1.1 Groups

Definition. A group is a set G equipped with a binary operation

$$*: G \times G \longrightarrow G$$

(called the **group operation** or "**product**" or "**multiplication**") such that the following conditions are satisfied:

• The group operation is **associative**, i.e.

$$(a*b)*c = a*(b*c)$$

for all $a, b, c \in G$.

• There is an element $e \in G$, called an **identity element**, such that

$$a * e = e * a = a,$$

for all $a \in G$.

• For every $a \in G$ there exists an element $a^{-1} \in G$, called an **inverse** of a, such that

$$a^{-1} * a = a * a^{-1} = e$$
.

Remark. We often write $a \cdot b$ or simply ab to denote a * b.

Definition. If ab = ba for all $a, b \in G$, we say that the group operation is **commutative** and that G is an **abelian group**; otherwise we say that G is **nonabelian**.

Remark. When the group is abelian, we often use + to denote the group operation.

Definition. The **order** of a group G, denoted by |G|, is the number of elements in G. We say that G is **finite** (resp. **infinite**) if |G| is finite (resp. infinite).

Example 1.1.1. The following sets are groups, with respect to the specified group operations:

- $G = \mathbb{Q}$, where the group operation is the usual addition + for rational numbers. The identity is e = 0. The inverse of $a \in \mathbb{Q}$ with respect to + is -a. This is an infinite abelian group.
- $G = \mathbb{Q}^{\times} = \mathbb{Q} \setminus \{0\}$, where the group operation is the usual multiplication for rational numbers. The identity is e = 1, and the inverse of $a \in \mathbb{Q}^{\times}$ is $a^{-1} = \frac{1}{a}$. This group is also infinite and abelian.

Note that \mathbb{Q} is *not* a group with respect to multiplication. For in that case, we have e = 1, but $0 \in \mathbb{Q}$ has no inverse $0^{-1} \in \mathbb{Q}$ such that $0 \cdot 0^{-1} = 1$.

Exercise: Verify that the following sets are groups under the specified binary operations:

- $(\mathbb{Z},+), (\mathbb{R},+), (\mathbb{C},+).$
- $(\mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}, \cdot), (\mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}, \cdot)$
- (U_m, \cdot) , where $m \in \mathbb{Z}_{>0}$,

$$U_m = \{1, \zeta_m, \zeta_m^2, \dots, \zeta_m^{m-1}\}$$

and
$$\zeta_m = e^{2\pi \mathbf{i}/m} = \cos(2\pi/m) + \mathbf{i}\sin(2\pi/m) \in \mathbb{C}$$
.

- The set of bijective functions $f:\mathbb{R}\longrightarrow\mathbb{R}$, where $f*g:=f\circ g$ (i.e. composition of functions).
- More generally, one can consider any nonempty set X. Then the set

$$S_X := \{ \sigma : X \to X : \sigma \text{ is bijective} \}$$

of all bijective maps from X onto X is a group under composition of maps.

Example 1.1.2. The set $G = GL(2, \mathbb{R})$ of real 2×2 matrices with nonzero determinants is a group under matrix multiplication, with identity element:

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

In the group G, we have:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Note that there are matrices $A, B \in GL(2, \mathbb{R})$ such that $AB \neq BA$. Hence $GL(2, \mathbb{R})$ is nonabelian (and infinite).

More generally, for any $n \in \mathbb{Z}_{>0}$, the set $GL(n, \mathbb{R})$ of $n \times n$ real matrices M, such that $\det M \neq 0$, is a group under matrix multiplication, called the **General Linear Group**. The group $GL(n, \mathbb{R})$ is nonabelian for $n \geq 2$.

Exercise: The set $SL(n, \mathbb{R})$ of real $n \times n$ matrices with determinant 1 is a group under matrix multiplication, called the **Special Linear Group**.

Example 1.1.3. Let $n \in \mathbb{Z}_{>0}$. Consider the finite set

$$\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}.$$

We define a binary operation $+_n$ on \mathbb{Z}_n by

$$a +_n b = \begin{cases} a+b & \text{if } a+b < n, \\ a+b-n & \text{if } a+b \ge n. \end{cases}$$

for any $a, b \in \mathbb{Z}_n$.

Exercise: Then $(\mathbb{Z}_n, +_n)$ is a finite abelian group. (By abuse of notation, we will usually use the usual symbol + to denote the additive operation for this group.)

Proposition 1.1.4. The identity element e of a group G is unique.

Proof. Suppose there is an element $e' \in G$ such that e'g = ge' for all $g \in G$. Then, in particular, we have:

$$e'e = e$$

But since e is an identity element, we also have e'e = e'. Hence, e' = e.

Proposition 1.1.5. Let G be a group. For all $q \in G$, its inverse q^{-1} is unique.

Proof. Suppose there exists $g' \in G$ such that g'g = gg' = e. By the associativity of the group operation, we have:

$$g' = g'e = g'(gg^{-1}) = (g'g)g^{-1} = eg^{-1} = g^{-1}.$$

Hence, g^{-1} is unique.

Let G be a group with identity element e. For $g \in G$, $n \in \mathbb{N}$, let:

$$g^{n} := \underbrace{g \cdot g \cdots g}_{\substack{n \text{ times}}}.$$

$$g^{-n} := \underbrace{g^{-1} \cdot g^{-1} \cdots g^{-1}}_{\substack{n \text{ times}}}$$

$$g^{0} := e.$$

Proposition 1.1.6. *Let G be a group.*

1. For all $g \in G$, we have:

$$(g^{-1})^{-1} = g.$$

2. For all $a, b \in G$, we have:

$$(ab)^{-1} = b^{-1}a^{-1}.$$

3. For all $g \in G$, $n, m \in \mathbb{Z}$, we have:

$$g^n \cdot g^m = g^{n+m}.$$

Proof. Exercise.

2.1 Cyclic groups

Definition. Let G be a group, with identity element e. The **order** of an *element* $g \in G$, denoted by |g|, is the smallest positive integer n such that $g^n = e$; if no such n exists, we say that g has **infinite order** and write $|g| = \infty$.

Exercise: If G has finite order, then every element of G has finite order.

Proposition 2.1.1. Let G be a group with identity element e. Let g be an element of G. If $g^n = e$ for some $n \in \mathbb{Z}_{>0}$, then |g| divides n.

Proof. Let m=|g|. Suppose $g^n=e$. By the Division Theorem, there exist (uniquely) integers q and $0 \le r < m$ such that n=mq+r. So $g^n=(g^m)^q \cdot g^r$ which implies that $g^r=e$. This forces r=0 (since otherwise this violates the definition of |g|=m). Hence $m\mid n$.

Given an element g in a group G, we define the subset $\langle g \rangle \subset G$ as the set of all integral powers of g:

$$\langle g \rangle = \{ g^n : n \in \mathbb{Z} \}.$$

Recall that

$$|g| = \begin{cases} \min\{n \in \mathbb{Z}_{>0} : g^n = e\} & \text{if } \exists n \in \mathbb{Z}_{>0} \text{ such that } g^n = e, \\ \infty & \text{otherwise.} \end{cases}$$

Proposition 2.1.2. If $|g| = \infty$, then $\langle g \rangle$ is an infinite set; in fact, the map $\mathbb{Z} \to \langle g \rangle$, $n \mapsto g^n$ is a bijection. If $|g| = m < \infty$, then

$$\langle g \rangle = \{e, g, g^2, \dots, g^{m-1}\}.$$

Proof. Suppose $|g| = \infty$. It follows from the definition of $\langle g \rangle$ that the map $\mathbb{Z} \to \langle g \rangle$, $n \mapsto g^n$ is surjective. So we only need to show that it is also injective.

Suppose $g^{n_1}=g^{n_2}$ for some $n_1,n_2\in\mathbb{Z}$. If $n_1\neq n_2$, then without loss of generality, we can assume that $n_1>n_2$. Then we have $g^{n_1-n_2}=e$ with $n_1-n_2\in\mathbb{Z}_{>0}$. But this violates the assumption that $|g|=\infty$. Hence we must have $n_1=n_2$, showing the required injectivity.

When $|g|=m<\infty$, we want to show that $\langle g\rangle=\{e,g,g^2,\ldots,g^{m-1}\}$. Clearly we have $\langle g\rangle\supset\{e,g,g^2,\ldots,g^{m-1}\}$, so we only need to prove the reverse inclusion. Take an element $g^n\in\langle g\rangle$. Then the Division Theorem implies that there exist integers q and $0\leq r< m$ such that n=mq+r. So $g^n=(g^m)^q\cdot g^r=g^r\in\{e,g,g^2,\ldots,g^{m-1}\}$. This completes the proof.

Definition. A group G is **cyclic** if there exists $g \in G$ such that every element of G is equal to g^n for some integer n. In this case, we write $G = \langle g \rangle$, and say that g is a **generator** of G.

Remark. The generator of of a cyclic group might not be unique, i.e. there may exist *different* elements $g_1, g_2 \in G$ such that $G = \langle g_1 \rangle = \langle g_2 \rangle$.

Example 2.1.3. • $(\mathbb{Z}, +)$ is cyclic, generated by 1 or -1.

- $(\mathbb{Z}_n, +)$ is cyclic, generated by 1, or $k \in \mathbb{Z}_n$ such that gcd(k, n) = 1.
- (U_m, \cdot) is cyclic, generated by $\zeta_m = e^{2\pi \mathbf{i}/m}$, or ζ_m^n for any integer $n \in \mathbb{Z}_m$ such that $\gcd(m, n) = 1$.

Exercise: A finite cyclic group G has order n if and only if each of its generators has order n.

Exercise: The group $(\mathbb{Q}, +)$ is not cyclic.

Example 2.1.4. Let p be a prime. Let $G = (\mathbb{Z}_p, +)$. For all $g \neq 0$ in G, the order of g is p.

Proposition 2.1.5. Every cyclic group is abelian

Proof. Let G be a cyclic group. Then $G = \langle g \rangle$ for some element $g \in G$ and every element is of the form g^n for some $n \in \mathbb{Z}$. Now

$$g^{n_1} \cdot g^{n_2} = g^{n_1+n_2} = g^{n_2+n_1} = g^{n_2} \cdot g^{n_1}.$$

So G is abelian. \square

Remark. The converse is not true, namely, there are non-cyclic abelian groups (e.g. the *Klein 4-group* $\mathbb{Z}_2 \times \mathbb{Z}_2$).

2.2 Symmetric groups

Definition. Let X be a set. A **permutation** of X is a bijective map $\sigma: X \longrightarrow X$.

Proposition 2.2.1. The set S_X of permutations of a set X is a group with respect to \circ , the composition of maps.

- *Proof.* Let σ, γ be permutations of X. By definition, they are bijective maps from X to itself. It is clear that $\sigma \circ \gamma$ is a bijective map from X to itself, hence $\sigma \circ \gamma$ is a permutation of X. So \circ is a well-defined binary operation on S_X .
 - For $\alpha, \beta, \gamma \in S_X$, it is clear that $\alpha \circ (\beta \circ \gamma) = (\alpha \circ \beta) \circ \gamma$.
 - Define a map $e: X \longrightarrow X$ as follows:

$$e(x) = x$$
, for all $x \in X$.

It is clear that $e \in S_X$, and that $e \circ \sigma = \sigma \circ e = \sigma$ for all $\sigma \in S_X$. Hence, e is an identity element in S_X .

• Let σ be any element of S_X . Since $\sigma: X \longrightarrow X$ is by assumption bijective, there exists a bijective map $\sigma^{-1}: X \longrightarrow X$ such that $\sigma \circ \sigma^{-1} = \sigma^{-1} \circ \sigma = e$. So σ^{-1} is an inverse of σ with respect to the operation \circ .

Terminology: We call S_X the symmetric group on X.

Notation. Let n be a positive integer. Consider the set $I_n := \{1, 2, ..., n\}$. Then we denote S_{I_n} by S_n and call it the n-th symmetric group.

For $n \in \mathbb{Z}_{>0}$, the group S_n has n! elements.

For $n \in \mathbb{Z}_{>0}$, by definition an element of S_n is a bijective map $\sigma: I_n \longrightarrow I_n$, where $I_n = \{1, 2, ..., n\}$. We often describe σ using the following notation:

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

Example 2.2.2. In S_3 ,

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

is the permutation on $I_3=\{1,2,3\}$ which sends 1 to 3, 2 to itself, and 3 to 1, i.e. $\sigma(1)=3,\sigma(2)=2,\sigma(3)=1.$

For $\alpha, \beta \in S_3$ given by:

$$\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad \beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix},$$

we have:

$$\alpha\beta = \alpha \circ \beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

(since, for example, $\alpha \circ \beta : 1 \xrightarrow{\beta} 2 \xrightarrow{\alpha} 3$.).

We also have:

$$\beta\alpha = \beta \circ \alpha = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

Since $\alpha\beta \neq \beta\alpha$, the group S_3 is non-abelian.

In general, for $n \ge 3$, the group S_n is non-abelian (Exercise: Why?).

For the same $\alpha \in S_3$ defined above, we have:

$$\alpha^2 = \alpha \circ \alpha = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

and:

$$\alpha^3 = \alpha \cdot \alpha^2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = e$$

Hence, the order of α is 3.

More on S_n

Consider the following element in S_6 :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 3 & 6 & 1 & 2 \end{pmatrix}$$

We may capture the action of $\sigma: \{1, 2, \dots, 6\} \longrightarrow \{1, 2, \dots, 6\}$ using the notation:

$$\sigma = (15)(246),$$

where $(i_1 i_2 \cdots i_k)$ denotes the permutation:

$$i_1 \mapsto i_2, i_2 \mapsto i_3, \dots, i_{k-1} \mapsto i_k, i_k \mapsto i_1$$

and $j \mapsto j$ for all $j \in \{1, 2, \dots, n\} \setminus \{i_1, i_2, \dots, i_k\}$. We call $(i_1 i_2 \cdots i_k)$ a k-cycle or a cycle of length k. Note that 3 is missing from (15)(246), meaning that 3 is fixed by σ .

Proposition 2.2.3.	Every permutation of	$\alpha \in S_n$ is	either a cycle	or a product of
disjoint cycles.				
Proof. Later.				

Exercise: Disjoint cycles commute with each other.

A 2-cycle is often called a **transposition**, for it switches two elements with each other.

3.1 Dihedral groups

Consider the subset \mathcal{T} of transformations of \mathbb{R}^2 , consisting of all rotations by fixed angles about the origin, and all reflections over lines through the origin.

Consider a regular polygon P_n with n sides in \mathbb{R}^2 , centered at the origin. Identify the polygon with its n vertices, which form a subset $P_n = \{x_1, x_2, \dots, x_n\}$ of \mathbb{R}^2 . If $\tau(P_n) = P_n$ for some $\tau \in \mathcal{T}$, we say that P_n is **symmetric** with respect to τ .

Intuitively, it is clear that P_n is symmetric with respect to n rotations

$$\{r_0, r_1, \ldots, r_{n-1}\},\$$

and n reflections

$$\{s_1, s_2, \ldots, s_n\}$$

in \mathcal{T} . In particular $|D_n| = 2n$.

Proposition 3.1.1. The set $D_n := \{r_0, r_1, \dots, r_{n-1}, s_1, s_2, \dots, s_n\}$ is a group, with respect to the group operation defined by composition of transformations: $\tau * \gamma = \tau \circ \gamma$.

Terminology: D_n is called the n-th dihedral group.

Let $r=r_1\in D_n$ be the rotation by the angle $2\pi/n$ in the anticlockwise direction (and similarly r_k denotes the rotation by the angle $2k\pi/n$ in the anticlockwise direction). Then the set of rotations in D_n is given by

$$\langle r \rangle = \{ \mathrm{id}, r, r^2, \dots, r^{n-1} \}.$$

Furthermore, the composition of two reflections is a rotation (which can be seen, e.g. by flipping a Hong Kong 2-dollar coin). So if we let $s = s_1 \in D_n$ be one of the reflections, then the set of reflections in D_n is given by

$$\{s, rs, r^2s, \dots, r^{n-1}s\}.$$

So we can enumerate the elements of D_n as

$$D_n = \{ id, r, r^2, \dots, r^{n-1}, s, rs, r^2s, \dots, r^{n-1}s \}.$$

3.2 Subgroups

Definition. Let G be a group. A subset H of G is a **subgroup** of G (denoted as H < G) if it is a group under the induced operation from G.

More precisely, a subset $H \subset G$ is a subgroup of G if

• *H* is *closed* under the operation on *G*, i.e.

$$a * b \in H$$
 for any $a, b \in H$,

so that the restriction of the binary operation $G \times G \to G$ to the subset $H \times H \subset G \times G$ gives a well-defined binary operation $H \times H \to H$, called the *induced operation* on H, and

- *H* is a group under this induced operation.
- **Example 3.2.1.** For any group G, we have the **trivial subgroup** $\{e\} < G$ and also G < G. We call a subgroup H < G **nontrivial** if $\{e\} \nsubseteq H$ and **proper** if $H \nsubseteq G$.
 - We have $\mathbb{Z}<\mathbb{Q}<\mathbb{R}<\mathbb{C}$ under addition, and $\mathbb{Q}^\times<\mathbb{R}^\times<\mathbb{C}^\times$ under multiplication.
 - For any $n \in \mathbb{Z}$, $n\mathbb{Z}$ is a subgroup of $(\mathbb{Z}, +)$.
 - $SL(n, \mathbb{R})$ is a subgroup of $GL(n, \mathbb{R})$.
 - The set of all rotations (including the trivial rotation) in a dihedral group D_n is a subgroup of D_n .
 - By viewing D_n as permutations of the vertices of a regular n-gon P_n , we can regard D_n as a subgroup of S_n .
 - Consider the symmetric group S_n where $n \in \mathbb{Z}_{>0}$.

Proposition 3.2.2. Each element of S_n is a product of (not necessarily disjoint) transpositions.

Sketch of proof. Show that each permutation not equal to the identity is a product of cycles, and that each cycle is a product of transpositions:

$$(i_1i_2\cdots i_k)=(i_1i_k)(i_1i_{k-1})\cdots(i_1i_3)(i_1i_2)$$

Example 3.2.3.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 3 & 6 & 1 & 2 \end{pmatrix} = (15)(246) = (15)(26)(24) = (15)(46)(26)$$

Note that a given element σ of S_n may be expressed as a product of transpositions in different ways, but:

Proposition 3.2.4. *In every factorization of* σ *as a product of transpositions, the number of factors is either always even or always odd.*

Proof. **Exercise.** One approach: There is a unique $n \times n$ matrix, with either 0 or 1 as its coefficients, which sends any vector (x_1, x_2, \ldots, x_n) to $(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)})$. Use the fact that the determinant of the matrix corresponding to a transposition is -1, and that the determinant function of matrices is multiplicative.

We say that $\sigma \in S_n$ is an **even** (resp. **odd**) **permutation** if it is a product of an even (resp. odd) number of transpositions. The subset A_n of S_n consisting of even permutations is a subgroup of S_n . A_n is called the n-th **alternating group**.

Proposition 3.2.5. A nonempty subset H of a group G is a subgroup of G if and only if, for all $a, b \in H$, we have $ab^{-1} \in H$.

Proof. Suppose $H\subseteq G$ is a subgroup. For any $a,b\in H$, existence of inverse implies that $b^{-1}\in H$, and then closedness implies that $ab^{-1}\in H$.

Conversely, suppose H is a nonempty subset of G such that $xy^{-1} \in H$ for all $x, y \in H$.

- (Identity:) Let e be the identity element of G. Since H is nonempty, it contains at least one element h. Since $e = h \cdot h^{-1}$, and by hypothesis $h \cdot h^{-1} \in H$, the set H contains e.
- (Inverses:) Since $e \in H$, for all $a \in H$ we have $a^{-1} = e \cdot a^{-1} \in H$.
- (Closure:) For all $a, b \in H$, we know that $b^{-1} \in H$. Hence, $ab = a \cdot (b^{-1})^{-1} \in H$.

• (Associativity:) This follows from that in G.

Hence, H is a subgroup of G.

One can use this criterion to check that all the previous examples are indeed subgroups.

3.3 Cyclic subgroups

Recall that for any group G and any element $g \in G$, we have the subset

$$\langle g \rangle = \{ g^n : n \in \mathbb{Z} \}.$$

Proposition 3.3.1. Let G be a group. Then for any element $g \in G$, the subset $\langle g \rangle$ is the smallest subgroup of G containing g, which we call the **cyclic subgroup** generated by g.

Proof. Let g^k, g^l be two arbitrary elements in $\langle g \rangle$. Then $g^k(g^l)^{-1} = g^{k-l} \in \langle g \rangle$. So $\langle g \rangle$ is a subgroup of G by Proposition 3.2.5.

Now let H < G be any subgroup containing g. Then $g^k \in H$ for any $k \in \mathbb{Z}$ since H is a subgroup. Hence $\langle g \rangle \subset H$.

Proposition 3.3.2. The intersection of any collection of subgroups of a group G is also a subgroup of G.

Proof. Exercise.

Corollary 3.3.3. *Let* G *be a group. Then for any* $g \in G$ *, we have*

$$\langle g \rangle = \bigcap_{\{H: g \in H < G\}} H.$$

4.1 Cyclic subgroups (cont'd)

Proposition 4.1.1. Every subgroup of a cyclic group is cyclic.

Proof. Let $G = \langle g \rangle$ be a cyclic group, and H < G a subgroup. If H is trivial, then it is cyclic (generated by the identity e). If H is nontrivial, then there exists $k \in \mathbb{Z}_{>0}$ such that $g^k \in H$. We set

$$m := \min\{k \in \mathbb{Z}_{>0} : g^k \in H\}.$$

We claim that H is generated by g^m . First of all, we obviously have $\langle g^m \rangle \subset H$. Conversely, let g^n be an arbitrary element in H. By the Division Theorem, there exist (uniquely) integers q and $0 \le r \le m-1$ such that n=mq+r. So $g^n=(g^m)^q\cdot g^r$ which implies that $g^r=(g^m)^{-q}\cdot g^n\in H$. This forces r=0. Thus $g^n\in\langle g^m\rangle$, and we have shown that $H\subset\langle g^m\rangle$. This completes the proof. \square

Corollary 4.1.2. Any subgroup of $(\mathbb{Z}, +)$ is of the form $n\mathbb{Z}$ for some $n \in \mathbb{Z}$.

Because of this corollary, we can define the gcd of two integers as follows. For any $a,b\in\mathbb{Z}$, the subset

$$\langle a, b \rangle := \{ ma + nb : m, n \in \mathbb{Z} \}$$

is a subgroup of \mathbb{Z} using Proposition 3.2.5 (check this!). Corollary 4.1.2 implies that $\langle a, b \rangle$ is of the form $d\mathbb{Z}$ for some positive integer d. We then define the **greatest common divisor (gcd)**, denoted as gcd(a, b), to be this positive integer d. One can check that this gcd satisfies the following properties (as expected):

- $d \mid a$ and $d \mid b$,
- d = ka + lb for some $k, l \in \mathbb{Z}$, and
- if $k \mid a$ and $k \mid b$, then $k \mid d$.

Proposition 4.1.3. Let G be a cyclic group of order n and $g \in G$ be a generator of G, i.e. $G = \langle g \rangle$. Let $g^s \in G$ be an element in G. Then

$$|g^s| = n/d,$$

where $d = \gcd(s, n)$. Moreover, $\langle g^s \rangle = \langle g^t \rangle$ if and only if $\gcd(s, n) = \gcd(t, n)$.

Proof. Let us write $a=g^s$ and let m:=|a|. First of all, we have $a^{n/d}=(g^s)^{n/d}=(g^n)^{s/d}=e$ since |G|=n. Proposition 2.1.1 implies that $m\mid (n/d)$. On the other hand, we have $e=a^m=g^{sm}$ which implies, again by Proposition 2.1.1, that $n\mid sm$. Dividing both sides by d gives $(n/d)\mid (s/d)m$. But n/d and s/d are relatively prime, so we must have $(n/d)\mid m$. This proves that $|g^s|=m=n/d$ where $d=\gcd(s,n)$.

To prove the second assertion, we first show that there is an equality of subgroups $\langle g^s \rangle = \langle g^d \rangle$ where $d = \gcd(s,n)$. One inclusion is clear: as $d \mid s$, we have $g^s \in \langle g^d \rangle$ which implies $\langle g^s \rangle \subset \langle g^d \rangle$. Conversely, note that there exist $k,l \in \mathbb{Z}$ such that d = ks + ln. So we have $g^d = (g^s)^k \cdot (g^n)^l = (g^s)^k \in \langle g^s \rangle$ and hence $\langle g^d \rangle \subset \langle g^s \rangle$. This proves the equality we claimed.

Now, $\langle g^s \rangle = \langle g^t \rangle$ implies that $|g^s| = |g^t|$ which in turn gives $\gcd(s,n) = \gcd(t,n)$. Conversely, if we have $\gcd(s,n) = \gcd(t,n) =: d$, then $\langle g^s \rangle = \langle g^d \rangle = \langle g^t \rangle$.

Corollary 4.1.4. All generators of a cyclic group $G = \langle g \rangle$ of order n are of the form g^r where r is relatively prime to n.

4.2 Generating sets

Let G be a group, S a nonempty subset of G. Then similar to the case of a cyclic subgroup, it can be proved using Proposition 3.2.5 that the subset:

$$\langle S \rangle := \{ a_1^{m_1} a_2^{m_2} \cdots a_n^{m_n} : n \in \mathbb{N}, a_i \in S, m_i \in \mathbb{Z} \}$$

is the smallest subgroup of G containing S. We call $\langle S \rangle$ the subgroup of G generated by S. If $G = \langle S \rangle$, then we say S is a generating set for G.

Remark. Similar to the cyclic subgroup generated by a single element, we have

$$\langle S \rangle = \bigcap_{\{H: S \subset H < G\}} H.$$

If $S = \{a_1, a_2, \dots, a_l\}$ is a finite set, we often write

$$\langle a_1, a_2, \ldots, a_l \rangle$$

to denote the subgroup generated by S.

Example 4.2.1. • The set of cycles and the set of transpositions are two examples of generating sets for S_n .

- We also have $S_n = \langle (12), (12 \cdots n) \rangle$.
- We have $D_n = \langle r, s \rangle$ where r is the rotation by the angle $2\pi/n$ in the anticlockwise direction and s is any reflection.

If there exists a finite number of elements $a_1, a_2, \ldots, a_l \in G$ such that

$$G = \langle a_1, a_2, \dots, a_l \rangle,$$

then we say that G is **finitely generated**.

For example, every cyclic group is finitely generated, for it is generated by one element. Every finite group is also finitely generated, since we may take the finite generating set S to be G itself. Finitely generated groups are much easier to understand. For instance, there is a simple classification for finitely generated abelian groups but not for those which are not finitely generated.

Exercise: The group $(\mathbb{Q}, +)$ is not finitely generated.

4.3 Equivalence relations and partitions

Let S be a set.

A partition P of S is a collection of subsets $\{S_i : i \in I\}$ of S (here I is some index set) such that

- $S_i \neq \emptyset$ for each $i \in I$,
- $S_i \cap S_j = \emptyset$ if $i \neq j$, and
- $\bigcup_{i \in I} S_i = S$.

We may also say that P is a subdivision of S into a disjoint union of nonempty subsets, written as

$$S = \bigsqcup_{i \in I} S_i.$$

An equivalence relation on S is a relation \sim (i.e. a subset of $S \times S$) which is

- (Reflexive:) $a \sim a$ for any $a \in S$,
- (Symmetric:) if $a \sim b$, then $b \sim a$, and
- (Transitive:) if $a \sim b$ and $b \sim c$, then $a \sim c$.

In fact, partition and equivalence relation are two equivalent concepts.

First of all, given a partition $\{S_i: i \in I\}$ of S, we can define a relation on S by the rule $a \sim b$ if $a, b \in S_i$ for some $i \in I$. Then it is easy to check that \sim is an equivalence relation on S.

Conversely, suppose we are given an equivalence relation \sim on S. For any $a \in S$, the set

$$C_a = \{b \in S : a \sim b\}$$

is called the **equivalence class** of a. The reflexive axiom implies that $a \in C_a$; in particular, $C_a \neq \emptyset$ for all $a \in S$. Also, S is the union of all the equivalence classes C_a . Finally, we claim that if $C_a \cap C_b \neq \emptyset$, then $C_a = C_b$.

Proof of claim. Suppose there exists $c \in C_a \cap C_b$. So we have $a \sim c$ and $b \sim c$. The symmetric and transitive axioms then imply that $a \sim b$ (and $b \sim a$). Now for any $d \in C_a$, we have $d \sim a$, so $d \sim b$ by $a \sim b$ and the transitive axiom. Thus $d \in C_b$ and this shows that $C_a \subset C_b$. Reversing the roles of a and b in the same argument shows that $C_b = C_a$. Therefore $C_a = C_b$.

We conclude that the collection of equivalence classes C_a , $a \in S$ gives a partition of S.

As an application, we give a proof of the fact that any permutation $\sigma \in S_n$ is a product of disjoint cycles:

Proof of Proposition 2.2.3. Let $\sigma \in S_n$ be a permutation on the set $I_n = \{1, 2, ..., n\}$. For $a, b \in I_n$, we say $a \sim b$ if and only if $b = \sigma^k(a)$ for some $k \in \mathbb{Z}$. **Exercise:** This defines an equivalence relation on I_n . So it produces a partition of I_n into a disjoint union of equivalence classes:

$$I_n = O_1 \sqcup O_2 \sqcup \cdots \sqcup O_m$$
.

(The equivalence classes $O_1, O_2, \ldots, O_m \subset I_n$ are called **orbits** of σ .) Then, for $j = 1, 2, \ldots, m$, we define a permutation $\mu_j \in S_n$ by

$$\mu_j(a) = \begin{cases} \sigma(a) & \text{if } a \in O_j, \\ a & \text{if } a \notin O_j. \end{cases}$$

Each μ_j is a cycle (of length $|O_j|$). They are disjoint since the O_j 's form a partition. Also we have

$$\sigma = \mu_1 \mu_2 \cdots \mu_m$$
.

5.1 Cosets and The Theorem of Lagrange

Let G be a group, H a subgroup of G. We are interested in knowing how large H is relative to G.

We define a relation \sim_L on G as follows:

$$a \sim_L b$$
 if and only if $b = ah$ for some $h \in H$,

or equivalently:

$$a \sim_L b$$
 if and only if $a^{-1}b \in H$.

Exercise: \sim_L is an equivalence relation.

We may therefore partition G into a disjoint union of equivalence classes with respect to \sim_L . We call these equivalence classes the **left cosets** of H in G; each left coset of H has the form

$$aH = \{ah : h \in H\}.$$

We could likewise define a relation \sim_R on G by

$$a \sim_R b$$
 if and only if $b = ha$ for some $h \in H$,

or equivalently:

$$a \sim_R b$$
 if and only if $ba^{-1} \in H$.

 \sim_R is also an equivalence relation, whose equivalence classes, which are subsets of the form

$$Hb = \{hb : h \in H\}, \quad b \in G,$$

are called the **right cosets** of H in G.

Definition. The number of left cosets of a subgroup H of G is called the **index** of H in G. It is denoted by:

Theorem 5.1.1 (Lagrange). Let G be a finite group. Let H be subgroup of G, then |H| divides |G|. More precisely, $|G| = [G:H] \cdot |H|$.

Proof. We already know that the left cosets of H partition G. That is:

$$G = a_1 H \sqcup a_2 H \sqcup \ldots \sqcup a_{[G:H]} H,$$

where $a_i H \cap a_j H = \emptyset$ if $i \neq j$. Hence, $|G| = \sum_{i=1}^{[G:H]} |a_i H|$. Note that one of the left cosets, say $a_1 H$, is equal to H = eH. The theorem follows if we show that the size of each left coset of H is equal to |H|.

For each left coset S of H, pick an element $a \in S$, and define a map $\psi: H \longrightarrow S$ as follows:

$$\psi(h) = ah.$$

We want to show that ψ is bijective.

For any $s \in S$, by definition of a left coset (as an equivalence class) we have s = ah for some $h \in H$. Hence, ψ is surjective. If $\psi(h') = ah' = ah = \psi(h)$ for some $h', h \in H$, then $h' = a^{-1}ah' = a^{-1}ah = h$. Hence, ψ is one-to-one.

So we have a bijection between two finite sets. Hence, |S| = |H|.

Remark. As a consequence of the Theorem of Lagrange, we see that the numbers of left cosets and right cosets, if finite, are equal to each other; more generally, the set of left cosets has the same cardinality as the set of right cosets.

Corollary 5.1.2. Let G be a finite group. The order of every element of G divides the order of G.

Proof. Since G is finite, any element of $g \in G$ has finite order |g|. Since the order of the subgroup:

$$H = \langle g \rangle = \{e, g, g^2, \dots, g^{|g|-1}\}$$

is equal to |g|, it follows from Lagrange's Theorem that |g| = |H| divides |G|. \square

Corollary 5.1.3. If the order of a group G is prime, then G is a cyclic group.

Proof. Let G be a group such that p = |G| is a prime number. Since $p \ge 2$, there exists $a \in G \setminus \{e\}$. The above corollary them says that $|a| \mid p$. But $|a| \ne 1$, so we must have |a| = p. This means that $G = \langle a \rangle$.

Corollary 5.1.4. *If a group* G *is finite, then for all* $g \in G$ *we have:*

$$g^{|G|}=e.$$

Proof. The previous corollary already says that $|g| \mid |G|$, i.e. $|G| = k \cdot |g|$. So $g^{|G|} = (g^{|g|})^k = e$.

5.2 Examples of cosets

Example 5.2.1. Let $G = (\mathbb{Z}, +)$. Let:

$$H = 3\mathbb{Z} = \{\ldots, -9, -6, -3, 0, 3, 6, 9, \ldots\}$$

The set H is a subgroup of G. The left cosets of H in G are as follows:

$$3\mathbb{Z}, 1 + 3\mathbb{Z}, 2 + 3\mathbb{Z},$$

where $i + 3\mathbb{Z} := \{i + 3k : k \in \mathbb{Z}\}.$

In general, for $n \in \mathbb{Z}$, the left cosets of $n\mathbb{Z}$ in \mathbb{Z} are:

$$i + n\mathbb{Z}, \quad i = 0, 1, 2, \dots, n - 1.$$

Example 5.2.2. Let $G = GL(n, \mathbb{R})$. Let:

$$H = \mathrm{GL}^+(n, \mathbb{R}) := \{ h \in G : \det h > 0 \}.$$

(**Exercise:** *H* is a subgroup of *G*.)

Let:

$$s = \begin{pmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \in G$$

Note that $\det s = \det s^{-1} = -1$.

For any $g \in G$, either $\det g > 0$ or $\det g < 0$. If $\det g > 0$, then $g \in H$. If $\det g < 0$, we write:

$$g = (ss^{-1})g = s(s^{-1}g).$$

Since $\det s^{-1}g = (\det s^{-1})(\det g) > 0$, we have $s^{-1}g \in H$. So, $G = H \sqcup sH$, and [G:H]=2. Notice that both G and H are infinite groups, but the index of H in G is finite.

Example 5.2.3. Let $G = GL(n, \mathbb{R})$, $H = SL(n, \mathbb{R})$. For each $x \in \mathbb{R}^{\times}$, let:

$$s_x = \begin{pmatrix} x & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \in G$$

Note that $\det s_x = x$.

For each $q \in G$, we have:

$$g = s_{\det g}(s_{\det g}^{-1}g) \in s_{\det g}H$$

Moreover, for distinct $x, y \in \mathbb{R}^{\times}$, we have:

$$\det(s_x^{-1}s_y) = y/x \neq 1.$$

This implies that $s_x^{-1}s_y \notin H$, hence s_yH and s_xH are disjoint cosets. We have therefore:

$$G = \bigsqcup_{x \in \mathbb{R}^{\times}} s_x H.$$

The index [G:H] in this case is infinite.

Exercise: For the subgroup $(\mathbb{Z}, +) < (\mathbb{R}, +)$, show that the set of (left) cosets are parametrized by [0, 1), so that we have

$$\mathbb{R} = \bigsqcup_{t \in [0,1)} \left(t + \mathbb{Z} \right).$$

Exercise: For a vector subspace $W \subset V$, we consider the subgroup (W, +) < (V, +). Then the set of cosets are given by the *affine translates* v + W, $v \in V$, of W in V. Let $W' \subset V$ be a subspace complementary to W, meaning that it satisfies the following conditions:

- $\dim W' = \dim V \dim W$, and
- $W \cap W' = \{0\}.$

Show that the set of cosets of W in V are parametrized by W', so that

$$V = \bigsqcup_{v \in W'} (v + W).$$

Example 5.2.4. Consider the dihedral group D_n , and the cyclic subgroup $\langle r \rangle$ generated by the anticlockwise rotation by $2\pi/n$. Since

$$D_n = \{ id, r, r^2, \dots, r^{n-1}, s, rs, r^2s, \dots, r^{n-1}s \},$$

we directly see that

$$D_n = \langle r \rangle \sqcup s \langle r \rangle.$$

Example 5.2.5. Consider the n-th symmetric group S_n , and the subgroup $A_n < S_n$ consisting of all the even permutations. Let $\tau \in S_n$ be a transposition. **Exercise:** the map $\sigma \mapsto \tau \sigma$ gives a bijection between A_n and $B_n := S_n \setminus A_n$, the set of all odd permutations. Hence we have $S_n = A_n \sqcup \tau A_n$.

Example 5.2.6. Recall that $S_3 (= D_3)$ is generated by $\rho = (123)$ and $\mu = (12)$. (In fact, $S_3 = \{ id, \rho, \rho^2, \mu, \rho\mu, \rho^2\mu \}$.) For the cyclic subgroup $H = \langle \mu \rangle < S_3$, the left cosets are given by $H, \rho H, \rho^2 H$ so that we have $S_3 = H \sqcup \rho H \sqcup \rho^2 H$.

5.3 Group Homomorphisms

Definition. Let G = (G, *), G' = (G', *') be groups.

A **group homomorphism** ϕ from G to G' is a map $\phi: G \longrightarrow G'$ which satisfies:

$$\phi(a * b) = \phi(a) *' \phi(b),$$

for all $a, b \in G$.

If ϕ is also bijective, then ϕ is called an **isomorphism**. If there exists an isomorphism $\phi: G \longrightarrow G'$ between two groups G and G', then we say G is **isomorphic** to G', and denoted by $G \simeq G'$.

Remark. Note that if a homomorphism ϕ is bijective, then $\phi^{-1}: G' \longrightarrow G$ is also a homomorphism, and consequently, ϕ^{-1} is an isomorphism.

Isomorphic groups have the same algebraic structure and thus share the same algebraic properties – they only differ by relabeling of their elements. One of the most fundamental questions in group theory is to classify groups up to isomorphisms.

- **Example 5.3.1.** Let V, W be vector spaces over \mathbb{R} (or \mathbb{C}). Then a linear transformation $\phi: V \longrightarrow W$ is in particular a homomorphism between abelian groups $\phi: (V, +) \longrightarrow (W, +)$.
 - The determinant $\det: \mathrm{GL}(n,\mathbb{R}) \longrightarrow \mathbb{R}^{\times}$ is a group homomorphism.
 - The exponential map $\exp: (\mathbb{R}, +) \longrightarrow (\mathbb{R}_{>0}, \cdot)$ is an isomorphism from the additive group of real numbers to the multiplicative group of positive real numbers, whose inverse if given by the logarithm $\log: (\mathbb{R}_{>0}, \cdot) \longrightarrow (\mathbb{R}, +)$.

6.1 Group Homomorphisms (cont'd)

Example 6.1.1. • For any nonzero integer n, we have $n\mathbb{Z} < \mathbb{Z}$, and the map $\phi: n\mathbb{Z} \longrightarrow \mathbb{Z}$ defined by $nk \mapsto k$ is an isomorphism. Note that $n\mathbb{Z} < \mathbb{Z}$ is proper whenever |n| > 1, so a proper subgroup can be isomorphic to the parent group!

- On the other hand, for any integer n, the map $\phi : \mathbb{Z} \longrightarrow \mathbb{Z}$ defined by $k \mapsto nk$ is a homomorphism but *not* an isomorphism unless |n| = 1.
- Given a positive integer n, the remainder map $\phi: \mathbb{Z} \longrightarrow \mathbb{Z}_n$ defined by mapping k to its remainder when divided by n is a surjective homomorphism (check this!).
- The map $\phi: \mathbb{Z} \longrightarrow \mathbb{Z}$ defined by $k \mapsto k+1$ is *not* a homomorphism.

Example 6.1.2. The group:

$$G = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \middle| \theta \in \mathbb{R} \right\}$$

is isomorphic to

$$G' = \{z \in \mathbb{C} : |z| = 1\}.$$

Here, the group operation on G is matrix multiplication, and the group operation on G' is the multiplication of complex numbers.

Proof. Each element in G' is equal to $e^{i\theta}$ for some $\theta \in \mathbb{R}$. Define a map $\phi : G \longrightarrow G'$ as follows:

$$\phi\left(\begin{pmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{pmatrix}\right) = e^{i\theta}.$$

Exercise: ϕ is a bijective group homomorphism.

Here are some basic properties of group homomorphisms:

Proposition 6.1.3. *If* $\phi: G \longrightarrow G'$ *is a group homomorphism, then:*

- 1. $\phi(e_G) = e_{G'}$.
- 2. $\phi(g^{-1}) = \phi(g)^{-1}$, for all $g \in G$.
- 3. $\phi(g^n) = \phi(g)^n$, for all $g \in G$, $n \in \mathbb{Z}$.

Proof. We prove the first claim, and leave the rest as an exercise.

Since e_G is the identity element of G, we have $e_G * e_G = e_G$. On the other hand, since ϕ is a group homomorphism, we have:

$$\phi(e_G) = \phi(e_G * e_G) = \phi(e_G) *' \phi(e_G).$$

Since G' is a group, $\phi(e_G)^{-1}$ exists in G', hence:

$$\phi(e_G)^{-1} *' \phi(e_G) = \phi(e_G)^{-1} *' (\phi(e_G) *' \phi(e_G))$$

The left-hand side is equal to $e_{G'}$, while by the associativity of *' the right-hand side is equal to $\phi(e_G)$.

Let $\phi:G\longrightarrow G'$ be a homomorphism of groups. The **image** of ϕ is defined as:

$$\operatorname{im} \phi := \phi(G) := \{ \phi(g) : g \in G \}$$

The **kernel** of ϕ is defined as:

$$\ker \phi = \{ g \in G : \phi(g) = e_{G'} \}.$$

Proposition 6.1.4. The image of ϕ is a subgroup of G'. The kernel of ϕ is a subgroup of G.

Proposition 6.1.5. A group homomorphism $\phi: G \longrightarrow G'$ is one-to-one if and only if $\ker \phi = \{e_G\}$.

As we have mentioned, isomorphisms preserve algebraic properties. Here are some examples.

Proposition 6.1.6. Let G be a cyclic group, then any group isomorphic to G is also cyclic.

Proof. Exercise.

Example 6.1.7. The cyclic group \mathbb{Z}_4 is not isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Proof. Each element of $G = \mathbb{Z}_2 \times \mathbb{Z}_2$ is of order at most 2. Since |G| = 4, G cannot be generated by any of its elements. Hence, G is not cyclic, so it cannot be isomorphic to the cyclic group \mathbb{Z}_4 .

Proposition 6.1.8. Let G be an abelian group, then any group isomorphic to G is abelian.

Example 6.1.9. The group D_6 has 12 elements. We have seen that $D_6 = \langle r_2, s \rangle$, where r_2 is a rotation of order 6, and s is a reflection, which has order 2. So, it is reasonable to ask if D_6 is isomorphic to $\mathbb{Z}_6 \times \mathbb{Z}_2$. The answer is no. For $\mathbb{Z}_6 \times \mathbb{Z}_2$ is abelian, but D_6 is not.

Remark. Both claims remain true if we replace isomorphism by a surjective homomorphism, namely, if $\phi: G \longrightarrow G'$ is a surjective homomorphism, then we have

- G is cyclic $\Rightarrow G'$ is cyclic,
- G is abelian $\Rightarrow G'$ is abelian.

Try to prove these assertions by yourself!

Exercise. Check that the restriction of a homomorphism $\phi: G \longrightarrow G'$ to a subgroup H < G gives a homomorphism from H to G'.

Proposition 6.1.10. *If* $\phi : G \longrightarrow G'$ *is an isomorphism, then* $|\phi(g)| = |g|$ *for any* $g \in G$.

Proof. By the previous exercise, the restriction of ϕ to the subgroup $\langle g \rangle$ gives a homomorphism

$$\phi|_{\langle g\rangle}:\langle g\rangle\longrightarrow G',$$

which is injective and with image

$$\operatorname{im} \phi|_{\langle q \rangle} = \langle \phi(g) \rangle.$$

So $\phi|_{\langle g\rangle}$ is an isomorphism from $\langle g\rangle$ to $\langle \phi(g)\rangle$; in particular, we have $|\phi(g)|=|g|$.

Classification of cyclic groups 7.1

Example 7.1.1. Let $H = \{r_0, r_1, r_2, \dots, r_{n-1}\}$ be the subgroup of D_n consisting of all rotations, where r_1 denotes the anti-clockwise rotation by the angle $2\pi/n$, and $r_k = r_1^k$. Then, H is isomorphic to $\mathbb{Z}_n = (\mathbb{Z}_n, +_n)$.

Proof. Define $\phi: H \longrightarrow \mathbb{Z}_n$ as follows:

$$\phi(r_1^k) = \overline{k}, \quad k \in \mathbb{Z},$$

where \overline{k} denotes the remainder of the division of k by n.

The map ϕ is well defined: If $r_1^k = r_1^{k'}$, then $r_1^{k-k'} = e$, which implies that $n = |r_1|$ divides k - k'. Hence, $\overline{k} = \overline{k'}$ in \mathbb{Z}_n . For $i, j \in \mathbb{Z}$, we have $r_1^i r_1^j = r_1^{i+j}$; hence:

$$\phi(r_1^i r_1^j) = \phi(r_1^{i+j}) = \overline{i+j} = i +_n j = \phi(r_1^i) +_n \phi(r_1^j).$$

This shows that ϕ is a homomorphism. It is clear that ϕ is surjective, which then implies that ϕ is one-to-one, for the two groups have the same size. Hence, ϕ is a bijective homomorphism, i.e. an isomorphism.

In fact:

Theorem 7.1.2. Any infinite cyclic group is isomorphic to $(\mathbb{Z}, +)$. Any cyclic group of finite order n is isomorphic to $(\mathbb{Z}_n, +_n)$.

Proof. Write $G = \langle g \rangle$.

Suppose $|G| = \infty$. Consider the map

$$\phi: \mathbb{Z} \to G, \quad k \mapsto g^k.$$

 ϕ is a homomorphism because $\phi(k_1+k_2)=g^{k_1+k_2}=g^{k_1}\cdot g^{k_2}=\phi(k_1)\cdot \phi(k_2)$. ϕ is injective because $\phi(k_1) = \phi(k_2)$ implies that $g^{k_1} = g^{k_2}$ which forces $k_1 = k_2$ as $|g| = \infty$. ϕ is surjective because G is generated by g. We conclude that ϕ is an isomorphism.

If $|G| = n < \infty$, Claim 2.1.2 says that we can write

$$G = \langle q \rangle = \{e, q, q^2, \dots, q^{n-1}\}.$$

Consider the bijection

$$\phi: G \to \mathbb{Z}_n, \quad g^i \mapsto i.$$

We have

$$\begin{split} \phi(g^{i_1} \cdot g^{i_2}) &= \phi(g^{i_1 + i_2}) \\ &= \left\{ \begin{array}{ll} \phi(g^{i_1 + i_2}) & \text{if } i_1 + i_2 < n, \\ \phi(g^{i_1 + i_2 - n}) & \text{if } i_1 + i_2 \ge n \end{array} \right. \\ &= \left\{ \begin{array}{ll} i_1 + i_2 & \text{if } i_1 + i_2 < n, \\ i_1 + i_2 - n & \text{if } i_1 + i_2 \ge n \end{array} \right. \\ &= \phi(g^{i_1}) + \phi(g^{i_2}), \end{split}$$

so ϕ is an isomorphism.

So for any $n \in \mathbb{Z} \cup \{\infty\}$, there is a unique (up to isomorphism) cyclic group of order n. In particular, we have the following:

Corollary 7.1.3. If G and G' are two finite cyclic groups of the same order, then G is isomorphic to G'.

For example, the multiplicative group of m-th roots of unity

$$U_m = \{ z \in \mathbb{C} : z^m = 1 \} = \{ 1, \zeta_m, \zeta_m^2, \dots, \zeta_m^{m-1} \},$$

where $\zeta_m = e^{2\pi \mathbf{i}/m} = \cos(2\pi/m) + \mathbf{i}\sin(2\pi/m) \in \mathbb{C}$, is cyclic of order m. So it is isomorphic to \mathbb{Z}_m , and an isomorphism is given by

$$\phi: \mathbb{Z}_m \longrightarrow U_m, \quad k \mapsto \zeta_m^k.$$

7.2 Rings

Definition. A ring R (or $(R, +, \cdot)$) is a set equipped with two binary operations:

$$+, \cdot : R \times R \to R$$

which satisfy the following properties:

- 1. (R, +) is an abelian group.
- 2. (a) The multiplication \cdot is associative, i.e.

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

for all $a, b, c \in R$.

- (b) There is an element $1 \in R$ (called the *multiplicative identity*) such that $1 \cdot a = a \cdot 1 = a$ for all $a \in R$.
- 3. (Distributive laws:)
 - (a) $a \cdot (b+c) = a \cdot b + a \cdot c$ and
 - (b) $(a+b) \cdot c = a \cdot c + b \cdot c$

for all $a, b, c \in R$.

Example 7.2.1. The following sets, equipped with the usual operations of addition and multiplication, are rings:

- 1. \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} .
- 2. $\mathbb{Z}[x]$, $\mathbb{Q}[x]$, $\mathbb{R}[x]$, $\mathbb{C}[x]$ (Polynomials with integer, rational, real, complex coefficients, respectively.)
- 3. $\mathbb{Q}[\sqrt{2}] = \{\sum_{k=0}^{n} a_k (\sqrt{2})^k : a_k \in \mathbb{Q}, n \in \mathbb{N}\} = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}.$
- 4. For a fixed n, the set of $n \times n$ matrices with integer coefficients.
- 5. $C[a,b] = \{f : [a,b] \rightarrow \mathbb{R} : f \text{ is continuous.}\}$
- 6. $(\mathbb{N}, +, \cdot)$ is *not* a ring because $(\mathbb{N}, +)$ is not a group.

Remark. • For convenience's sake, we often write ab for $a \cdot b$.

- In the definition, commutativity is required of addition, but not of multiplication.
- Every element has an additive inverse, but *not necessarily* a multiplicative inverse. That is, there may be an element $a \in R$ such that $ab \neq 1$ for all $b \in R$.

Proposition 7.2.2. In a ring R, there is a unique additive identity and a unique multiplicative identity.

Proof. We already know that the additive identity is unique.

Suppose there is an element $1' \in R$ such that 1'r = r or all $r \in R$, then in particular 1'1 = 1. But 1'1 = 1' since 1 is a multiplicative identity element, so 1' = 1.

Proposition 7.2.3. For any r in a ring R, its additive inverse -r is unique. That is, if r + r' = r + r'' = 0, then r' = r''.

If r has a multiplicative inverse, then it is also unique. That is, if rr' = 1 = r'r and rr'' = 1 = r''r, then r' = r''.

Proposition 7.2.4. For all elements r in a ring R, we have 0r = r0 = 0.

Proof. By distributive laws,

$$0r = (0+0)r = 0r + 0r$$

Adding -0r (additive inverse of 0r) to both sides, we have:

$$0 = (0r + 0r) + (-0r) = 0r + (0r + (-0r)) = 0r + 0 = 0r.$$

The proof of r0 = 0 is similar and we leave it as an exercise.

Proposition 7.2.5. For all elements r in a ring, we have (-1)(-r) = (-r)(-1) = r.

Proof. We have:

$$0 = 0(-r) = (1 + (-1))(-r) = -r + (-1)(-r).$$

Adding r to both sides, we obtain

$$r = r + (-r + (-1)(-r)) = (r + -r) + (-1)(-r) = (-1)(-r).$$

We leave it as an exercise to show that (-r)(-1) = r.

Proposition 7.2.6. For all r in a ring R, we have: (-1)r = r(-1) = -r

Proposition 7.2.7. If R is a ring in which 1 = 0, then $R = \{0\}$. That is, it has only one element.

We call such an R the **zero ring**.

Definition. A ring R is said to be **commutative** if ab = ba for all $ab \in R$.

Example 7.2.8. • \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are all commutative rings, so are $\mathbb{Z}[x]$, $\mathbb{Q}[x]$, $\mathbb{R}[x]$, $\mathbb{C}[x]$.

• For a fixed natural number n > 1, the ring of $n \times n$ matrices with integer coefficients, under the usual operations of addition and multiplication, is not commutative.

Modulo m arithmetic

Example 7.2.9. Let m be a positive integer. Consider the set

$$\mathbb{Z}_m = \{0, 1, 2, \dots, m-1\}.$$

For any integer $n \in \mathbb{Z}$, we denote by \overline{n} the remainder of the division of of n by m: n = mq + r.

On the other hand, two integers $a, b \in \mathbb{Z}$ are said to be **congruent modulo** m, denoted as $a \equiv b \mod m$, if $m \mid (a - b)$. This defines an equivalence relation on \mathbb{Z} , and \mathbb{Z}_m can be regarded as parametrizing the equivalence classes, namely, every $a \in \mathbb{Z}$ is congruent modulo m to exactly one element in \mathbb{Z}_m .

Remark. Congruence modulo m is exactly the same as the relation defined by the subgroup $m\mathbb{Z} < \mathbb{Z}$, so the above partition is the same as that given by cosets of $m\mathbb{Z}$ in \mathbb{Z} .

We equip \mathbb{Z}_m with addition $+_m$ and multiplication \cdot_m defined as follows: For $a, b \in \mathbb{Z}_m$, let:

$$a +_m b = \overline{a + b},$$
$$a \cdot_m b = \overline{a \cdot b},$$

where the addition and multiplication on the right are the usual addition and multiplication for integers.

Proposition 7.2.10. With addition and multiplication thus defined, \mathbb{Z}_m is a commutative ring.

Proof. 1. We already know that $(\mathbb{Z}_m, +_m)$ is an abelian group.

2. Note that If $a \equiv a' \mod m$ and $b \equiv b' \mod m$, then $ab \equiv a'b' \mod m$. So for $r_1, r_2 \in \mathbb{Z}_m$, we have

$$\overline{r_1r_2} \equiv r_1r_2 \equiv \overline{r_1} \cdot \overline{r_2} \equiv \overline{\overline{r_1} \cdot \overline{r_2}} \mod m.$$

For $a, b, c \in \mathbb{Z}_m$, we have:

$$a \cdot_m (b \cdot_m c) = a \cdot_m \overline{bc} = \overline{a \cdot \overline{bc}} = \overline{a(bc)},$$

which by the associativity of multiplication for integers is equal to:

$$\overline{(ab)c} = \overline{\overline{ab} \cdot \overline{c}} = \overline{ab} \cdot_m c = (a \cdot_m b) \cdot_m c.$$

So, \cdot_m is associative.

- 3. **Exercise:** We can take 1 to be the multiplicative identity.
- 4. For $a, b \in \mathbb{Z}_m$, $a \cdot_m b = \overline{a \cdot b} = \overline{b \cdot a} = b \cdot_m a$. So \cdot_m is commutative.
- 5. Lastly, we need to prove distributivity. For $a, b, c \in \mathbb{Z}_m$, we have:

$$a \cdot_m (b +_m c) = \overline{\overline{a} \cdot \overline{b + c}} = \overline{a \cdot (b + c)} = \overline{ab + ac} = \overline{\overline{ab} + \overline{ac}} = a \cdot_m b +_m a \cdot_m c.$$

It now follows from the distributivity from the left, proven above, and the commutativity for \cdot_m , that distributivity from the right also holds:

$$(a +_m b) \cdot_m c = a \cdot_m c + b \cdot_m c.$$

Rings of polynomials

Definition. Let R be a nonzero commutative ring.

A **polynomial** with coefficients in R (in one-variable) is a formal sum

$$f(x) = \sum_{i=0}^{\infty} a_i x^i$$

with $a_i \in R$ such that $a_i = 0$ for all but finitely many i's.

If $a_i \neq 0$ for some i, then the largest such i is called the **degree** of f(x), denoted by $\deg f(x)$.

We denote by R[x] the set of all polynomials with coefficients in R.

Given

$$f(x) = \sum_{i=0}^{\infty} a_i x^i, g(x) = \sum_{i=0}^{\infty} b_i x^i \in R[x],$$

we define the addition and multiplication as follows (as usual):

$$f(x) + g(x) := \sum_{i=0}^{\infty} (a_i + b_i) x^i,$$
$$f(x)g(x) := \sum_{i=0}^{\infty} \left(\sum_{k=0}^{i} a_k b_{i-k} \right) x^i.$$

Proposition 8.0.1. With addition and multiplication thus defined, R[x] is a commutative ring.

Remark. A polynomial f(x) defines a function $f: R \to R$ by $a \mapsto f(a)$. But f(x) may not be determined by $f: R \to R$. For example, the polynomials

$$f(x) = 1 + x + x^2, g(x) = 1 \in \mathbb{Z}_2[x]$$

define the same (constant) function from \mathbb{Z}_2 to itself.

Integral domains and fields

Definition. A nonzero commutative ring R is called an **integral domain** if the product of two nonzero elements is always nonzero.

Definition. A nonzero element r in a ring R is called a **zero divisor** if there exists nonzero $s \in R$ such that rs = 0.

So a nonzero commutative ring R is an integral domain if and only if it has no zero divisors.

Example 8.0.2. 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are all integral domains, so are $\mathbb{Z}[x], \mathbb{Q}[x], \mathbb{R}[x], \mathbb{C}[x]$. (More generally, if R is an integral domain, so is R[x].)

- 2. Since $2, 3 \not\equiv 0 \mod 6$, and $2 \cdot 3 = 6 \equiv 0 \mod 6$, the ring \mathbb{Z}_6 is not an integral domain.
- 3. Consider R = C[-1,1], the ring of all continuous functions on [-1,1], equipped with the usual operations of addition and multiplication for functions. Let:

$$f = \begin{cases} -x, & x \le 0, \\ 0, & x > 0. \end{cases}, \quad g = \begin{cases} 0, & x \le 0, \\ x, & x > 0. \end{cases}$$

Then f and g are nonzero elements of R, but fg=0. So R is not an integral domain.

Proposition 8.0.3. A commutative ring R is an integral domain if and only if the cancellation law holds for multiplication, i.e. whenever ca = cb and $c \neq 0$, we have a = b.

Proof. Suppose R is an integral domain. If ca = cb, then by distributive laws, c(a-b) = c(a+-b) = 0. Since R is an integral domain, we have either c=0 or a-b=0. So, if $c \neq 0$, we must have a=b.

Conversely, suppose cancellation law holds. Suppose there are nonzero $a, b \in R$ such that ab = 0. By a previous result we know that 0 = a0. So, ab = a0, which by the cancellation law implies that b = 0, a contradiction.

Definition. Let R be a ring. We say that an element $a \in R$ is a **unit** if it has a multiplicative inverse, i.e. there is an element $a^{-1} \in R$ such that $aa^{-1} = a^{-1}a = 1$.

Example 8.0.4. The only units of \mathbb{Z} are ± 1 .

Example 8.0.5. Let R be the ring of all real valued functions on \mathbb{R} . Then, any function $f \in R$ satisfying $f(x) \neq 0$, $\forall x$, is a unit.

Example 8.0.6. Let R be the ring of all continuous real valued functions on \mathbb{R} , then $f \in R$ is a unit if and only if it is either strictly positive or strictly negative.

Proposition 8.0.7. *The only units of* $\mathbb{Q}[x]$ *are nonzero constants.*

Proof. Given any $f \in \mathbb{Q}[x]$ such that $\deg f > 0$, for all nonzero $g \in \mathbb{Q}[x]$ we have

$$\deg fg \ge \deg f > 0 = \deg 1;$$

hence, $fg \neq 1$. If g=0, then $fg=0 \neq 1$. So, f has no multiplicative inverse. If f is a nonzero constant, then $f^{-1}=\frac{1}{f}$ is a constant polynomial in $\mathbb{Q}[x]$, and

$$f\left(\frac{1}{f}\right) = \left(\frac{1}{f}\right)f = 1$$
. So, f is a unit

 $f\left(\frac{1}{f}\right)=\left(\frac{1}{f}\right)f=1.$ So, f is a unit. Finally, if f=0, then $fg=0 \neq 1$ for all $g\in \mathbb{Q}[x]$, so the zero polynomial has no multiplicative inverse.

Definition. A field is a commutative ring, with $1 \neq 0$, in which every nonzero element is a unit.

In other words, a nonzero commutative ring F is a field if and only if every nonzero element $r \in F$ has a multiplicative inverse r^{-1} , i.e. $rr^{-1} = r^{-1}r = 1$.

1. \mathbb{Q} , \mathbb{R} , \mathbb{C} are fields, but \mathbb{Z} is not a field. **Example 8.0.8.**

2. The polynomial rings $\mathbb{Q}[x]$, $\mathbb{R}[x]$, $\mathbb{C}[x]$ are not fields.

Note that if every nonzero element of a commutative ring has a multiplicative inverse, then that ring is an integral domain:

$$ca = cb \implies c^{-1}ca = c^{-1}cb \implies a = b.$$

So we conclude that

Proposition 8.0.9. A field is an integral domain.

Proposition 8.0.10. *Let* $k \in \mathbb{Z}_m \setminus \{0\}$.

- If gcd(k, m) > 1, then k is a zero divisor.
- If gcd(k, m) = 1, then k is a unit.

Proof. Let $d := \gcd(k, m)$.

If d > 1, then m/d is a nonzero element in \mathbb{Z}_m , and we have $k \cdot_m (m/d) =$ $(k/d) \cdot m = 0$ in \mathbb{Z}_m . So k is a zero divisor.

If d=1, then there exist $a,b\in\mathbb{Z}$ such that ak+bm=1. But this means we have $\overline{a}k = 1$ in \mathbb{Z}_m . So k is a unit.

Hence, the set of zero divisors in \mathbb{Z}_m is precisely given by

$$\{k \in \mathbb{Z}_m \setminus \{0\} : \gcd(k, m) > 1\}$$

and the set of units in \mathbb{Z}_m is precisely given by

$$\mathbb{Z}_m^{\times} := \{ k \in \mathbb{Z}_m \setminus \{0\} : \gcd(k, m) = 1 \}.$$

In particular, we have the following

Corollary 8.0.11. \mathbb{Z}_m is a field if and only if m is prime.

Notation. For p prime, we often denote the field \mathbb{Z}_p by \mathbb{F}_p .

Proposition 8.0.12. Equipped with the usual operations of addition and multiplications for real numbers, $F = \mathbb{Q}[\sqrt{2}] := \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}$ is a field.

Proof. Observe that: $(a+b\sqrt{2})+(c+d\sqrt{2})=(a+c)+(b+d)\sqrt{2}$ lies in F, and $(a+b\sqrt{2})(c+d\sqrt{2})=(ac+2bd)+(ad+bc)\sqrt{2}\in F$. Hence, addition and multiplication for real numbers are well-defined operations on F. As operations on \mathbb{R} , they are commutative, associative, and satisfy the distributive laws; therefore, as F is a subset of \mathbb{R} , they also satisfy these properties as operations on F.

It is clear that 0 and 1 are the additive and multiplicative identities of F. Given $a+b\sqrt{2}\in F$, where $a,b\in\mathbb{Q}$, it is clear that its additive inverse $-a-b\sqrt{2}$ also lies in F. Hence, F is a commutative ring.

To show that F is a field, for every nonzero $a+b\sqrt{2}$ in F, we need to find its multiplicative inverse. As an element of the field \mathbb{R} , the multiplicative inverse of $a+b\sqrt{2}$ is:

$$(a + b\sqrt{2})^{-1} = \frac{1}{a + b\sqrt{2}}.$$

It remains to show that this number lies in F. Observe that:

$$(a + b\sqrt{2})(a - b\sqrt{2}) = a^2 - 2b^2.$$

We claim that $a^2-2b^2\neq 0$. Suppose $a^2-2b^2=0$, then either (i) a=b=0, or (ii) $b\neq 0, \sqrt{2}=|a/b|$. Since we have assumed that $a+b\sqrt{2}$ is nonzero, case (i) cannot hold. But case (ii) also cannot hold because $\sqrt{2}$ is know to be irrational. Hence $a^2-2b^2\neq 0$, and:

$$\frac{1}{a+b\sqrt{2}} = \frac{a}{a^2 - 2b^2} - \frac{b}{a^2 - 2b^2}\sqrt{2},$$

which lies in F.

Proposition 8.0.13. All finite integral domains are fields.

Proof. Let R be an integral domain with n elements, where n is finite. Write $R = \{a_1, a_2, \ldots, a_n\}$. We want to show that for any nonzero element $a \neq 0$ in R, there exists $i, 1 \leq i \leq n$, such that a_i is the multiplicative inverse of a. Consider the set $S = \{aa_1, aa_2, \ldots, aa_n\}$. Since R is an integral domain, the cancellation law holds. In particular, since $a \neq 0$, we have $aa_i = aa_j$ if and only if i = j. The set S is therefore a subset of R with n distinct elements, which implies that S = R. In particular, $1 = aa_i$ for some i. This a_i is the multiplicative inverse of a.

Field of Fractions (optional)

An integral domain fails to be a field precisely when there is a nonzero element with no multiplicative inverse. The ring $\mathbb Z$ is such an example, for $2 \in \mathbb Z$ has no multiplicative inverse. But any nonzero $n \in \mathbb Z$ has a multiplicative inverse $\frac{1}{n}$ in $\mathbb Q$, which is a field. So, a question one could ask is, can we "enlarge" a given integral domain to a field, by formally adding multiplicative inverses to the ring?

An Equivalence Relation

Given an integral domain R (commutative, with $1 \neq 0$). We consider the set: $R \times R_{\neq 0} := \{(a,b) : a,b \in R, b \neq 0\}$. We define a relation \equiv on $R \times R_{\neq 0}$ as follows:

$$(a,b) \equiv (c,d)$$
 if $ad = bc$.

Lemma 8.0.14. The relation \equiv is an equivalence relation.

In other words, the relation \equiv is:

Reflexive: $(a,b) \equiv (a,b)$ for all $(a,b) \in R \times R$

Symmetric: If $(a, b) \equiv (c, d)$, then $(c, d) \equiv (a, b)$.

Transitive: If $(a, b) \equiv (c, d)$ and $(c, d) \equiv (e, f)$, then $(a, b) \equiv (e, f)$.

In general, given an equivalence relation \sim on a set S, the **equivalent class** of an element $a \in S$ is the set of all elements in $s \in S$ which are equivalent to a (i.e. $s \sim a$).

Notation: For notational convenience, to describe an equivalence class we may pick any element s (called a **representative**) belonging to the class, and label the class as [s]. Note that if $s \sim t$, then [s] = [t].

Due to the properties (reflexive, symmetric, transitive), of an equivalence relation, the equivalent classes form a **partition** of S. Namely, equivalent classes of non-equivalent elements are disjoint:

$$[s] \cap [t] = \emptyset$$

if $s \not\sim t$; and the union of all equivalent classes is equal to S:

$$\bigcup_{s \in S} [s] = S.$$

Definition. Given an equivalence relation \sim on a set S, the **quotient set** S/\sim is the set of all equivalence classes of S, with respect to \sim .

We now return to our specific situation of $R \times R_{\neq 0}$, with \equiv defined as above. We define addition + and multiplication \cdot on $R \times R_{\neq 0}$ as follows:

$$(a,b) + (c,d) := (ad + bc, bd)$$

 $(a,b) \cdot (c,d) := (ac,bd)$

Proposition 8.0.15. Suppose $(a,b) \equiv (a',b')$ and $(c,d) \equiv (c',d')$, then:

1.
$$(a,b) + (c,d) \equiv (a',b') + (c',d')$$
.

2.
$$(a,b) \cdot (c,d) \equiv (a',b') \cdot (c',d')$$
.

Proof. By definition, (a,b) + (c,d) = (ad + bc,bd), and (a',b') + (c',d') = (a'd' + b'c',b'd'). Since by assumption ab' = a'b and cd' = c'd, we have:

$$(ad + bc)b'd' = adb'd' + bcb'd' = a'bdd' + c'dbb' = (a'd' + b'c')bd;$$

hence, $(a, b) + (c, d) \equiv (a', b') + (c', d')$.

For multiplication, by definition we have $(a,b) \cdot (c,d) = (ac,bd)$ and $(a',b') \cdot (c',d') = (a'c',b'd')$. Since

$$acb'd' = ab'cd' = a'bc'd = a'c'bd,$$

we have $(a, b) \cdot (c, d) \equiv (a', b') \cdot (c', d')$.

Let:

$$\operatorname{Frac}(R) := (R \times R_{\neq 0}) / \equiv,$$

and define + and \cdot on Frac(R) as follows:

$$[(a,b)] + [(c,d)] = [(ad + bc,bd)]$$
$$[(a,b)] \cdot [(c,d)] = [(ac,bd)]$$

Corollary 8.0.16. + and \cdot thus defined are well-defined binary operations on $\operatorname{Frac}(R)$.

Namely, we get the same output in $\operatorname{Frac}(R)$ regardless of the choice of representatives of the equivalence classes.

Proposition 8.0.17. The set $\operatorname{Frac}(R)$, equipped with + and \cdot defined as above, forms a field, with additive identity 0 = [(0,1)] and multiplicative identity 1 = [(1,1)]. The multiplicative inverse of a nonzero element $[(a,b)] \in \operatorname{Frac}(R)$ is [(b,a)].

Proof. Exercise.

Definition. Frac(R) is called the **Fraction Field** of R.

Remark. Note that $\operatorname{Frac}(\mathbb{Z}) = \mathbb{Q}$, if we identify $a/b \in \mathbb{Q}$, $a, b \in \mathbb{Z}$, with $[(a, b)] \in \operatorname{Frac}(\mathbb{Z})$.

Week 9

9.1 Homomorphisms

Definition. Let R and R' be rings. A **ring homomorphism** from R to R' is a map $\phi: R \to R'$ with the following properties:

- 1. $\phi(1_R) = 1_{R'}$;
- 2. $\phi(a+b) = \phi(a) + \phi(b)$, for all $a, b \in R$;
- 3. $\phi(a \cdot b) = \phi(a) \cdot \phi(b)$, for all $a, b \in R$.

Note that if $\phi: R \to R'$ is a homomorphism, then:

•

$$\phi(0) = \phi(0+0) = \phi(0) + \phi(0),$$

which implies that $\phi(0) = 0$.

- For all $a \in R$, $0 = \phi(0) = \phi(-a+a) = \phi(-a) + \phi(a)$, which implies that $\phi(-a) = -\phi(a)$.
- If u is a unit in R, then $1 = \phi(u \cdot u^{-1}) = \phi(u)\phi(u^{-1})$, and $1 = \phi(u^{-1} \cdot u) = \phi(u^{-1})\phi(u)$; which implies that $\phi(u)$ is a unit, with $\phi(u)^{-1} = \phi(u^{-1})$.

Example 9.1.1. The map $\phi:\mathbb{Z}\to\mathbb{Q}$ defined by $\phi(n)=n$ is a homomorphism, since:

- 1. $\phi(1) = 1$,
- 2. $\phi(n + \mathbb{Z} m) = n + \mathbb{O} m$.
- 3. $\phi(n \cdot_{\mathbb{Z}} m) = n \cdot_{\mathbb{Q}} m$.

Example 9.1.2. Fix an integer m which is larger than 1. For $n \in \mathbb{Z}$, let \overline{n} denote the remainder of the division of n by m. That is:

$$n = mq + \bar{n}, \quad 0 \le \bar{n} < m$$

Recall that $\mathbb{Z}_m = \{0, 1, 2, \dots, m\}$ is a ring, with $s + t = \overline{s +_{\mathbb{Z}} t}$ and $s \cdot t = \overline{s \cdot_{\mathbb{Z}} t}$, for all $s, t \in \mathbb{Z}_m$.

Define a map $\phi: \mathbb{Z} \to \mathbb{Z}_m$ as follows:

$$\phi(n) = \overline{n}, \quad \forall n \in \mathbb{Z}.$$

Then, ϕ is a homomorphism.

Proof.

1.
$$\phi(1) = \overline{1} = 1$$
,

2.
$$\phi(s+t) = \overline{s+z} \, \overline{t} = \overline{\overline{s}+z} \, \overline{\overline{t}} = \overline{s} + \overline{t} = \phi(s) + \phi(t)$$
.

3.
$$\phi(st) = \overline{s \cdot_{\mathbb{Z}} t} = \overline{\overline{s} \cdot_{\mathbb{Z}} \overline{t}} = \overline{s} \cdot \overline{t} = \phi(s)\phi(t)$$
.

Example 9.1.3. For any ring R, define a map $\phi : \mathbb{Z} \to R$ as follows:

$$\phi(0) = 0;$$

For $n \in \mathbb{N}$,

$$\phi(n) = n \cdot 1_R := \underbrace{1_R + 1_R + \dots + 1_R}_{n \text{ times}};$$

$$\phi(-n) = -n \cdot 1_R := n \cdot (-1_R) = \underbrace{(-1_R) + (-1_R) + \dots + (-1_R)}_{n \text{ times}}.$$

The map ϕ is a homomorphism.

Remark. In fact this is the only homomorphism from \mathbb{Z} to R since we need to have $\phi(1)=1_R$ and this implies that

$$\phi(n) = n \cdot \phi(1) = n \cdot 1_R$$
.

Example 9.1.4. Let R be a commutative ring. For each element $r \in R$, we may define a map $\phi_r : R[x] \to R$ as follows:

$$\phi_r\left(\sum_{k=0}^n a_k x^k\right) = \sum_{k=0}^n a_k r^k$$

The map ϕ_r is a ring homomorphism.

Proof. Shown in class.

Definition. If a ring homomorphism $\phi: R \to R'$ is a bijective map, we say that ϕ is an **isomorphism**, and that R and R' are **isomorphic** as rings.

Notation. If R and R' are isomorphic, we write $R \cong R'$.

Proposition 9.1.5. If $\phi: R \to R'$ is an isomorphism, then $\phi^{-1}: R' \to R$ is an isomorphism.

Proof. Since ϕ is bijective, ϕ^{-1} is clearly bijective. It remains to show that ϕ^{-1} is a homomorphism:

- 1. Since $\phi(1_R) = 1_{R'}$, we have $\phi^{-1}(1_{R'}) = \phi^{-1}(\phi(1_R)) = 1_R$.
- 2. For all $b_1, b_2 \in R'$, we have

$$\phi^{-1}(b_1 + b_2) = \phi^{-1}(\phi(\phi^{-1}(b_1)) + \phi(\phi^{-1}(b_2)))$$

= $\phi^{-1}(\phi(\phi^{-1}(b_1) + \phi^{-1}(b_2))) = \phi^{-1}(b_1) + \phi^{-1}(b_2)$

3. For all $b_1, b_2 \in R'$, we have

$$\phi^{-1}(b_1 \cdot b_2) = \phi^{-1}(\phi(\phi^{-1}(b_1)) \cdot \phi(\phi^{-1}(b_2)))$$

= $\phi^{-1}(\phi(\phi^{-1}(b_1) \cdot \phi^{-1}(b_2))) = \phi^{-1}(b_1) \cdot \phi^{-1}(b_2)$

This shows that ϕ^{-1} is a bijective homomorphism.

The key point here is that an isomorphism is more than simply a bijective map, for it must preserve algebraic structure. For example, there is a bijective map $f: \mathbb{Z} \to \mathbb{Q}$ since both are countable, but they cannot be isomorphic as rings: Suppose $\phi: \mathbb{Z} \to \mathbb{Q}$ is an isomorphism. Then we must have $\phi(n) = n\phi(1) = n$ for any $n \in \mathbb{Z}$. So ϕ cannot be surjective.

Theorem 9.1.6. If F is a field, then $Frac(F) \cong F$.

Proof. Define a map $\phi: F \to \operatorname{Frac}(F)$ as follows:

$$\phi(s) = [(s, 1)], \quad \forall s \in F.$$

Exercise:

- 1. Show that ϕ is a homomorphism.
- 2. Show that ϕ is bijective.

Let R be a commutative ring, let R[x,y] denote the ring of polynomials in x,y with coefficients in R:

$$R[x,y] = \left\{ \sum_{i=0}^{m} \sum_{j=0}^{n} a_{ij} x^{i} y^{j} : m, n \in \mathbb{Z}_{\geq 0}, a_{ij} \in R \right\}$$

Proposition 9.1.7. R[x, y] is isomorphic to R[x][y].

(Here, R[x][y] is the ring of polynomials in y with coefficients in the ring R[x].)

Proof. We define a map $\phi: R[x,y] \to R[x][y]$ as follows:

$$\phi\left(\sum_{i=0}^{m} \sum_{j=0}^{n} a_{ij} x^{i} y^{j}\right) = \sum_{j=0}^{n} \left(\sum_{i=0}^{m} a_{ij} x^{i}\right) y^{j}$$

Exercise: Show that ϕ is a homomorphism.

It remains to show that ϕ is one-to-one and onto.

For $f = \sum_{i=0}^{m} \sum_{j=0}^{n} a_{ij} x^{i} y^{j} \in \ker \phi$, we have:

$$\phi(f) = \sum_{j=0}^{n} \left(\sum_{i=0}^{m} a_{ij} x^{i} \right) y^{j} = 0_{R[x][y]} = \sum_{j=0}^{n} 0_{R[x]} \cdot y^{j},$$

which implies that, for $0 \le j \le n$, we have:

$$\sum_{i=0}^{m} a_{ij} x^{i} = 0_{R[x]}, \quad 0 \le i \le m.$$

Hence,

$$a_{ij} = 0_R$$
, for $0 < i < m, 0 < j < n$,

which implies that $\ker \phi = \{0\}$. Hence, ϕ is one-to-one.

Given $g = \sum_{j=0}^{n} p_j y^j \in R[x][y]$, where $p_j \in R[x]$. We want to find $f \in R[x,y]$ such that $\phi(f) = g$. Let m be the maximum degree of the p_j 's. We may write:

$$g = \sum_{j=0}^{n} \left(\sum_{i=0}^{m} a_{ji} x^{i} \right) y^{j},$$

where a_{ji} is the coefficient of x^i in p_j , with $a_{ji} = 0$ if $i > \deg p_j$. It is clear that:

$$\phi\left(\sum_{i=0}^{m}\sum_{j=0}^{n}a_{ji}x^{i}y^{j}\right)=g.$$

Hence, ϕ is onto.

9.1.1 Subrings

Definition. Let R be a ring. A subset S of R is said to be a **subring** of R if it is a ring under the addition $+_R$ and multiplication \times_R associated with R, and its additive and multiplicative identity elements 0, 1 are those of R.

To show that a subset S of a ring R is a subring, it suffices to show that:

- S contains the multiplicative identity of R.
- $a b \in S$ for any $a, b \in S$.
- S is closed under multiplication, i.e. $a \cdot b \in S$ for all $a, b \in S$.

Definition. The **kernel** of a ring homomorphism $\phi: R \to R'$ is the set:

$$\ker \phi := \{ a \in R : \phi(a) = 0 \}$$

The **image** of ϕ is the set:

im
$$\phi := \{b \in R' : b = \phi(a) \text{ for some } a \in R\}.$$

Proposition 9.1.8. Let $\phi: R \to R'$ be a ring homomorphism.

- 1. If S is a subring of R, then $\phi(S)$ is a subring of R'.
- 2. If S' is a subring of R', then $\phi^{-1}(S')$ is a subring of R.

Proof. Let us prove 1. and leave 2. as an exercise. So let S be a subring of R.

- Since $1 \in S$, we have $\phi(1) = 1 \in \phi(S)$.
- $\phi(a) \phi(b) = \phi(a b) \in \phi(S)$ for any $a, b \in S$.
- $\phi(a) \cdot \phi(b) = \phi(a \cdot b) \in \phi(S)$ for any $a, b \in S$.

We conclude that $\phi(S)$ is a subring of R'.

Corollary 9.1.9. For a ring homomorphism $\phi: R \to R'$, im ϕ is a subring of R'.

Remark. Note that ker ϕ is not a subring unless R' is the zero ring.

Proposition 9.1.10. A ring homomorphism $\phi: R \to R'$ is one-to-one if and only if $\ker \phi = \{0\}$.

Proof. Suppose ϕ is one-to-one. For any $a \in \ker \phi$, we have $\phi(0) = \phi(a) = 0$, which implies that a = 0 since ϕ is one-to-one. Hence, $\ker \phi = \{0\}$.

Suppose $\ker \phi = \{0\}$. If $\phi(a) = \phi(a')$, then $0 = \phi(a) - \phi(a') = \phi(a - a')$, which implies that $a - a' \in \ker \phi = \{0\}$. So, a - a' = 0, which implies that a = a'. Hence, ϕ is one-to-one.

Proposition 9.1.11. A subring of a field is an integral domain.

Proof. Let F be a field and $S \subset F$ be a subring. Suppose we have $a,b \in S$ with $a \neq 0$ such that ab = 0. We need to show that b = 0. Since F is a field, $a \neq 0$ implies that it is a unit, i.e. it has a multiplicative inverse a^{-1} . So we have $0 = a^{-1}(ab) = b$.

For example, any subring of \mathbb{C} is an integral domain. This produces a lot of interesting examples which are important in number theory. For instance, the *ring of Gaussian integers*:

$$\mathbb{Z}[i] := \{a + bi : a, b \in \mathbb{Z}\} \subset \mathbb{C}$$

is an integral domain. More generally, for any $\xi \in \mathbb{C}$, the subset

$$\mathbb{Z}[\xi] = \{ f(\xi) : f(x) \in \mathbb{Z}[x] \} \subset \mathbb{C}$$

is an integral domain.

Week 10

10.1 Ideals

Definition. An **ideal** I in a commutative ring R is a subset of R which satisfies the following properties:

- 1. $0 \in I$;
- 2. If $a, b \in I$, then $a + b \in I$.
- 3. For all $a \in I$, we have $ar \in I$ for all $r \in R$.

If an ideal I is a proper subset of R, we say it is a **proper ideal**.

Remark. Note that if an ideal I contains 1, then $r = 1 \cdot r \in I$ for all $r \in R$, which implies that I = R.

Example 10.1.1. For any commutative ring R, the set $\{0\}$ is an ideal, since 0+0=0, and $0 \cdot r = 0$ for all $r \in R$.

R itself is also an ideal.

An ideal $I \subsetneq R$ is called **proper** and an ideal $\{0\} \subsetneq I \subset R$ is called **nontrivial**.

Example 10.1.2. For all $m \in \mathbb{Z}$, the set $I = m\mathbb{Z} := \{mn : n \in \mathbb{Z}\}$ is an ideal:

- 1. $0 = m \cdot 0 \in I$;
- 2. $mn_1 + mn_2 = m(n_1 + n_2) \in I$.
- 3. Given $mn \in I$, for all $l \in \mathbb{Z}$, we have $mn \cdot l = m \cdot nl \in I$.

Example 10.1.3. Generalizing the above example, consider a commutative ring R. Let $a \in R$. Then

$$(a) := \{ ra : r \in R \}$$

is an ideal, called the **principal ideal** generated by a.

Proof. 1. $0 = 0a \in (a)$;

- 2. Given $r_1a, r_2a \in (a)$, we have $r_1a + r_2a = (r_1 + r_2)a \in (a)$.
- 3. For all $ra \in (a)$ and $a \in R$, we have $s(ra) = (sr)a \in (a)$.

More generally, given any nonempty subset $A \subset R$, the set of finite linear combinations of elements in A:

$$(A) := \{ r_1 a_1 + r_2 a_2 + \dots + r k a_k : k \in \mathbb{Z}_{>0}, r_i \in R, a_i \in A \}$$

is an ideal in R, called the **ideal generated by** A.

Proposition 10.1.4. *If* $\phi : R \to R'$ *is a ring homomorphism, then* $\ker \phi$ *is an ideal of* R.

Proof. 1. Since ϕ is a homomorphism, we have $\phi(0) = 0$. Hence, $0 \in \ker \phi$.

- 2. If $a,b \in \ker \phi$, then $\phi(a+b) = \phi(a) + \phi(b) = 0 + 0 = 0$. Hence, $a+b \in \ker \phi$.
- 3. Given any $a \in \ker \phi$, for all $r \in R$ we have $\phi(ar) = \phi(a)\phi(r) = 0 \cdot \phi(r) = 0$. Hence, $ar \in \ker \phi$ for all $r \in R$.

Example 10.1.5. Recall the homomorphism $\phi : \mathbb{Z} \to \mathbb{Z}_m$ defined by $\phi(n) = \overline{n}$. The kernel of ϕ is:

$$\ker \phi = m\mathbb{Z} = (m).$$

Proposition 10.1.6. A nonzero commutative ring R is a field if and only if its only ideals are $\{0\}$ and R.

Proof. Suppose a nonzero commutative ring R is a field. If an ideal I of R is nonzero, it contains at least one nonzero element a of R. Since R is a field, a has a multiplicative inverse a^{-1} is R. Since I is a ideal, and $a \in I$, we have $1 = a^{-1}a \in I$. So, I is an ideal which contains 1, hence it must be the whole field R

Conversely, let R be a nonzero commutative ring whose only ideals are $\{0\}$ and R. Given any nonzero element $a \in R$, the principal ideal (a) generated by a is nonzero because it contains $a \neq 0$. Hence, by hypothesis the ideal (a) is necessarily the whole ring R. In particular, the element 1 lies in (a), which means that there is an $r \in R$ such that ar = 1. This shows that any nonzero element of R is a unit. Hence, R is a field.

Proposition 10.1.7. Let F be a field, and R a nonzero ring. Any ring homomorphism $\phi: F \to R$ is necessarily one-to-one.

Proof. Since R is not a zero ring, it contains $1 \neq 0$. So, $\phi(1) = 1 \neq 0$, which implies that $\ker \phi$ is a proper ideal of F. Since F is a field, we must have $\ker \phi = \{0\}$. It now follows from a previous claim that ϕ is one-to-one.

10.2 Quotient Rings

Let R be a commutative ring. Let I be an ideal of R. Then in particular I is an additive subgroup of (R, +). Let R/I denote the set of all cosets of I in (R, +), namely, the set of elements of the form

$$\overline{r} = r + I = \{r + a : a \in I\}, \quad r \in R.$$

Terminology: We sometimes call \overline{r} the **residue** of r in R/I.

Note that $\bar{r}=\bar{0}$ if and only if $r\in I$; more generally, $\bar{r}=\bar{r'}$ if and only if $r-r'\in I$.

Remark. Recall that R/I is nothing but the set of equivalence classes of the following relation on R:

$$a \sim b$$
, if $b - a \in I$.

Notation/Terminology: If $a \sim b$, we say that a is **congruent modulo** I to b, and write:

$$a \equiv b \mod I$$
.

It is tempting to define addition and multiplication on R/I using those operations on R:

$$\overline{r} + \overline{r'} = \overline{r + r'},$$
 $\overline{r} \cdot \overline{r'} = \overline{rr'}.$

for any $\overline{r}, \overline{r'} \in R/I$.

Observe that: for all $r, r' \in R$, and $a, a' \in I$, we have

$$(r+a) + (r'+a') = (r+r') + (a+a') \in (r+r') + I = \overline{r+r'},$$

which implies $\overline{(r+a)+(r'+a')}=\overline{r+r'}$. So addition + is indeed well-defined on R/I. Note that this only used the fact that I is an additive subgroup of (R,+).

On the other hand, we have the following

Theorem 10.2.1. Given any additive subgroup I < (R, +). The multiplication

$$\overline{r} \cdot \overline{r'} = \overline{rr'}$$

is well-defined on R/I if and only if I is an ideal in R.

Proof. Suppose that I is an ideal. Then for any $r, r' \in R$, and $a, a' \in I$, we have

$$(r+a)\cdot(r'+a')=rr'+ra'+r'a+aa'\in rr'+I=\overline{rr'}.$$

Hence the multiplication is well-defined.

Conversely, suppose the multiplication is well-defined, meaning that for any $r, r' \in R$ and $a, a' \in I$, we have $\overline{(r+a')(r'+a)} = \overline{rr'}$. In particular, we have $\overline{ra} = \overline{(r+0)(0+a)} = \overline{r0} = I$ which implies $ra \in I$ for any $r \in R$ and $a \in I$. So I is an ideal.

Proposition 10.2.2. The set R/I, equipped with the addition + and multiplication \cdot defined above, is a commutative ring.

Proof. We note here only that the additive identity element of R/I is $\overline{0} = 0 + I$, the multiplicative identity element of R/I is $\overline{1} = 1 + I$, and that $-\overline{r} = \overline{-r}$ for all $r \in R$.

We leave the rest of the proof (additive and multiplicative associativity, commutativity, distributive laws) as an **Exercise.** \Box

Proposition 10.2.3. The map $\pi: R \to R/I$, defined by

$$\pi(r) = \overline{r}, \quad \forall r \in R.$$

is a surjective ring homomorphism with kernel $\ker \pi = I$.

Theorem 10.2.4 (First Isomorphism Theorem). Let $\phi: R \longrightarrow R'$ be a ring homomorphism. Then:

$$R/\ker\phi\cong\operatorname{im}\phi$$
,

(i.e. $R/\ker \phi$ is isomorphic to im ϕ .)

Proof. We define a map $\overline{\phi}: R/\ker \phi \longrightarrow \operatorname{im} \phi$ as follows:

$$\overline{\phi}(\overline{r}) = \phi(r), \quad \forall r \in R,$$

where \overline{r} is the residue of r in $R/\ker \phi$.

We first need to check that ϕ is well-defined. Suppose $\overline{r}=\overline{r'}$, then $r'-r\in\ker\phi$. We have:

$$\overline{\phi}(\overline{r'}) - \overline{\phi}(\overline{r}) = \phi(r') - \phi(r) = \phi(r' - r) = 0.$$

Hence, $\overline{\phi}(\overline{r'}) = \overline{\phi}(\overline{r})$. So, $\overline{\phi}(\overline{r})$ is defined regardless of the choice of representative for the equivalence class \overline{r} .

Next, we show that ϕ is a homomorphism:

- $\overline{\phi}(\overline{1}) = \phi(1) = 1$;
- $\overline{\phi}(\overline{a} + \overline{b}) = \overline{\phi}(\overline{a+b}) = \phi(a+b) = \phi(a) + \phi(b) = \overline{\phi}(\overline{a}) + \overline{\phi}(\overline{b});$
- $\bullet \ \overline{\phi}(\overline{a} \cdot \overline{b}) = \overline{\phi}(\overline{ab}) = \phi(ab) = \phi(a)\phi(b) = \overline{\phi}(\overline{a})\overline{\phi}(\overline{b}).$

Finally, we show that $\overline{\phi}$ is a bijection, i.e. one-to-one and onto.

For any $r' \in \operatorname{im} \phi$, there exists $r \in R$ such that $\phi(r) = r'$. Since $\overline{\phi}(\overline{r}) = \phi(r) = r'$, $\overline{\phi}$ is onto.

Let r be an element in R such that $\overline{\phi}(\overline{r}) = \phi(r) = 0$. We have $r \in \ker \phi$, which implies that $\overline{r} = 0$ in $R/\ker \phi$. Hence, $\ker \overline{\phi} = \{0\}$, and it follows that $\overline{\phi}$ is one-to-one.

Corollary 10.2.5. *If a ring homomorphism* $\phi : R \longrightarrow R'$ *is surjective, then:*

$$R' \cong R/\ker \phi$$

Example 10.2.6. Let m be a natural number. The remainder or mod m map $\phi: \mathbb{Z} \longrightarrow \mathbb{Z}_m$ defined by:

$$\phi(n) = \overline{n}, \quad \forall n \in \mathbb{Z},$$

where \overline{n} is the remainder of the division of n by m, is a surjective homomorphism such that $\ker \phi = (m) = m\mathbb{Z}$. So, it follows from the First Isomorphism Theorem that:

$$\mathbb{Z}_m \cong \mathbb{Z}/m\mathbb{Z}$$
.

Example 10.2.7. The ring $\mathbb{Z}[i]/(1+3i)$ is isomorphic to $\mathbb{Z}/10\mathbb{Z}$.

Proof. Define a map $\phi : \mathbb{Z} \longrightarrow \mathbb{Z}[i]/(1+3i)$ as follows:

$$\phi(n) = \overline{n}, \quad \forall n \in \mathbb{Z},$$

where \overline{n} is the equivalence class of $n \in \mathbb{Z}[i]$ modulo (1+3i).

It is clear that ϕ is a homomorphism (**Exercise**).

Observe that in $\mathbb{Z}[i]$, we have:

$$1 + 3i \equiv 0 \mod (1 + 3i),$$

which implies that:

$$i \equiv 3 \mod (1+3i).$$

Hence, for all $a, b \in \mathbb{Z}$,

$$\overline{a+bi} = \overline{a+3b} = \phi(a+3b)$$

in $\mathbb{Z}[i]/(1+3i)$. Hence, ϕ is surjective.

Suppose n is an element of \mathbb{Z} such that $\phi(n) = \overline{n} = 0$. Then, by the definition of the quotient ring we have:

$$n \in (1+3i).$$

This means that there exist $a,b\in\mathbb{Z}$ such that:

$$n = (a+bi)(1+3i) = (a-3b) + (3a+b)i,$$

which implies that 3a + b = 0, or equivalently, b = -3a. Hence:

$$n = a - 3b = a - 3(-3a) = 10a,$$

which implies that $\ker \phi \subseteq 10\mathbb{Z}$. Conversely, for all $m \in \mathbb{Z}$, we have:

$$\phi(10m) = \overline{10m} = \overline{(1+3i)(1-3i)m} = 0$$

in $\mathbb{Z}[i]/(1+3i)$. This shows that $10\mathbb{Z} \subseteq \ker \phi$. Hence, $\ker \phi = 10\mathbb{Z}$. It now follows from the First Isomorphism Theorem that:

$$\mathbb{Z}/10\mathbb{Z} \cong \mathbb{Z}[i]/(1+3i).$$

Example 10.2.8. The rings $\mathbb{R}[x]/(x^2+1)$ and \mathbb{C} are isomorphic.

Proof. Define a map $\phi : \mathbb{R}[x] \longrightarrow \mathbb{C}$ as follows:

$$\phi(\sum_{k=0}^{n} a_k x^k) = \sum_{k=0}^{n} a_k i^k.$$

Exercise: ϕ is a homomorphism.

For all a + bi $(a, b \in \mathbb{R})$ in \mathbb{C} , we have:

$$\phi(a+bx) = a+bi.$$

Hence, ϕ is surjective.

It remains to compute $\ker \phi = \{f(x) = \sum_{k=0}^n a_k x^k : f(i) = 0\}$. Note that f(x) is a real polynomial, so f(i) = 0 also implies that f(-i) = 0. Hence both $\pm i$ are roots of f(x) if it lies in $\ker \phi$. Factor Theorem then tells us that $(x^2 + 1) = (x - i)(x + i) \mid f(x)$. So $\ker \phi \subset (x^2 + 1)$. On the other hand, i is a root of $x^2 + 1$, so we have $(x^2 + 1) \subset \ker \phi$. We conclude that $\ker \phi = (x^2 + 1)$.

It now follows from the First Isomorphism Theorem that $\mathbb{R}[x]/(x^2+1) \cong \mathbb{C}$.

Week 11

11.1 Polynomial ring as a PID

Recall that an ideal $(a) = \{ar : r \in R\}$ generated by one element $a \in R$ is called a **principal ideal**. Note that R = (1) and $\{0\} = (0)$ are both principal ideals.

Definition. If R is an integral domain in which every ideal is principal, we say that R is a **Principal Ideal Domain** (abbrev. **PID**).

Any field is a PID because a field F contains only two ideals $(0) = \{0\}$ and (1) = F.

The first nontrivial example of a PID is given by \mathbb{Z} : Since every ideal I in \mathbb{Z} is in particular an additive subgroup, the classification of subgroups of cyclic groups tells us that I can only be of the form $(m) = m\mathbb{Z}$. So any ideal is principal.

Next we claim that for any field F, the ring of polynomials F[x] is also a PID. To prove this we first establish the following:

Proposition 11.1.1. Let R be a commutative ring. For all $d, f \in R[x]$, such that the leading coefficient of d is a unit in R, there exist $q, r \in R[x]$ such that:

$$f = qd + r$$

with $\deg r < \deg d$.

Proof. We prove by induction: The base case corresponds to the case where $\deg f < \deg d$; and the inductive step corresponds to showing that, for any fixed d, the claim holds for f if it holds for all f' with $\deg f' > \deg f$.

Base case: If $\deg f < \deg d$, we take r = f. Then, indeed $f = 0 \cdot d + r$, with $\deg r < \deg d$.

Inductive step: Let $d = \sum_{i=0}^{n} a_i x^i \in R[x]$ be fixed, where a_n is a unit in R. For any given $f = \sum_{i=0}^{m} b_i x^i \in R[x]$, $m \ge n$, suppose the claim holds for all f' with $\deg f' < \deg f$. Let:

$$f' = f - a_n^{-1} b_m x^{m-n} d.$$

Then, $\deg f' < \deg f$, hence by hypothesis there exist $q', r' \in R[x]$, with $\deg r' < \deg d$, such that:

$$f - a_n^{-1} b_m x^{m-n} d = f' = q' d + r',$$

which implies that:

$$f = (q' + a_n^{-1}b_m x^{m-n})d + r'.$$

So, f = qd + r', where $q = q' + a_n^{-1}b_mx^{m-n} \in R[x]$, and $\deg r' < \deg d$.

Theorem 11.1.2. Let F be a field. Then, F[x] is a PID.

Proof. Since F is a field, the previous claim holds for all $d, f \in F[x]$ such that $d \neq 0$.

Let I be an ideal of F[x]. Let d be a nonzero polynomial in I with the least leading degree. Such a d exists because the leading degree of a polynomial is a nonnegative integer. Since I is an ideal, we have $(d) \subseteq I$. It remains to show that $I \subseteq (d)$.

For all $f \in I$, by the division theorem we have:

$$f = qd + r,$$

for some $q, r \in F[x]$ such that $\deg r < \deg d$. Observe that r = f - qd lies in I. Since d is a nonzero element of I with the least degree, the element r must necessarily be zero. In order words f = qd, which implies that $f \in (d)$. Hence, $I \subseteq (d)$, and we conclude that I = (d).

11.2 Factorization of polynomials

Definition. Let F be a field. Let $f = \sum_{i=0}^{n} c_i x^i$ be a polynomial in F[x]. An element $a \in F$ is a **root** of f if:

$$f(a) := \sum_{i=0}^{n} c_i a^i = 0$$

in F.

Lemma 11.2.1. For all $f \in F[x]$, $a \in F$, there exists $q \in F[x]$ such that:

$$f = q(x - a) + f(a)$$

Proof. By the division theorem, there exist $q, r \in F[x]$ such that:

$$f = q(x - a) + r$$
, $\deg r < \deg(x - a) = 1$.

This implies that r is a constant polynomial. Viewing the polynomials as functions and evaluating both sides of the above equation at x = a, we have:

$$f(a) = q(a-a) + r = r.$$

Proposition 11.2.2 (Factor Theorem). Let F be a field, f a polynomial is F[x]. Then, $a \in F$ is a root of f if and only if (x - a) divides f in F[x].

Proof. If $a \in F$ is a root of f, then by the previous lemma there exists $q \in F[x]$ such that:

$$f = q(x - a) + \underbrace{f(a)}_{=0} = q(x - a),$$

so (x - a) divides f in F[x].

Conversely, if f = q(x-a) for some $q \in F[x]$, then f(a) = q(a)(a-a) = 0. Hence, a is a root of f.

Theorem 11.2.3. Let F be a field, f a nonzero polynomial in F[x].

- 1. If f has degree n, then it has at most n roots in F.
- 2. If f has degree n and $a_1, a_2, \ldots, a_n \in F$ are distinct roots of f, then:

$$f = c \cdot \prod_{i=1}^{n} (x - a_i) := c(x - a_1)(x - a_2) \cdot \cdot \cdot (x - a_n)$$

for some $c \in F$.

Proof.

1. We prove Part 1 of the claim by induction. If f has degree 0, then f is a nonzero constant, which implies that it has no roots. So, in this case the claim holds.

Let f be a polynomial with degree n>0. Suppose the claim holds for all nonzero polynomials with degrees strictly less than n. We want to show that the claim also holds for f. If f has no roots in F, then the claim holds for f since 0 < n. If f has a root $a \in F$, then by the previous claim there exists $q \in F[x]$ such that:

$$f = q(x - a)$$
.

For any other root $b \in F$ of f which is different from a, we have:

$$0 = f(b) = q(b)(b - a).$$

Since F is a field, it has no zero divisors; so, it follows from $b-a \neq 0$ that q(b)=0. In other words, b is a root of q. Since $\deg q < n$, by the induction hypothesis q has at most n-1 roots. So, f has at most n-1 roots different from a. This shows that f has at most n roots.

2. Let f be a polynomial in F[x] which has $n = \deg f$ distinct roots $a_1, a_2, \ldots, a_n \in F$.

If n = 1, then $f = c_0 + c_1 x$ for some $c_i \in F$, with $c_1 \neq 0$. We have:

$$0 = f(a_1) = c_0 + c_1 a_1$$

which implies that: $c_0 = -c_1a_1$. Hence,

$$f = -c_1 a_1 + c_1 x = c_1 (x - a_1).$$

Suppose n > 1. Suppose for all $n' \in \mathbb{N}$, such that $1 \le n' < n$, the claim holds for any polynomial of degree n' which has n' distinct roots in F. By the previous claim, there exists $q \in F[x]$ such that:

$$f = q(x - a_n).$$

Note that $\deg q = n - 1$. For $1 \le i < n$, we have

$$0 = f(a_i) = q(a_i) \underbrace{(a_i - a_n)}_{\neq 0}.$$

Since F is a field, this implies that $q(a_i)=0$ for $1 \leq i < n$. So, a_1,a_2,\ldots,a_{n-1} are n-1 distinct roots of q. By the induction hypothesis there exists $c \in F$ such that:

$$q = c(x - a_1)(x - a_2) \cdots (x - a_{n-1}).$$

Hence, $f = q(x - a_n) = c(x - a_1)(x - a_2) \cdots (x - a_{n-1})(x - a_n)$.

Corollary 11.2.4. Let F be a field. Let f, g be nonzero polynomials in F[x]. Let $n = \max\{\deg f, \deg g\}$. If f(a) = g(a) for n + 1 distinct $a \in F$. Then, f = g.

Proof. Let h = f - g, then $\deg h \le n$. By hypothesis, there are n+1 distinct elements $a \in F$ such that h(a) = f(a) - g(a) = 0. If $h \ne 0$, then it is a nonzero polynomial with degree $\le n$ which has n+1 distinct roots, which contradicts the previous theorem. Hence, h must necessarily be the zero polynomial, which implies that f = g.

Recall the theorem:

Theorem 11.2.5. Let F be a field. The ring F[x] is a PID.

Definition. A polynomial in F[x] is called a **monic polynomial** if its leading coefficient is 1.

Corollary 11.2.6. Let F be a field. Let f, g be nonzero polynomials in F[x]. There exists a unique monic polynomial $d \in F[x]$ with the following properties:

- 1. (f, q) = (d)
- 2. d divides both f and g, i.e. there exists $a, b \in F[x]$ such that f = ad, g = bd.
- 3. There are polynomials $p, q \in F[x]$ such that d = pf + qg.
- 4. If $h \in F[x]$ is a divisor of f and g, then h divides d.

Terminology. This $d \in F[x]$ is called the **greatest common divisor** (abbrev. **gcd**) of f and g. We say that f and g are **relatively prime** if their gcd is 1.

Proof of Corollary 11.2.6. 1. By the theorem, there exists $d = \sum_{i=0}^{n} a_i x^i \in F[x]$ such that (d) = (f,g). Replacing d by $a_n^{-1}d$ if necessary, we may assume that d is a monic polynomial. It remains to show that d is unique.

Suppose (d) = (d'), where both d and d' are monic polynomials. Then, there exist nonzero $p, q \in F[x]$ such that:

$$d' = pd$$
, $d = qd'$.

Examining the degrees of the polynomials, we have:

$$\deg d' = \deg d + \deg p$$
,

and:

$$\deg d = \deg q + \deg d' = \deg p + \deg q + \deg d.$$

This implies that $\deg p + \deg q = 0$. Hence, p and q must both have degree 0; in other words, they are constant polynomials. Moreover, we have $\deg d = \deg d'$. Comparing the leading coefficients of d' and pd, we have p = 1. Hence, d = d'.

- 2. $f \in (f, g) = (d)$ implies that d divides f; similarly, d divides g.
- 3. $d \in (d) = (f, g)$ implies that d = pf + qg for some $p, q \in F[x]$.
- 4. Part 3. says that there are $p, q \in F[x]$ such that d = pf + qg. It is then clear that if h divides both f and g, then h must divide d.

Week 12

12.1 Factorization of polynomials (cont'd)

Definition. A nonconstant polynomial $p \in F[x]$ is said to be **irreducible** if there do not exist $f, g \in F[x]$, with deg f, deg $g < \deg p$, such that fg = p.

Example 12.1.1. • Any degree 1 polynomial f(x) = ax + b, $a \neq 0$, is irreducible in F[x].

- x^2+1 is irreducible in $\mathbb{R}[x]$ but reducible in $\mathbb{C}[x]$. So irreducibility is relative to the field F.
- By the Fundamental Theorem of Algebra, which states that any nonconstant polynomial $f(x) \in \mathbb{C}[x]$ splits over \mathbb{C} meaning that there exists $c, \alpha_1, \ldots, \alpha_n$ (where $n = \deg f(x)$) such that $f(x) = c(x \alpha_1) \cdots (x \alpha_n)$, the only irreducible polynomials in $\mathbb{C}[x]$ are degree 1 polynomials and the only irreducible polynomials in $\mathbb{R}[x]$ are polynomials of degree 1 and 2.

Theorem 12.1.2. Any PID D is a unique factorization domain (abbrev. UFD) which means that any nonzero nonunit $r \in D$ can be factorized into a finite product of irreducible elements, and the factorization is unique up to reordering of factors (and also up to multiplication by units).

Proof.	Omitted.	For	those	who	are	interested	in it,	see	Chapter	11,	Section	2 in
M. Artin's <i>Algebra</i> .												

Let F be a field. Then F[x] is a PID.

Lemma 12.1.3. A polynomial $f \in F[x]$ is a unit if and only if it is a nonzero constant polynomial.

Proof. If $f,g \in F[x]$ are nonzero polynomials satisfying fg=1, then comparing degrees on both sides gives $\deg f + \deg g = 0$. This is possible only if $\deg f = \deg g = 0$ which means that both f and g are constants.

So we have the following

Corollary 12.1.4. Every nonconstant polynomial $f \in F[x]$ may be written as:

$$f = cp_1 \cdots p_n,$$

where c is a nonzero constant, and each p_i is a monic irreducible polynomial in F[x]. The factorization is unique up to reordering of the factors.

In particular, the gcd of two polynomials can be computed using the Euclidean Algorithm as in the case of \mathbb{Z} .

Example 12.1.5. Unique Factorization does not necessarily hold if F is not a field. In $\mathbb{Z}_4[x]$, we have:

$$x^2 = x \cdot x = (x+2)(x-2).$$

All the factors are linear, so they are irreducible. But clearly x+2 is not equal to x.

Theorem 12.1.6. Let F be a field. Let p be a polynomial in F[x]. The following statements are equivalent:

- 1. F[x]/(p) is a field.
- 2. F[x]/(p) is an integral domain.
- 3. p is irreducible in F[x].

Proof. $1 \Rightarrow 2$: Clear, since every field is an integral domain.

- $2\Rightarrow 3$: If p is not irreducible, there exist $f,g\in F[x]$, with degrees strictly less than that of p, such that p=fg. Since $\deg f,\deg g<\deg p$, the polynomial p does not divide f or g in F[x]. Consequently, the equivalence classes \overline{f} and \overline{g} of f and g, respectively, modulo (p) is not equal to zero in F[x]/(p). On the other hand, $\overline{f}\cdot\overline{g}=\overline{fg}=\overline{p}=0$ in F[x]/(p). This implies that F[x]/(p) is not an integral domain. Hence, p is irreducible if F[x]/(p) is an integral domain.
- $3\Rightarrow 1$: By definition, the multiplicative identity element 1 of a field is different from the additive identity element 0. So we need to check that the equivalence class of $1\in F[x]$ in F[x]/(p) is not 0. Since p is irreducible, by definition we have $\deg p>0$. Hence, $1\not\in (p)$, for a polynomial of degree >0 cannot divide a polynomial of degree 0 in F[x]. We conclude that that $1\neq 0$ in F[x].

Next, we need to prove the existence of the multiplicative inverse of any nonzero element in F[x]/(p). Given any $f \in F[x]$ whose equivalence class \overline{f} modulo (p) is nonzero in F[x]/(p), we want to find its multiplicative inverse \overline{f}^{-1} . If $\overline{f} \neq 0$ in F[x]/(p), then by definition $f - 0 \notin (p)$, which means that p does

not divide f. Since p is irreducible, this implies that $\gcd(p,f)=1$. By Corollary 11.2.6, there exist $g,h\in F[x]$ such that fg+hp=1. It is then clear that $\overline{g}=\overline{f}^{-1}$, since fg-1=hp implies that $fg-1\in (p)$, which by definition means that $\overline{f}\cdot\overline{g}=\overline{fg}=1$ in F[x]/(p).

12.2 Polynomials over \mathbb{Z} and \mathbb{Q}

We are interested in determining which polynomials in $\mathbb{Q}[x]$ are irreducible.

Proposition 12.2.1. Let $f = a_0 + a_1x + \cdots + a_nx^n$ be a polynomial in $\mathbb{Q}[x]$, with $a_i \in \mathbb{Z}$. Every rational root r of f in \mathbb{Q} has the form r = b/c ($b, c \in \mathbb{Z}$ with gcd(b, c) = 1) where $b|a_0$ and $c|a_n$.

Proof. Let r = b/c be a rational root of f, where b, c are relatively prime integers. We have:

$$0 = \sum_{i=0}^{n} a_i (b/c)^i$$

Multiplying both sides of the above equation by c^n , we have:

$$0 = a_0c^n + a_1c^{n-1}b + a_2c^{n-2}b^2 + \dots + a_nb^n,$$

or equivalently:

$$a_0c^n = -(a_1c^{n-1}b + a_2c^{n-2}b^2 + \dots + a_nb^n).$$

Since b divides the right-hand side, and b and c are relatively prime, b must divide a_0 . Similarly, we have:

$$a_n b^n = -(a_0 c^n + a_1 c^{n-1} b + a_2 c^{n-2} b^2 + \dots + a_{n-1} c b^{n-1}).$$

Since c divides the right-hand side, and b and c are relatively prime, c must divide a_n .

This proposition is useful mainly for polynomials $f \in \mathbb{Q}[x]$ of $\deg \leq 3$, because such a polynomial is reducible only if it has a root in \mathbb{Q} .

Example 12.2.2. Consider the polynomial $f(x) = x^3 + 3x + 2 \in \mathbb{Q}[x]$. The above proposition says that the only possible roots of f(x) are ± 1 or ± 2 , but one directly checks that none of these is a root. So f(x) is irreducible in $\mathbb{Q}[x]$.

Example 12.2.3. In fact the same argument applies to polynomials of deg ≤ 3 with coefficients in other fields. For example, we may consider $f(x) = x^3 + 3x + 2 \in \mathbb{Z}_5[x]$. Then one checks that f has no root in \mathbb{Z}_5 (by directly computing the values of f(k) for each $k \in \mathbb{Z}_5$). So f(x) is also irreducible in $\mathbb{Z}_5[x]$.

For a polynomial of arbitrary degree in $\mathbb{Q}[x]$, we will discuss some general methods to determine whether it is irreducible; these methods stem from a theorem of Gauss.

Definition. A polynomial $f \in \mathbb{Z}[x]$ is said to be **primitive** if the gcd of its coefficients is 1.

Remark. Note that if $f \in \mathbb{Z}[x]$ is monic, i.e. its leading coefficient is 1, then it is primitive.

More generally, if d is the gcd of the coefficients of $f \in \mathbb{Z}[x]$, then $\frac{1}{d}f$ is a primitive polynomial in $\mathbb{Z}[x]$.

Lemma 12.2.4 (Gauss's Lemma). If $f, g \in \mathbb{Z}[x]$ are both primitive, then fg is primitive.

Proof. Write $f = \sum_{k=0}^m a_k x^k$, $g = \sum_{k=0}^n b_k x^k$. Then, $fg = \sum_{k=0}^{m+n} c_k x^k$, where:

$$c_k = \sum_{i+j=k} a_i b_j.$$

Suppose fg is not primitive. Then, there exists a prime p such that p divides c_k for $k=0,1,2,\ldots,m+n$. Since f is primitive, there exists a least $u\in\{0,1,2,\ldots,m\}$ such that a_u is not divisible by p. Similarly, since g is primitive, there is a least $v\in\{0,1,2,\ldots,n\}$ such that b_u it not divisible by p. We have:

$$c_{u+v} = \sum_{\substack{i+j=u+v\\(i,j)\neq(u,v)}} a_i b_j + a_u b_v,$$

hence:

$$a_{u}b_{v} = c_{u+v} - \sum_{\substack{i+j=u+v \ i < v}} a_{i}b_{j} - \sum_{\substack{i+j=u+v \ i < v}} a_{i}b_{j}$$

By the minimality conditions on u and v, each term on the right-hand side of the above equation is divisible by p. Hence, p divides a_ub_v , which by Euclid's Lemma implies that p divides either a_u or b_v , a contradiction.

Lemma 12.2.5. Every nonzero $f \in \mathbb{Q}[x]$ can be uniquely written as:

$$f = c(f) f_0$$

where c(f) is a positive rational number, and f_0 is a primitive polynomial in $\mathbb{Z}[x]$.

Definition. The rational number c(f) is called the **content** of f.

Proof. Existence:

Write $f = \sum_{k=0}^{n} (a_k/b_k)x^k$, where $a_k, b_k \in \mathbb{Z}$. Let $B = b_0b_1 \cdots b_n$. Then, g := Bf is a polynomial in $\mathbb{Z}[x]$. Let d be the gcd of the coefficients of g. Let $D = \pm d$, with the sign chosen such that D/B > 0. Observe that $f = c(f)f_0$, where

$$c(f) = D/B,$$

and

$$f_0 := \frac{B}{D}f = \frac{1}{D}g$$

is a primitive polynomial in $\mathbb{Z}[x]$.

Uniqueness:

Suppose $f = ef_1$ for some positive $e \in \mathbb{Q}$ and primitive $f_1 \in \mathbb{Z}[x]$. We have:

$$ef_1 = c(f)f_0.$$

Writing e/c(f) = u/v where u, v are relatively prime positive integers, we have:

$$uf_1 = vf_0.$$

Since gcd(u, v) = 1, v divides each coefficient of f_1 , and u divides each coefficient of f_0 . But f_0 and f_1 are primitive, so we must have u = v = 1. Hence, e = c(f), and $f_1 = f_0$.

Corollary 12.2.6. For $f \in \mathbb{Z}[x]$, we have $c(f) \in \mathbb{Z}$.

Proof. Let d be the gcd of the coefficients of f. Then, (1/d)f is a primitive polynomial, and

$$f = d\left(\frac{1}{d}f\right)$$

is a factorization of f into a product of a positive rational number and a primitive polynomial in $\mathbb{Z}[x]$. Hence, by uniqueness of c(f) and f_0 , we have $c(f) = d \in \mathbb{Z}$.

Corollary 12.2.7. Let f, g, h be nonzero polynomials in $\mathbb{Q}[x]$ such that f = gh. Then c(f) = c(g)c(h) and $f_0 = g_0h_0$.

Proof. The condition f = gh implies that:

$$c(f)f_0 = c(g)c(h)g_0h_0,$$

where f_0, g_0, h_0 are primitive polynomials and c(f), c(g), c(h) are positive rational numbers. By Gauss's Lemma, g_0h_0 is primitive. The uniqueness part of Lemma 12.2.5 implies that that c(f) = c(g)c(h) and $f_0 = g_0h_0$.

Theorem 12.2.8 (Gauss). Let f be a nonzero polynomial in $\mathbb{Z}[x]$. If f = GH for some $G, H \in \mathbb{Q}[x]$, then f = gh for some $g, h \in \mathbb{Z}[x]$, where $\deg g = \deg G$, $\deg h = \deg H$.

Consequently, if f cannot be factored into a product of polynomials of smaller degrees in $\mathbb{Z}[x]$, then it is irreducible as a polynomial in $\mathbb{Q}[x]$.

Proof. Suppose f = GH for some G, H in $\mathbb{Q}[x]$. Then $f = c(f)f_0 = c(G)c(H)G_0H_0$, where f_0, G_0, H_0 are primitive polynomials in $\mathbb{Z}[x]$. The above corollaries tell us that $c(G)c(H) = c(f) \in \mathbb{Z}_{>0}$ and $f_0 = G_0H_0$. Hence, $g := c(f)G_0$ and $h := H_0$ are polynomials in $\mathbb{Z}[x]$, with $\deg g = \deg G$, $\deg h = \deg H$, such that f = gh.

Week 13

13.1 Polynomials over \mathbb{Z} and \mathbb{Q} (cont'd)

Let p be a prime. Let $\mathbb{Z}_p \cong \mathbb{Z}/p\mathbb{Z}$. It is a field, since p is prime. For $a \in \mathbb{Z}$, let \overline{a} denote the residue of a in \mathbb{Z}_p .

Theorem 13.1.1. Let $f = \sum_{k=0}^{n} a_k x^k$ be a monic polynomial in $\mathbb{Z}[x]$. If $\overline{f} := \sum_{k=0}^{n} \overline{a_k} x^k$ is irreducible in $\mathbb{Z}[x]$ for some prime p, then f is irreducible in $\mathbb{Q}[x]$.

Proof. Suppose \overline{f} is irreducible in $\mathbb{Z}_p[x]$, but f is not irreducible in $\mathbb{Q}[x]$. By Gauss's theorem, there exist $g,h\in\mathbb{Z}[x]$ such that $\deg g,\deg h<\deg f$ and f=gh. Since f is by assumption monic, and $p\nmid 1$, we have $\deg \overline{f}=\deg f$. Moreover, $\overline{gh}=\overline{g}\cdot\overline{h}$. Hence, $\overline{f}=\overline{gh}=\overline{g}\cdot\overline{h}$, where $\deg \overline{g},\deg \overline{h}<\deg \overline{f}$. This contradicts the irreducibility of \overline{f} in $\mathbb{Z}_p[x]$.

Hence, f is irreducible in $\mathbb{Q}[x]$ if \overline{f} is irreducible in $\mathbb{Z}_p[x]$.

Remark. The above theorem holds in the more general case when $\overline{a_n} \neq 0$ in \mathbb{Z}_p , i.e. $p \nmid a_n$.

Example 13.1.2. The polynomial $f(x) = x^4 - 5x^3 + 2x + 3 \in \mathbb{Q}[x]$ is irreducible.

Proof. Consider $\overline{f} = x^4 - \overline{5}x^3 + \overline{2}x + \overline{3} = x^4 - x^3 + 1$ in $\mathbb{Z}_2[x]$. If we can show that \overline{f} is irreducible, then by the previous theorem we can conclude that f is irreducible.

Since $\mathbb{Z}_2 = \{0,1\}$ and $\overline{f}(0) = \overline{f}(1) = 1 \neq 0$, we know right away that \overline{f} has no linear factors. So, if \overline{f} is not irreducible, it must be a product of two quadratic factors:

$$\overline{f} = (ax^2 + bx + c)(dx^2 + ex + g), \quad a, b, c, d, e, g \in \mathbb{Z}_2.$$

Note that by assumption a, d are nonzero elements of \mathbb{Z}_2 , so a = d = 1. This implies that, in particular:

$$1 = \overline{f}(0) = cg$$

$$1 = \overline{f}(1) = (1 + b + c)(1 + e + g)$$

The first equation implies that c = g = 1. The second equation then implies that 1 = (2 + b)(2 + e) = be. Hence, b = e = 1. We have:

$$x^4 - x^3 + 1 = (x^2 + x + 1)(x^2 + x + 1) = x^4 + 2x^3 + 3x^2 + 2x + 1 = x^4 + x^2 + 1$$

a contradiction.

Hence, \overline{f} is irreducible in $\mathbb{Z}_2[x]$, which implies that f is irreducible in $\mathbb{Q}[x]$.

Theorem 13.1.3 (Eisenstein's Criterion). Let $f = a_0 + a_1 x + \cdots + a_n x^n$ be a polynomial in $\mathbb{Z}[x]$. If there exists a prime p such that $p|a_i$ for $0 \le i < n$, but $p \nmid a_n$ and $p^2 \nmid a_0$, then f is irreducible in $\mathbb{Q}[x]$.

Proof. We prove by contradiction. Suppose f is not irreducible in $\mathbb{Q}[x]$. Then, by Gauss's Theorem, there exists $g = \sum_{k=0}^l b_k x^k$, $h = \sum_{k=0}^{n-l} c_k x^k \in \mathbb{Z}[x]$, with $\deg g, \deg h < \deg f$, such that f = gh.

Consider the image of these polynomials in $\mathbb{Z}_p[x]$. By assumption, we have:

$$\overline{a_n}x^n = \overline{f} = \overline{g}\overline{h}.$$

This implies that \overline{g} and \overline{h} are divisors of $\overline{a_n}x^n$. Since \mathbb{Z}_p is a field, unique factorization holds for $\mathbb{Z}_p[x]$. Hence, we must have $\overline{g} = \overline{b_u}x^u$, $\overline{h} = \overline{c_{n-u}}x^{n-u}$, for some $u \in \{0,1,2,\ldots,l\}$. If u < l, then $n-u > n-l \ge \deg \overline{h}$, which cannot hold. So, we conclude that $\overline{g} = \overline{b_l}x^l$, $\overline{h} = \overline{c_{n-l}}x^{n-l}$. In particular, $\overline{b_0} = \overline{c_0} = 0$ in \mathbb{Z}_p , which implies that p divides both b_0 and c_0 . Since $a_0 = b_0c_0$, we have $p^2|a_0$, a contradiction.

Example 13.1.4. The polynomial $x^5 + 3x^4 - 6x^3 + 12x + 3$ is irreducible in $\mathbb{Q}[x]$ by the Eisenstein's criterion using p = 3.

13.2 Field extensions

Recall that any ring homomorphism between two fields is injective.

Definition. A subfield F of a field E is a subring of E which is a field; in this case, we also say E is an extension of F, or E/F is a field extension. Caution: Note that the notation E/F does not mean a quotient ring!

Let E/F be a field extension (or a subfield F of a field E). Let α be an element of E. Consider the evaluation map

$$\phi_{\alpha}: F[x] \to E, f \mapsto f(\alpha),$$

which is a homomorphism such that $\phi_{\alpha}|_{F}=\mathrm{id}_{F}$. The image of ϕ_{α} is the subring

$$F[\alpha] := \operatorname{im} \phi_{\alpha} = \{ f(\alpha) : f \in F[x] \}$$

in E. Since E is a field, $F[\alpha]$ is an integral domain. Also, the subfield

$$F(\alpha) = \left\{ \frac{f(\alpha)}{g(\alpha)} : f, g \in F[x], g(\alpha) \neq 0 \right\}$$

in E is precisely the field of fractions of $F[\alpha]$.

There are two scenarios:

- $\ker \phi_{\alpha} = \{0\}$, i.e. α is not a root of any nonzero polynomial $f \in F[x]$. In this case, we say $\alpha \in E$ is **transcendental** over F. Then ϕ_{α} gives an isomorphism $F[x] \cong F[\alpha]$.
- $\ker \phi_{\alpha} \neq \{0\}$, i.e. α is a root of some nonzero polynomial $f \in F[x]$. In this case, we say $\alpha \in E$ is **algebraic** over F. Since F[x] is a PID, $\ker \phi_{\alpha} = (p)$ for some $p \in F[x]$. Then the First Isomorphism Theorem implies that

$$\overline{\phi}_{\alpha}: F[x]/(p) \cong F[\alpha].$$

As $F[\alpha]$ is an integral domain, Theorem 12.1.6 tells us that p is irreducible and that $F[x]/(p) \cong F[\alpha]$ is in fact a field. Hence we have

$$F[x]/(p) \cong F[\alpha] = F(\alpha).$$

Remark. Note that $F(\alpha)$ is the *smallest* subfield of E containing F and α . We say that $F(\alpha)$ is obtained from F by **adjoining** α .

Theorem 13.2.1. Let E/F be a field extension and α be an element of E.

- 1. If α is algebraic over F, then α is a root of an irreducible polynomial $p \in F[x]$, such that $p \mid f$ for any $f \in F[x]$ with $f(\alpha) = 0$.
- 2. For p be an irreducible polynomial F[x] of which α is a root. Then, the map $\overline{\phi}_{\alpha}: F[x]/(p) \longrightarrow F(\alpha)$, defined by:

$$\phi(\sum_{j=0}^{n} c_j x^j + (p)) = \sum_{j=0}^{n} c_j \alpha^j,$$

is a ring isomorphism mapping x+(p) to α and a+(p) to a for any $a\in F$. (Here, $\sum_{j=0}^n c_j x^j + (p)$ is the equivalence class of $\sum_{j=0}^n c_j x^j \in F[x]$ modulo (p).)

3. Let p be an irreducible polynomial in F[x] of which α is a root. Then, each element in $F(\alpha)$ has a unique expression of the form:

$$c_0 + c_1 \alpha + \cdots + c_{n-1} \alpha^{n-1},$$

where $c_i \in F$, and $n = \deg p$.

- 4. If $\alpha, \beta \in E$ are both roots of an irreducible polynomial p in F[x], then there exists a ring isomorphism $\sigma : F(\alpha) \longrightarrow F(\beta)$, with $\sigma(\alpha) = \beta$ and $\sigma(s) = s$, for all $s \in F$.
- *Proof.* 1. We only need to prove the last part. So let $f \in F[x]$ be such that $f(\alpha) = 0$. Then $f \in \ker \phi_{\alpha} = (p)$ which means that $p \mid f$.
 - 2. This was done above.
 - 3. Since $\overline{\phi}_{\alpha}$ in Part 2 is an isomorphism, we know that each element $\gamma \in F(\alpha)$ is equal to $\overline{\phi}_{\alpha}(f+(p))=f(\alpha):=\sum c_j\alpha^j$ for some $f=\sum c_jx^j\in F[x]$. By the division theorem for F[x]. There exist $m,r\in F[x]$ such that f=mp+r, with $\deg r<\deg p=n$. Write $r=\sum_{j=0}^{n-1}b_jx^j$, with $b_j=0$ if $j>\deg r$. We have:

$$\gamma = \overline{\phi}_{\alpha}(f + (p)) = \overline{\phi}_{\alpha}(r + (p)) = \sum_{j=0}^{n-1} b_j \alpha^j.$$

It remains to show that this expression for γ is unique. Suppose $\gamma=g(\alpha)=\sum_{j=0}^{n-1}b'_j\alpha^j$ for some $g=\sum_{j=0}^{n-1}b'_jx^j\in F[x]$. Then, $g(\alpha)=r(\alpha)=\gamma$ implies that $(g-r)+(p)\in F[x]/(p)$ is in the kernel of the map $\overline{\phi}_\alpha$ in Part 2. Since $\overline{\phi}_\alpha$ is one-to-one, we have $(g-r)\equiv 0$ modulo (p), which implies that $p\mid (g-r)$ in F[x]. Since $\deg g, \deg r < p$, this implies that g-r=0. So, the expression $\gamma=b_0+b_1\alpha+\cdots+b_{n-1}\alpha^{n-1}$ is unique.

4. By Part 2, we have an isomorphism $\overline{\phi}_{\beta}: F[x]/(p) \longrightarrow F(\beta)$, such that $\overline{\phi}_{\beta}(x+(p)) = \beta$, and $\overline{\phi}_{\beta}(a+(p)) = a$ for all $a \in F$. So the map $\phi_{\alpha\beta} := \overline{\phi}_{\beta} \circ \overline{\phi}_{\alpha}^{-1}: F(\alpha) \longrightarrow F(\beta)$ is the desired isomorphism between $F(\alpha)$ and $F(\beta)$.

Remark. Suppose p is an irreducible polynomial in F[x] of which $\alpha \in E$ is a root. Part 4 of the theorem essentially says that $F(\alpha)$ is a vector space of dimension deg p over F, with basis:

$$\{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}.$$

Example 13.2.2. Consider $F = \mathbb{Q}$ as a subfield of $E = \mathbb{R}$. The element $\alpha \in \sqrt[3]{2} \in \mathbb{R}$ is a root of the polynomial $p = x^3 - 2 \in \mathbb{Q}[x]$, which is irreducible in $\mathbb{Q}[x]$ by the Eisenstein's Criterion for the prime 2.

The theorem applied to this case says that $\mathbb{Q}(\alpha)$, i.e. the smallest subfield of \mathbb{R} containing \mathbb{Q} and α , is equal to the set:

$$\{c_0 + c_1\alpha + c_2\alpha^2 : c_i \in \mathbb{Q}\}\$$

The addition and multiplication operations in $\mathbb{Q}(\alpha)$ are those associated with \mathbb{R} , in other words:

$$(c_0 + c_1\alpha + c_2\alpha^2) + (b_0 + b_1\alpha + b_2\alpha^2) = (c_0 + b_0) + (c_1 + b_1)\alpha + (c_2 + b_2)\alpha^2,$$

$$(c_0 + c_1\alpha + c_2\alpha^2) \cdot (b_0 + b_1\alpha + b_2\alpha^2)$$

$$= c_0b_0 + c_0b_1\alpha + c_0b_2\alpha^2 + c_1b_0\alpha + c_1b_1\alpha^2 + c_1b_2\alpha^3 + c_2b_0\alpha^2 + c_2b_1\alpha^3 + c_2b_2\alpha^4$$

$$= (c_0b_0 + 2c_1b_2 + 2c_2b_1) + (c_0b_1 + c_1b_0 + 2c_2b_2)\alpha + (c_0b_2 + c_1b_1 + c_2b_0)\alpha^2$$

Exercise: Given a nonzero $\gamma = c_0 + c_1\alpha + c_2\alpha^2 \in \mathbb{Q}(\alpha)$, $c_i \in \mathbb{Q}$, find $b_0, b_1, b_2 \in \mathbb{Q}$ such that $b_0 + b_1\alpha + b_2\alpha^2$ is the multiplicative inverse of γ in $\mathbb{Q}(\alpha)$.

Example 13.2.3. Since $\sqrt[3]{2}$ is a root of $x^3 - 2$, the polynomial $p = x^3 - 2$ has a linear factor in $\mathbb{Q}(\sqrt[3]{2})[x]$. More precisely,

$$x^{3} - 2 = (x - \sqrt[3]{2})(x^{2} + \sqrt[3]{2}x + (\sqrt[3]{2})^{2}).$$

Week 14

14.1 Finite fields

Theorem 14.1.1 (Kronecker). If F is a field, and f is a nonconstant polynomial in F[x], then there exists a field extension E of F, such that $f \in F[x] \subset E[x]$ is a product of linear polynomials in E[x].

In other words, there exists a field extension E of F, such that:

$$f = c(x - \alpha_1) \cdots (c - \alpha_n),$$

for some $c, \alpha_i \in E$.

Proof. We prove by induction on $\deg f$.

If $\deg f = 1$, we are done.

Inductive Step: Suppose $\deg f > 1$. Suppose, for any field extension F' of F, and any polynomial $g \in F'[x]$ with $\deg g < \deg f$, there exists a field extension E of F' such that g splits into a product of linear factors in E[x].

If f is irreducible, then F':=F[x]/(f) contains a root α of f, namely $\alpha=x+(f)\in F[x]/(f)$. Hence, $f=(x-\alpha)q$ in F'[x], with $\deg q<\deg f$. Moreover, F' is a field extension of F if we identify F with the subset $\{c+(p):c\in k\}\subset F'$, where c is considered as a constant polynomial in F[x]. Then, by the induction hypothesis, there is an extension field E of F' such that q splits into a product of linear factors in E[x]. Consequently, f splits into a product of linear factors in E[x].

If f is not irreducible, then f = gh for some $g, h \in F[x]$, with $\deg g, \deg h < \deg f$. So, by the induction hypothesis, there is a field extension F' of F such that g is a product of linear factors in F'[x]. Hence, $f = (x - \alpha_1) \cdots (x - \alpha_n)h$ in F'[x]. Since $\deg h < \deg f$, by the inductive hypothesis there exists a field extension E of F' such that h splits into linear factors in E[x]. Hence, f is a product of linear factors in E[x].

Remark. There is a theorem saying that for any field F, there exists a unique field extension \overline{F} of F in which every element is algebraic over F and such that any polynomial in F[x] splits over \overline{F} . The field extension \overline{F} is called the **algebraic closure** of F.

Recall the following definition.

Definition. Let D be an integral domain. The **characteristic** char D of D is the smallest positive integer n such that:

$$\underbrace{1+1+\cdots+1}_{n \text{ times}} = 0.$$

If such an integer does not exist, we say that the integral domain has **characteristic zero**.

Example 14.1.2. The field \mathbb{Q} has characteristic zero. char $\mathbb{Z}_p = p$ for any prime p.

Exercise: If an integral domain D has positive characteristic char D, then char D is a prime number. Example: char $\mathbb{Z}_5 = 5$, which is prime.

Note that all finite integral domains have positive characteristics, but there are integral domains with positive characteristics which have infinitely many elements, e.g. the polynomial ring $\mathbb{Z}_5[x]$.

Proposition 14.1.3. Let F be a finite field. Then, the number of elements of F is equal to p^n for some prime p and $n \in \mathbb{N}$.

Proof. Since F is finite, it has finite characteristic. Since it is a field, char F is a prime p.

Exercise: \mathbb{Z}_p is isomorphic to a subfield of F.

Viewing \mathbb{Z}_p as a subfield of F, we see that F is a vector space over \mathbb{Z}_p . Since the cardinality of F is finite, the dimension n of F over \mathbb{Z}_p must necessarily be finite. Hence, there exist n basis elements $\alpha_1, \alpha_2, \ldots, \alpha_n$ in F, such that each element of F may be expressed uniquely as:

$$c_1\alpha_1 + c_2\alpha_2 + \cdots + c_n\alpha_n$$

where $c_i \in \mathbb{Z}_p$. Since \mathbb{Z}_p has p elements, it follows that F has p^n elements. \square

Theorem 14.1.4 (Galois). Given any prime p and $n \in \mathbb{N}$, there exists a finite field F with p^n elements.

Proof. Consider the polynomial:

$$f = x^{p^n} - x \in \mathbb{Z}_p[x]$$

By Kronecker's theorem (or by the existence of algebraic closure), there exists a field extension K of \mathbb{Z}_p such that f splits into a product of linear factors in K[x]. Let:

$$F = \{ \alpha \in K : f(\alpha) = 0 \}.$$

Exercise: Let $g = (x - a_1)(x - a_2) \cdots (x - a_n)$ be a polynomial in k[x], where k is a field. Show that the roots a_1, a_2, \ldots, a_n are distinct if and only if gcd(g, g') = 1, where g' is the derivative of g.

In this case, we have $f' = p^n x^{p^n - 1} - 1 = -1$ in $\mathbb{Z}_p[x]$. Hence, gcd(f, f') = 1, which implies by the exercise that the roots of f are all distinct. So, f has p^n distinct roots in K, hence F has exactly p^n elements.

It remains to show that F is a field. Let $q=p^n$. By definition, an element $a \in K$ belongs to F if and only if $f(a)=a^q-a=0$, which holds if and only if $a^q=a$. For $a,b\in F$, we have:

$$(ab)^q = a^q b^a = ab,$$

which implies that F is closed under multiplication. Since K, being a extension of \mathbb{Z}_p , has characteristic p. we have $(a+b)^p=a^p+b^p$. Hence,

$$(a+b)^{q} = (a+b)^{p^{n}} = ((a+b)^{p})^{p^{n-1}} = (a^{p}+b^{p})^{p^{n-1}}$$
$$= (a^{p}+b^{p})^{p})^{p^{n-2}} = (a^{p^{2}}+b^{p^{2}})^{p^{n-2}}$$
$$= \cdots = a^{p^{n}}+b^{p^{n}} = a+b.$$

which implies that F is closed under addition.

Let 0, 1 be the additive and multiplicative identity elements, respectively, of K. Since $0^q = 0$ and $1^q = 1$, they are also the additive and multiplicative identity elements of F.

For nonzero $a \in F$, we need to prove the existence of the additive and multiplicative inverses of a in F.

Let -a be the additive inverse of a in K. Since $(-1)^q = -1$ (even if p = 2, since 1 = -1 in \mathbb{Z}_2), we have:

$$(-a)^q = (-1)^q a^q = -a,$$

so $-a \in F$. Hence, $a \in F$ has an additive inverse in F.

Since $a^q = a$ in K, we have:

$$a^{q-2}a = a^{q-1} = 1$$

in K. Since $a \in F$ and F is closed under multiplication, $a^{q-2} = \underbrace{a \cdots a}_{q-2 \text{ times}}$ lies in F.

So, a^{q-2} is a multiplicative inverse of a in F.

Proposition 14.1.5. Let F be a field, f a nonzero irreducible polynomial in F[x], then F[x]/(f) is a vector space of dimension $\deg f$ over F.

Proof. Let E = F[x]/(f), then E is a field extension of F which contains a root α of f, namely, $\alpha = \overline{x} := x + (f)$. By Theorem 13.2.1, $E = F(\alpha)$, and every element in E may be expressed uniquely in the form:

$$c_0 + c_1 \alpha + c_2 \alpha^2 + \dots + c_{n-1} \alpha^{n-1}, \quad c_i \in k, \ n = \deg f.$$

This shows that E is a vector space of dimension $\deg f$ over F.

Corollary 14.1.6. If F is a finite field with |F| elements, and f is an irreducible polynomial of degree n in F[x], then the field F[x]/(f) has $|F|^n$ elements.

Example 14.1.7. Let p=2, n=2. To construct a finite field with $p^n=4$ elements. We first start with the finite field \mathbb{Z}_2 , then try to find an irreducible polynomial $f\in\mathbb{Z}_2[x]$ such that $\mathbb{Z}_2[x]/(f)$ has 4 elements. Based on our discussion so far, the degree of f should be equal to f0 is precisely the dimension of the desired finite field over \mathbb{Z}_2 . Consider f1. Since f2 is of degree 2 and has no root in \mathbb{Z}_2 2, it is irreducible in $\mathbb{Z}_2[x]$ 2. Hence, $\mathbb{Z}_2[x]/(x^2+x+1)$ 3 is a field with 4 elements.