THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2070A Algebraic Structures 2018-19 Homework 11 Due Date: 6th December 2018

Compulsory Part

- 1. Determine if the following rings are fields. Justify your answers.
 - (a) $\mathbb{Q}[x]/(x^{17}+5x^2-10x+45)$
 - (b) $\mathbb{Z}[x]/(x^6 210x 616)$. (Note: It is $\mathbb{Z}[x]$ instead of $\mathbb{Q}[x]$.)
 - (c) $\mathbb{Q}[x]/(4x^3-6x-1)$
 - (d) $\mathbb{R}[x]/(x^{17}+5x^2-10x+45)$

2. Let p be a prime.

- (a) Show that for all $k \in \{1, 2, ..., p-1\}$, the prime p divides $\binom{p}{k}$.
- (b) Let p be a prime, r an element in \mathbb{F}_p . Show that $(x+r)^p = x^p + r^p$ in $\mathbb{F}_p[x]$.
- (c) The *p*-th cyclotomic polynomial is by definition:

$$\Phi_p = x^{p-1} + x^{p-2} + \dots + x + 1.$$

Show that Φ_p is irreducible in $\mathbb{Q}[x]$. (Hint: First show that:

$$\Phi_p \circ (x+1) := (x+1)^{p-1} + (x+1)^{p-2} + \dots + (x+1) + 1$$

is irreducible in $\mathbb{Q}[x]$.)

Optional Part

1. Let F be a field, p a polynomial in F[x]. Then a theorem in our lecture notes says that the quotient ring F[x]/(p) is a field if and only if p is irreducible in F[x].

Determine if each of the following rings is a field:

- (a) $\mathbb{Q}[x]/(x^3-1)$
- (b) $\mathbb{Q}[x]/(7x^{59}+24x^9+6x+156)$
- (c) $\mathbb{Q}[x]/(x^3+x+1)$
- (d) $\mathbb{Z}[x]/(x^3 + x + 1)$
- (e) $\mathbb{Q}/(17)$
- (f) $\mathbb{Z}/(17)$
- (g) $\mathbb{Z}[x]/(2,x)$
- (h) $\mathbb{Q}[x]/(x^2-3)$

- (i) $\mathbb{R}[x]/(x^2-3)$ (j) $\mathbb{R}[x]/(x^2+3)$ (k) $\mathbb{F}_5[x]/(x^2+1)$ (l) $\mathbb{R}[x]/(x^{17}+x^5+8x^2-x+1)$
- 2. (a) Let *a* be a rational number. Show that the quotient ring $\mathbb{Q}[x]/(x-a)$ is isomorphic to \mathbb{Q} by explicitly defining an isomorphism:

$$\psi: \mathbb{Q} \longrightarrow \mathbb{Q}[x]/(x-a).$$

(b) Show that $\mathbb{R}[x]/(x^2+1)$ is isomorphic to $\mathbb{R}[x]/(x^2+2)$ by explicitly defining an isomorphism.