/N? <1/N < e=0+ € and so 0 approximates X. It follows that inf X = 0.

Quick Practice. For each of the following subsets X, determine and explain whether sup X and
inf X exist. If yes, find them.

a) X=Q b) X ={1/n®:n €N} ¢) X ={(2n+3)/n3:neN}

2 Sequences

Definition 2.1 (Sequences). Let z : N — R be a function. Then we call = a sequence of real
numbers.

Remark. For a sequence x, we usually denote its image by x,, := z(n) for all n € N. We would also
use (z,,) to denote the sequence (function) x and write "let x := (z,,) be a sequence” if we have to
define a sequence in the first place.

Example 2.2.

a. A constant sequence x := (x,,) is sequence that is a constant function, that is, there exists c € R
such that x,, = ¢ for alln € N

b. A bounded sequence x := (x,) is a sequence that is also a bounded function, that is, there exists
M > 0 such that |x,| < M for alln € N.

c. A sequence is recursively defined if terms depend on previous terms. The Fibonacci sequence (f,)
s recursivelly defined by the relations

i=f=0 Jn = fa—2+ fo-1 forn >3
d. The rational number Q is countably infinite. Therefore, we can write Q = (g,) as a sequence by
considering any bijection from N to Q.
Here comes the most important definition concerning sequences: their limits.

Definition 2.3 (Sequential imits). Let (x,,) be a sequence of real numbers and = € R. We say that
x is a limit of (z,,) if for all € > 0 there exists N = N(e) € N such that for all n > N, we have

|z, — x| <€
We call (z,,) a convergent sequence if it has a limit.
Remark.
e If a sequence (z,) converges, then its limit is unique. We denote the limit as lim,, x,.
e The limit of a sequence is some point that the sequence gets close to eventually.
Example 2.4. Consider the sequence x := (x,,) with x, := 1/n. Show that x converges.

Solution. We can find an explicit limit of z. In fact we claim that lim1/n = 0. To this end, let
€ > 0. Then by Archimedean Property, there exists N € N such that 1/N < e. Now suppose n > N,
we have |1/n — 0| =1/n <1/N < e and so lim 1/n = 0 by definition.

Quick Practice. For each of the following sequences x := (x,), find and verifty their limits.

a) xp =7 b) x, :=1/n? ¢) xp:=1-5/n
n 3n
) zn ) e) Tpi=vn+1—4/n f) an =5
2
_ dn —
g) Tn ::ni?) h) x, = noT i) Tpi=n

n? —n—1 2n —3
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Definition 2.5 (Divergent Sequences). Let (x,) be a sequence. We say it diverges if it is not a
convergent sequence. Equivalently, for all z € R, (x,,) does NOT converge to x.

Remark. To show that (z,) does not converge to x is to verify the negation of sequential convergence.
In other words, it is to show that there exists € > 0 such that for all £ € N there exists ny > k such
that |z,, —x| > €

Example 2.6. Show that the sequence (x,, := (—1)") does not converge to +1.

Solution. We first show that x, does not converge to 1. To this end, we take € := 1. Moreover, we
take ny := 2k +1 > k for all k € N. Then z,, = —1 for all k¥ € N. Therefore |z, 1| =|-1—-1] =
2 > 1 for all k € N. By definition, x,, does not converge to 1. The case of —1 is left to the readers.

Quick Practice. Consider the sequence (x,,) where x,, = 0 when n even and x, = 1 when n is odd.
a. Show that the sequence does not converge to 0.

b. Show that the sequence does not converge to any r € R

3 Exercises

1. Let x := (zp,) and y := (yn) be sequences of real numbers such that y,, := xa,
(a) Show that if (x,) converges, then (y,) converges.

(b) Find an example such that the converse does not hold.

2. Recall that a subset A C R is dense if and only if for all open intervals (a,b) with a < b, we
have AN (a,b) # ¢.

(a) Show that a subset A is dense if and only if for all » € R and € > 0, there exists ¢ € A
such that |¢ — r| < e. This is the e—characterization for dense subsets.

(b) Hence, show that a subset A is dense if and only if for all » € R, there exists a sequence
(an) where a,, € A such that lima, = r.

3. For each of the following sequences = := (x,), determine if it convergences or not. If it
converges, find its limit using definitions; otherwise, make a proof on why it diverges.

a) x,:=(—1)"/n b) z, := cos(nm)
C) Xpi=+/n d) x, := V/2, corrected to nth decimal place

4. We call a sequence x := (x,,) finitely supported if x,, = 0 except for finitely many n € N. Show
that x is a convergent sequence.

We would be investigating the algebraic properties of sequences in Q5 - 7.

5. Let s := {z : N = R} be the set of all real valued sequences, For z,y € s, define x + y such
that (z +y)(n) := z(n) +y(n). For o € R and z € s, define - = such that (a-z)(n) := az(n)
for all n € N.

a) Show that (s,+,-) is a vector space.

b) Show that there exists an infinite subset of linearly independent elements in (s, +, ).

6. Let b:= {z : N = R | x is bounded} be the set of bounded sequences and ¢ := {z : N - R |
x is convergent} be the set of convergent sequences.

(a) Verify the following (proper) subset inclusions:
cCbCs

where s is the vector space of real sequences defined in Q5.
(b) Show that b, ¢ are infinite dimensional vector subspaces of s.

(¢) Define T : ¢ — R by Tz := limz,, where = := (z,). Show that T is linear.

7. For all r € R, define ¢, := {x := (z,,) € ¢ | limz, = r}. Show that there is a unique r € R
such that ¢, is a vector space and hence a vector subspace of c.
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