THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2070A Algebraic Structures 2018-19 Homework 10 Due Date: 29th November 2018

Compulsory Part

- 1. Let f be a monic polynomial in $\mathbb{Q}[x]$ with integer coefficients. Show that if $r \in \mathbb{Q}$ is a root of f, then $r \in \mathbb{Z}$.
- 2. Let F be a field. Let f, g be relatively prime polynomials in F[x]. Show that if both f and g divide a polynomial h in F[x], then fg|h.
- 3. Determine if the following polynomials are irreducible in $\mathbb{Q}[x]$:
 - (a) $f = x^3 + 6x^2 + 5x + 24257$

(Hint: First consider f as an element in $\mathbb{Z}[x]$, then determine if its image \overline{f} in $\mathbb{F}_2[x]$ is irreducible.)

- (b) $f = x^4 + x^2 + x + 1$
- (c) $f = 4x^3 6x 1$

Optional Part

1. Consider the polynomials $f = x^2 - x - 2$ and $g = x^3 - 2x + 1$ in $\mathbb{Z}_5[x]$. By adapting the Euclidean Algorithm to $\mathbb{Z}_5[x]$, find $a, b \in \mathbb{Z}_5[x]$ such that af + bg = gcd(f, g).

(Here, gcd(f,g) is the unique monic polynomial in $\mathbb{Z}_5[x]$ with the property that the ideal (f,g) is equal to the principal ideal (gcd(f,g))).

- 2. Express the following polynomials as products of irreducible factors.
 - (a) $x^4 + 1$ in $\mathbb{Z}_2[x]$.
 - (b) $x^3 + 1$ in $\mathbb{Z}_3[x]$.
- 3. Show that the following polynomials are irreducible in $\mathbb{Q}[x]$:
 - (a) $2x^5 + 25x + 210$
 - (b) $17715x^2 + 1234567x + 4561$
 - (c) $x^3 + 6x^2 + 7$
 - (d) $4x^3 3x + \frac{1}{2}$
 - (e) $\frac{1}{3}x^5 x^4 + 1$
 - (f) $x^4 + 5x^2 2x 3$.

(Hint: Consider the irreducible factors of the polynomial over \mathbb{F}_2 and \mathbb{F}_3 . What conclusion can one draw?)

4. Let k be a field. Let $f = a_0 + a_1 x + \cdots + a_n x^n$ be a polynomial in k[x] of degree n. Show that if f is irreducible in k[x], then so is:

$$f^* := a_n + a_{n-1}x + \dots + a_1x^{n-1} + a_0x^n.$$

5. Converse of Euclid's Lemma. Let F be a field, f a polynomial in F[x] with degree ≥ 1 , such that, for $g, h \in F[x]$, the condition f|gh implies that f|g or f|h. Show that f is irreducible in F[x].

(Try to prove this without invoking the unique factorization theorem.)