
Week 1

1.1 Groups
Definition. A group is a set G equipped with a binary operation

∗ : G×G −→ G

(called the group operation or “product” or “multiplication”) such that the fol-
lowing conditions are satisfied:

• The group operation is associative, i.e.

(a ∗ b) ∗ c = a ∗ (b ∗ c)

for all a, b, c ∈ G.

• There is an element e ∈ G, called an identity element, such that

a ∗ e = e ∗ a = a,

for all a ∈ G.

• For every a ∈ G there exists an element a−1 ∈ G, called an inverse of a,
such that

a−1 ∗ a = a ∗ a−1 = e.

Remark. We often write a · b or simply ab to denote a ∗ b.
Definition. If ab = ba for all a, b ∈ G, we say that the group operation is com-
mutative and that G is an abelian group; otherwise we say that G is nonabelian.

Remark. When the group is abelian, we often use + to denote the group opera-
tion.

Definition. The order of a group G, denoted by |G|, is the number of elements in
G. We say that G is finite (resp. infinite) if |G| is finite (resp. infinite).
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Example 1.1.1. The following sets are groups, with respect to the specified group
operations:

• G = Q, where the group operation is the usual addition + for rational
numbers. The identity is e = 0. The inverse of a ∈ Q with respect to + is
−a. This is an infinite abelian group.

• G = Q× = Q\{0}, where the group operation is the usual multiplication
for rational numbers. The identity is e = 1, and the inverse of a ∈ Q× is
a−1 = 1

a
. This group is also infinite and abelian.

Note that Q is not a group with respect to multiplication. For in that case,
we have e = 1, but 0 ∈ Q has no inverse 0−1 ∈ Q such that 0 · 0−1 = 1.

Exercise: Verify that the following sets are groups under the specified binary
operations:

• (Z,+), (R,+), (C,+).

• (R× = R\{0}, ·), (C× = C\{0}, ·)

• (Um, ·), where m ∈ Z>0,

Um = {1, ζm, ζ2m, . . . , ζm−1m }

and ζm = e2πi/m = cos(2π/m) + i sin(2π/m) ∈ C.

• The set of bijective functions f : R −→ R, where f ∗ g := f ◦ g (i.e.
composition of functions).

• More generally, one can consider any nonempty set X . Then the set

SX := {σ : X → X : σ is bijective}

of all bijective maps from X onto X is a group under composition of maps.

Example 1.1.2. The set G = GL(2,R) of real 2× 2 matrices with nonzero deter-
minants is a group under matrix multiplication, with identity element:

I =

(
1 0
0 1

)
.

In the group G, we have:(
a b
c d

)−1
=

1

ad− bc

(
d −b
−c a

)
Note that there are matrices A,B ∈ GL(2,R) such that AB 6= BA. Hence

GL(2,R) is nonabelian (and infinite).
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More generally, for any n ∈ Z>0, the set GL(n,R) of n× n real matrices M ,
such that detM 6= 0, is a group under matrix multiplication, called the General
Linear Group. The group GL(n,R) is nonabelian for n ≥ 2.

Exercise: The set SL(n,R) of real n × n matrices with determinant 1 is a group
under matrix multiplication, called the Special Linear Group.

Example 1.1.3. Let n ∈ Z>0. Consider the finite set

Zn = {0, 1, 2, . . . , n− 1}.

We define a binary operation +n on Zn by

a+n b =

{
a+ b if a+ b < n,
a+ b− n if a+ b ≥ n.

for any a, b ∈ Zn.

Exercise: Then (Zn,+n) is a finite abelian group. (By abuse of notation, we will
usually use the usual symbol + to denote the additive operation for this group.)

Proposition 1.1.4. The identity element e of a group G is unique.

Proof. Suppose there is an element e′ ∈ G such that e′g = ge′ for all g ∈ G.
Then, in particular, we have:

e′e = e

But since e is an identity element, we also have e′e = e′. Hence, e′ = e.

Proposition 1.1.5. Let G be a group. For all g ∈ G, its inverse g−1 is unique.

Proof. Suppose there exists g′ ∈ G such that g′g = gg′ = e. By the associativity
of the group operation, we have:

g′ = g′e = g′(gg−1) = (g′g)g−1 = eg−1 = g−1.

Hence, g−1 is unique.

Let G be a group with identity element e. For g ∈ G, n ∈ N, let:

gn := g · g · · · g︸ ︷︷ ︸
n times

.

g−n := g−1 · g−1 · · · g−1︸ ︷︷ ︸
n times

g0 := e.
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Proposition 1.1.6. Let G be a group.

1. For all g ∈ G, we have:
(g−1)−1 = g.

2. For all a, b ∈ G, we have:

(ab)−1 = b−1a−1.

3. For all g ∈ G, n,m ∈ Z, we have:

gn · gm = gn+m.

Proof. Exercise.
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Week 2

2.1 Cyclic groups
Definition. Let G be a group, with identity element e. The order of an element
g ∈ G, denoted by |g|, is the smallest positive integer n such that gn = e; if no
such n exists, we say that g has infinite order and write |g| =∞.

Exercise: If G has finite order, then every element of G has finite order.

Proposition 2.1.1. Let G be a group with identity element e. Let g be an element
of G. If gn = e for some n ∈ Z>0, then |g| divides n.

Proof. Let m = |g|. Suppose gn = e. By the Division Theorem, there exist
(uniquely) integers q and 0 ≤ r < m such that n = mq + r. So gn = (gm)q · gr
which implies that gr = e. This forces r = 0 (since otherwise this violates the
definition of |g| = m). Hence m | n.

Given an element g in a group G, we define the subset 〈g〉 ⊂ G as the set of
all integral powers of g:

〈g〉 = {gn : n ∈ Z}.

Recall that

|g| =
{

min{n ∈ Z>0 : gn = e} if ∃n ∈ Z>0 such that gn = e,
∞ otherwise.

Proposition 2.1.2. If |g| =∞, then 〈g〉 is an infinite set; in fact, the mapZ→ 〈g〉,
n 7→ gn is a bijection. If |g| = m <∞, then

〈g〉 = {e, g, g2, . . . , gm−1}.

Proof. Suppose |g| = ∞. It follows from the definition of 〈g〉 that the map Z →
〈g〉, n 7→ gn is surjective. So we only need to show that it is also injective.
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Suppose gn1 = gn2 for some n1, n2 ∈ Z. If n1 6= n2, then without loss of
generality, we can assume that n1 > n2. Then we have gn1−n2 = e with n1−n2 ∈
Z>0. But this violates the assumption that |g| =∞. Hence we must have n1 = n2,
showing the required injectivity.

When |g| = m < ∞, we want to show that 〈g〉 = {e, g, g2, . . . , gm−1}.
Clearly we have 〈g〉 ⊃ {e, g, g2, . . . , gm−1}, so we only need to prove the re-
verse inclusion. Take an element gn ∈ 〈g〉. Then the Division Theorem im-
plies that there exist integers q and 0 ≤ r < m such that n = mq + r. So
gn = (gm)q · gr = gr ∈ {e, g, g2, . . . , gm−1}. This completes the proof.

Definition. A group G is cyclic if there exists g ∈ G such that every element of
G is equal to gn for some integer n. In this case, we write G = 〈g〉, and say that g
is a generator of G.

Remark. The generator of of a cyclic group might not be unique, i.e. there may
exist different elements g1, g2 ∈ G such that G = 〈g1〉 = 〈g2〉.
Example 2.1.3. • (Z,+) is cyclic, generated by 1 or −1.

• (Zn,+) is cyclic, generated by 1, or k ∈ Zn such that gcd(k, n) = 1.

• (Um, ·) is cyclic, generated by ζm = e2πi/m, or ζnm for any integer n ∈ Zm
such that gcd(m,n) = 1.

Exercise: A finite cyclic group G has order n if and only if each of its generators
has order n.

Exercise: The group (Q,+) is not cyclic.

Example 2.1.4. Let p be a prime. Let G = (Zp,+). For all g 6= 0 in G, the order
of g is p.

Proof. Exercise.

Proposition 2.1.5. Every cyclic group is abelian

Proof. Let G be a cyclic group. Then G = 〈g〉 for some element g ∈ G and every
element is of the form gn for some n ∈ Z. Now

gn1 · gn2 = gn1+n2 = gn2+n1 = gn2 · gn1 .

So G is abelian.

Remark. The converse is not true, namely, there are non-cyclic abelian groups
(e.g. the Klein 4-group Z2 × Z2).
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2.2 Symmetric groups
Definition. Let X be a set. A permutation of X is a bijective map σ : X −→ X .

Proposition 2.2.1. The set SX of permutations of a set X is a group with respect
to ◦, the composition of maps.

Proof. • Let σ, γ be permutations ofX . By definition, they are bijective maps
from X to itself. It is clear that σ ◦ γ is a bijective map from X to itself,
hence σ ◦ γ is a permutation of X . So ◦ is a well-defined binary operation
on SX .

• For α, β, γ ∈ SX , it is clear that α ◦ (β ◦ γ) = (α ◦ β) ◦ γ.

• Define a map e : X −→ X as follows:

e(x) = x, for all x ∈ X.

It is clear that e ∈ SX , and that e ◦ σ = σ ◦ e = σ for all σ ∈ SX . Hence, e
is an identity element in SX .

• Let σ be any element of SX . Since σ : X −→ X is by assumption bijective,
there exists a bijective map σ−1 : X −→ X such that σ◦σ−1 = σ−1◦σ = e.
So σ−1 is an inverse of σ with respect to the operation ◦.

Terminology: We call SX the symmetric group on X .

Notation. Let n be a positive integer. Consider the set In := {1, 2, . . . , n}. Then
we denote SIn by Sn and call it the n-th symmetric group.

For n ∈ Z>0, the group Sn has n! elements.
For n ∈ Z>0, by definition an element of Sn is a bijective map σ : In −→ In,

where In = {1, 2, . . . , n}. We often describe σ using the following notation:

σ =

(
1 2 · · · n

σ(1) σ(2) . . . σ(n)

)
Example 2.2.2. In S3,

σ =

(
1 2 3
3 2 1

)
is the permutation on I3 = {1, 2, 3} which sends 1 to 3, 2 to itself, and 3 to 1, i.e.
σ(1) = 3, σ(2) = 2, σ(3) = 1.
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For α, β ∈ S3 given by:

α =

(
1 2 3
2 3 1

)
, β =

(
1 2 3
2 1 3

)
,

we have:

αβ = α ◦ β =

(
1 2 3
2 3 1

)
◦
(

1 2 3
2 1 3

)
=

(
1 2 3
3 2 1

)
(since, for example, α ◦ β : 1

β7−→ 2
α7−→ 3.).

We also have:

βα = β ◦ α =

(
1 2 3
2 1 3

)
◦
(

1 2 3
2 3 1

)
=

(
1 2 3
1 3 2

)
Since αβ 6= βα, the group S3 is non-abelian.
In general, for n ≥ 3, the group Sn is non-abelian (Exercise: Why?).
For the same α ∈ S3 defined above, we have:

α2 = α ◦ α =

(
1 2 3
2 3 1

)
◦
(

1 2 3
2 3 1

)
=

(
1 2 3
3 1 2

)
and:

α3 = α · α2 =

(
1 2 3
2 3 1

)
◦
(

1 2 3
3 1 2

)
=

(
1 2 3
1 2 3

)
= e

Hence, the order of α is 3.

More on Sn

Consider the following element in S6:

σ =

(
1 2 3 4 5 6
5 4 3 6 1 2

)
We may capture the action of σ : {1, 2, . . . , 6} −→ {1, 2, . . . , 6} using the nota-
tion:

σ = (15)(246),

where (i1i2 · · · ik) denotes the permutation:

i1 7→ i2, i2 7→ i3, . . . , ik−1 7→ ik, ik 7→ i1

and j 7→ j for all j ∈ {1, 2, . . . , n}\{i1, i2, . . . , ik}. We call (i1i2 · · · ik) a k-cycle
or a cycle of length k. Note that 3 is missing from (15)(246), meaning that 3 is
fixed by σ.
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Proposition 2.2.3. Every permutation α ∈ Sn is either a cycle or a product of
disjoint cycles.

Proof. Later.

Exercise: Disjoint cycles commute with each other.
A 2-cycle is often called a transposition, for it switches two elements with

each other.
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Week 3

3.1 Dihedral groups
Consider the subset T of transformations ofR2, consisting of all rotations by fixed
angles about the origin, and all reflections over lines through the origin.

Consider a regular polygon Pn with n sides in R2, centered at the origin. Iden-
tify the polygon with its n vertices, which form a subset Pn = {x1, x2, . . . , xn} of
R2. If τ(Pn) = Pn for some τ ∈ T , we say that Pn is symmetric with respect to
τ .

Intuitively, it is clear that Pn is symmetric with respect to n rotations

{r0, r1, . . . , rn−1},

and n reflections
{s1, s2, . . . , sn}

in T . In particular |Dn| = 2n.

Proposition 3.1.1. The set Dn := {r0, r1, . . . , rn−1, s1, s2, . . . , sn} is a group,
with respect to the group operation defined by composition of transformations:
τ ∗ γ = τ ◦ γ.

Terminology: Dn is called the n-th dihedral group.
Let r = r1 ∈ Dn be the rotation by the angle 2π/n in the anticlockwise direc-

tion (and similarly rk denotes the rotation by the angle 2kπ/n in the anticlockwise
direction). Then the set of rotations in Dn is given by

〈r〉 = {id, r, r2, . . . , rn−1}.

Furthermore, the composition of two reflections is a rotation (which can be seen,
e.g. by flipping a Hong Kong 2-dollar coin). So if we let s = s1 ∈ Dn be one of
the reflections, then the set of reflections in Dn is given by

{s, rs, r2s, . . . , rn−1s}.
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So we can enumerate the elements of Dn as

Dn = {id, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s}.

3.2 Subgroups
Definition. Let G be a group. A subset H of G is a subgroup of G (denoted as
H < G) if it is a group under the induced operation from G.

More precisely, a subset H ⊂ G is a subgroup of G if

• H is closed under the operation on G, i.e.

a ∗ b ∈ H for any a, b ∈ H,

so that the restriction of the binary operation G × G → G to the subset
H×H ⊂ G×G gives a well-defined binary operation H×H → H , called
the induced operation on H , and

• H is a group under this induced operation.

Example 3.2.1. • For any group G, we have the trivial subgroup {e} < G
and also G < G. We call a subgroup H < G nontrivial if {e} � H and
proper if H � G.

• We have Z < Q < R < C under addition, and Q× < R× < C× under
multiplication.

• For any n ∈ Z, nZ is a subgroup of (Z,+).

• SL(n,R) is a subgroup of GL(n,R).

• The set of all rotations (including the trivial rotation) in a dihedral groupDn

is a subgroup of Dn.

• By viewing Dn as permutations of the vertices of a regular n-gon Pn, we
can regard Dn as a subgroup of Sn.

• Consider the symmetric group Sn where n ∈ Z>0.

Proposition 3.2.2. Each element of Sn is a product of (not necessarily dis-
joint) transpositions.

11



Sketch of proof. Show that each permutation not equal to the identity is a
product of cycles, and that each cycle is a product of transpositions:

(i1i2 · · · ik) = (i1ik)(i1ik−1) · · · (i1i3)(i1i2)

Example 3.2.3.(
1 2 3 4 5 6
5 4 3 6 1 2

)
= (15)(246) = (15)(26)(24) = (15)(46)(26)

Note that a given element σ of Sn may be expressed as a product of trans-
positions in different ways, but:

Proposition 3.2.4. In every factorization of σ as a product of transpositions,
the number of factors is either always even or always odd.

Proof. Exercise. One approach: There is a unique n × n matrix, with ei-
ther 0 or 1 as its coefficients, which sends any vector (x1, x2, . . . , xn) to
(xσ(1), xσ(2), . . . , xσ(n)). Use the fact that the determinant of the matrix cor-
responding to a transposition is −1, and that the determinant function of
matrices is multiplicative.

We say that σ ∈ Sn is an even (resp. odd) permutation if it is a product
of an even (resp. odd) number of transpositions. The subset An of Sn
consisting of even permutations is a subgroup of Sn. An is called the n-th
alternating group.

Proposition 3.2.5. A nonempty subset H of a group G is a subgroup of G if and
only if, for all a, b ∈ H , we have ab−1 ∈ H .

Proof. Suppose H ⊆ G is a subgroup. For any a, b ∈ H , existence of inverse
implies that b−1 ∈ H , and then closedness implies that ab−1 ∈ H .

Conversely, suppose H is a nonempty subset of G such that xy−1 ∈ H for all
x, y ∈ H .

• (Identity:) Let e be the identity element of G. Since H is nonempty, it
contains at least one element h. Since e = h · h−1, and by hypothesis
h · h−1 ∈ H , the set H contains e.

• (Inverses:) Since e ∈ H , for all a ∈ H we have a−1 = e · a−1 ∈ H .

• (Closure:) For all a, b ∈ H , we know that b−1 ∈ H . Hence, ab = a ·
(b−1)−1 ∈ H .
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• (Associativity:) This follows from that in G.

Hence, H is a subgroup of G.

One can use this criterion to check that all the previous examples are indeed
subgroups.

3.3 Cyclic subgroups
Recall that for any group G and any element g ∈ G, we have the subset

〈g〉 = {gn : n ∈ Z}.

Proposition 3.3.1. Let G be a group. Then for any element g ∈ G, the subset 〈g〉
is the smallest subgroup of G containing g, which we call the cyclic subgroup
generated by g.

Proof. Let gk, gl be two arbitrary elements in 〈g〉. Then gk(gl)−1 = gk−l ∈ 〈g〉.
So 〈g〉 is a subgroup of G by Proposition 3.2.5.

Now let H < G be any subgroup containing g. Then gk ∈ H for any k ∈ Z
since H is a subgroup. Hence 〈g〉 ⊂ H .

Proposition 3.3.2. The intersection of any collection of subgroups of a group G
is also a subgroup of G.

Proof. Exercise.

Corollary 3.3.3. Let G be a group. Then for any g ∈ G, we have

〈g〉 =
⋂

{H:g∈H<G}

H.
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Week 4

4.1 Cyclic subgroups (cont’d)
Proposition 4.1.1. Every subgroup of a cyclic group is cyclic.

Proof. Let G = 〈g〉 be a cyclic group, and H < G a subgroup. If H is trivial,
then it is cyclic (generated by the identity e). If H is nontrivial, then there exists
k ∈ Z>0 such that gk ∈ H . We set

m := min{k ∈ Z>0 : gk ∈ H}.

We claim that H is generated by gm. First of all, we obviously have 〈gm〉 ⊂ H .
Conversely, let gn be an arbitrary element in H . By the Division Theorem, there
exist (uniquely) integers q and 0 ≤ r ≤ m − 1 such that n = mq + r. So
gn = (gm)q ·gr which implies that gr = (gm)−q ·gn ∈ H . This forces r = 0. Thus
gn ∈ 〈gm〉, and we have shown that H ⊂ 〈gm〉. This completes the proof.

Corollary 4.1.2. Any subgroup of (Z,+) is of the form nZ for some n ∈ Z.

Because of this corollary, we can define the gcd of two integers as follows.
For any a, b ∈ Z, the subset

〈a, b〉 := {ma+ nb : m,n ∈ Z}

is a subgroup of Z using Proposition 3.2.5 (check this!). Corollary 4.1.2 implies
that 〈a, b〉 is of the form dZ for some positive integer d. We then define the great-
est common divisor (gcd), denoted as gcd(a, b), to be this positive integer d. One
can check that this gcd satisfies the following properties (as expected):

• d | a and d | b,

• d = ka+ lb for some k, l ∈ Z, and

• if k | a and k | b, then k | d.
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Proposition 4.1.3. Let G be a cyclic group of order n and g ∈ G be a generator
of G, i.e. G = 〈g〉. Let gs ∈ G be an element in G. Then

|gs| = n/d,

where d = gcd(s, n). Moreover, 〈gs〉 = 〈gt〉 if and only if gcd(s, n) = gcd(t, n).

Proof. Let us write a = gs and letm := |a|. First of all, we have an/d = (gs)n/d =
(gn)s/d = e since |G| = n. Proposition 2.1.1 implies that m | (n/d). On the other
hand, we have e = am = gsm which implies, again by Proposition 2.1.1, that
n | sm. Dividing both sides by d gives (n/d) | (s/d)m. But n/d and s/d are
relatively prime, so we must have (n/d) | m. This proves that |gs| = m = n/d
where d = gcd(s, n).

To prove the second assertion, we first show that there is an equality of sub-
groups 〈gs〉 = 〈gd〉 where d = gcd(s, n). One inclusion is clear: as d | s, we have
gs ∈ 〈gd〉 which implies 〈gs〉 ⊂ 〈gd〉. Conversely, note that there exist k, l ∈ Z
such that d = ks + ln. So we have gd = (gs)k · (gn)l = (gs)k ∈ 〈gs〉 and hence
〈gd〉 ⊂ 〈gs〉. This proves the equality we claimed.

Now, 〈gs〉 = 〈gt〉 implies that |gs| = |gt| which in turn gives gcd(s, n) =
gcd(t, n). Conversely, if we have gcd(s, n) = gcd(t, n) =: d, then 〈gs〉 = 〈gd〉 =
〈gt〉.

Corollary 4.1.4. All generators of a cyclic group G = 〈g〉 of order n are of the
form gr where r is relatively prime to n.

4.2 Generating sets
Let G be a group, S a nonempty subset of G. Then similar to the case of a cyclic
subgroup, it can be proved using Proposition 3.2.5 that the subset:

〈S〉 := {am1
1 am2

2 · · · amn
n : n ∈ N, ai ∈ S,mi ∈ Z}

is the smallest subgroup of G containing S. We call 〈S〉 the subgroup of G gen-
erated by S. If G = 〈S〉, then we say S is a generating set for G.

Remark. Similar to the cyclic subgroup generated by a single element, we have

〈S〉 =
⋂

{H:S⊂H<G}

H.

If S = {a1, a2, . . . , al} is a finite set, we often write

〈a1, a2, . . . , al〉

to denote the subgroup generated by S.
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Example 4.2.1. • The set of cycles and the set of transpositions are two ex-
amples of generating sets for Sn.

• We also have Sn = 〈(12), (12 · · ·n)〉.

• We have Dn = 〈r, s〉 where r is the rotation by the angle 2π/n in the
anticlockwise direction and s is any reflection.

If there exists a finite number of elements a1, a2, . . . , al ∈ G such that

G = 〈a1, a2, . . . , al〉,

then we say that G is finitely generated.
For example, every cyclic group is finitely generated, for it is generated by

one element. Every finite group is also finitely generated, since we may take the
finite generating set S to be G itself. Finitely generated groups are much easier
to understand. For instance, there is a simple classification for finitely generated
abelian groups but not for those which are not finitely generated.

Exercise: The group (Q,+) is not finitely generated.

4.3 Equivalence relations and partitions
Let S be a set.

A partition P of S is a collection of subsets {Si : i ∈ I} of S (here I is some
index set) such that

• Si 6= ∅ for each i ∈ I ,

• Si ∩ Sj = ∅ if i 6= j, and

•
⋃
i∈I Si = S.

We may also say that P is a subdivision of S into a disjoint union of nonempty
subsets, written as

S =
⊔
i∈I

Si.

An equivalence relation on S is a relation ∼ (i.e. a subset of S × S) which is

• (Reflexive:) a ∼ a for any a ∈ S,

• (Symmetric:) if a ∼ b, then b ∼ a, and

• (Transitive:) if a ∼ b and b ∼ c, then a ∼ c.
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In fact, partition and equivalence relation are two equivalent concepts.
First of all, given a partition {Si : i ∈ I} of S, we can define a relation on S

by the rule a ∼ b if a, b ∈ Si for some i ∈ I . Then it is easy to check that ∼ is an
equivalence relation on S.

Conversely, suppose we are given an equivalence relation ∼ on S. For any
a ∈ S, the set

Ca = {b ∈ S : a ∼ b}

is called the equivalence class of a. The reflexive axiom implies that a ∈ Ca; in
particular, Ca 6= ∅ for all a ∈ S. Also, S is the union of all the equivalence classes
Ca. Finally, we claim that if Ca ∩ Cb 6= ∅, then Ca = Cb.

Proof of claim. Suppose there exists c ∈ Ca ∩ Cb. So we have a ∼ c and b ∼ c.
The symmetric and transitive axioms then imply that a ∼ b (and b ∼ a). Now for
any d ∈ Ca, we have d ∼ a, so d ∼ b by a ∼ b and the transitive axiom. Thus
d ∈ Cb and this shows that Ca ⊂ Cb. Reversing the roles of a and b in the same
argument shows that Cb = Ca. Therefore Ca = Cb.

We conclude that the collection of equivalence classes Ca, a ∈ S gives a
partition of S.

As an application, we give a proof of the fact that any permutation σ ∈ Sn is
a product of disjoint cycles:

Proof of Proposition 2.2.3. Let σ ∈ Sn be a permutation on the set In = {1, 2, . . . , n}.
For a, b ∈ In, we say a ∼ b if and only if b = σk(a) for some k ∈ Z. Exercise:
This defines an equivalence relation on In. So it produces a partition of In into a
disjoint union of equivalence classes:

In = O1 tO2 t · · · tOm.

(The equivalence classes O1, O2, . . . , Om ⊂ In are called orbits of σ.) Then, for
j = 1, 2, . . . ,m, we define a permutation µj ∈ Sn by

µj(a) =

{
σ(a) if a ∈ Oj,
a if a 6∈ Oj.

Each µj is a cycle (of length |Oj|). They are disjoint since the Oj’s form a parti-
tion. Also we have

σ = µ1µ2 · · ·µm.
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Week 5

5.1 Cosets and The Theorem of Lagrange
Let G be a group, H a subgroup of G. We are interested in knowing how large H
is relative to G.

We define a relation ∼L on G as follows:

a ∼L b if and only if b = ah for some h ∈ H,

or equivalently:
a ∼L b if and only if a−1b ∈ H.

Exercise: ∼L is an equivalence relation.
We may therefore partition G into a disjoint union of equivalence classes with

respect to ∼L. We call these equivalence classes the left cosets of H in G; each
left coset of H has the form

aH = {ah : h ∈ H}.

We could likewise define a relation ∼R on G by

a ∼R b if and only if b = ha for some h ∈ H,

or equivalently:
a ∼R b if and only if ba−1 ∈ H.

∼R is also an equivalence relation, whose equivalence classes, which are subsets
of the form

Hb = {hb : h ∈ H}, b ∈ G,
are called the right cosets of H in G.

Definition. The number of left cosets of a subgroup H of G is called the index of
H in G. It is denoted by:

[G : H]

18



Theorem 5.1.1 (Lagrange). LetG be a finite group. LetH be subgroup ofG, then
|H| divides |G|. More precisely, |G| = [G : H] · |H|.

Proof. We already know that the left cosets of H partition G. That is:

G = a1H t a2H t . . . t a[G:H]H,

where aiH ∩ ajH = ∅ if i 6= j. Hence, |G| =
∑[G:H]

i=1 |aiH|. Note that one of the
left cosets, say a1H , is equal to H = eH . The theorem follows if we show that
the size of each left coset of H is equal to |H|.

For each left coset S of H , pick an element a ∈ S, and define a map ψ :
H −→ S as follows:

ψ(h) = ah.

We want to show that ψ is bijective.
For any s ∈ S, by definition of a left coset (as an equivalence class) we have

s = ah for some h ∈ H . Hence, ψ is surjective. If ψ(h′) = ah′ = ah = ψ(h) for
some h′, h ∈ H , then h′ = a−1ah′ = a−1ah = h. Hence, ψ is one-to-one.

So we have a bijection between two finite sets. Hence, |S| = |H|.

Remark. As a consequence of the Theorem of Lagrange, we see that the numbers
of left cosets and right cosets, if finite, are equal to each other; more generally, the
set of left cosets has the same cardinality as the set of right cosets.

Corollary 5.1.2. Let G be a finite group. The order of every element of G divides
the order of G.

Proof. Since G is finite, any element of g ∈ G has finite order |g|. Since the order
of the subgroup:

H = 〈g〉 = {e, g, g2, . . . , g|g|−1}

is equal to |g|, it follows from Lagrange’s Theorem that |g| = |H| divides |G|.

Corollary 5.1.3. If the order of a group G is prime, then G is a cyclic group.

Proof. Let G be a group such that p = |G| is a prime number. Since p ≥ 2, there
exists a ∈ G \ {e}. The above corollary them says that |a| | p. But |a| 6= 1, so we
must have |a| = p. This means that G = 〈a〉.

Corollary 5.1.4. If a group G is finite, then for all g ∈ G we have:

g|G| = e.

Proof. The previous corollary already says that |g| | |G|, i.e. |G| = k · |g|. So
g|G| = (g|g|)k = e.
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5.2 Examples of cosets
Example 5.2.1. Let G = (Z,+). Let:

H = 3Z = {. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}

The set H is a subgroup of G. The left cosets of H in G are as follows:

3Z, 1 + 3Z, 2 + 3Z,

where i+ 3Z := {i+ 3k : k ∈ Z}.
In general, for n ∈ Z, the left cosets of nZ in Z are:

i+ nZ, i = 0, 1, 2, . . . , n− 1.

Example 5.2.2. Let G = GL(n,R). Let:

H = GL+(n,R) := {h ∈ G : deth > 0} .

(Exercise: H is a subgroup of G.)
Let:

s =


−1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0
. . . 0

0 0 0 0 1

 ∈ G
Note that det s = det s−1 = −1.

For any g ∈ G, either det g > 0 or det g < 0. If det g > 0, then g ∈ H . If
det g < 0, we write:

g = (ss−1)g = s(s−1g).

Since det s−1g = (det s−1)(det g) > 0, we have s−1g ∈ H . So, G = H t sH ,
and [G : H] = 2. Notice that both G and H are infinite groups, but the index of
H in G is finite.

Example 5.2.3. Let G = GL(n,R), H = SL(n,R). For each x ∈ R×, let:

sx =


x 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0
. . . 0

0 0 0 0 1

 ∈ G

Note that det sx = x.
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For each g ∈ G, we have:

g = sdet g(s
−1
det gg) ∈ sdet gH

Moreover, for distinct x, y ∈ R×, we have:

det(s−1x sy) = y/x 6= 1.

This implies that s−1x sy /∈ H , hence syH and sxH are disjoint cosets. We have
therefore:

G =
⊔
x∈R×

sxH.

The index [G : H] in this case is infinite.

Exercise: For the subgroup (Z,+) < (R,+), show that the set of (left) cosets are
parametrized by [0, 1), so that we have

R =
⊔

t∈[0,1)

(t+ Z) .

Exercise: For a vector subspace W ⊂ V , we consider the subgroup (W,+) <
(V,+). Then the set of cosets are given by the affine translates v + W , v ∈ V ,
of W in V . Let W ′ ⊂ V be a subspace complementary to W , meaning that it
satisfies the following conditions:

• dimW ′ = dimV − dimW , and

• W ∩W ′ = {0}.
Show that the set of cosets of W in V are parametrized by W ′, so that

V =
⊔
v∈W ′

(v +W ) .

Example 5.2.4. Consider the dihedral group Dn, and the cyclic subgroup 〈r〉
generated by the anticlockwise rotation by 2π/n. Since

Dn = {id, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s},
we directly see that

Dn = 〈r〉 t s〈r〉.
Example 5.2.5. Consider the n-th symmetric group Sn, and the subgroup An <
Sn consisting of all the even permutations. Let τ ∈ Sn be a transposition. Exer-
cise: the map σ 7→ τσ gives a bijection between An and Bn := Sn \ An, the set
of all odd permutations. Hence we have Sn = An t τAn.
Example 5.2.6. Recall that S3(= D3) is generated by ρ = (123) and µ = (12).
(In fact, S3 = {id, ρ, ρ2, µ, ρµ, ρ2µ}.) For the cyclic subgroup H = 〈µ〉 < S3, the
left cosets are given by H, ρH, ρ2H so that we have S3 = H t ρH t ρ2H .

21



5.3 Group Homomorphisms
Definition. Let G = (G, ∗), G′ = (G′, ∗′) be groups.

A group homomorphism φ from G to G′ is a map φ : G −→ G′ which
satisfies:

φ(a ∗ b) = φ(a) ∗′ φ(b),

for all a, b ∈ G.
If φ is also bijective, then φ is called an isomorphism. If there exists an

isomorphism φ : G −→ G′ between two groups G and G′, then we say G is
isomorphic to G′, and denoted by G ' G′.

Remark. Note that if a homomorphism φ is bijective, then φ−1 : G′ −→ G is
also a homomorphism, and consequently, φ−1 is an isomorphism.

Isomorphic groups have the same algebraic structure and thus share the same
algebraic properties – they only differ by relabeling of their elements. One of the
most fundamental questions in group theory is to classify groups up to isomor-
phisms.

Example 5.3.1. • Let V,W be vector spaces over R (or C). Then a linear
transformation φ : V −→ W is in particular a homomorphism between
abelian groups φ : (V,+) −→ (W,+).

• The determinant det : GL(n,R) −→ R× is a group homomorphism.

• The exponential map exp : (R,+) −→ (R>0, ·) is an isomorphism from the
additive group of real numbers to the multiplicative group of positive real
numbers, whose inverse if given by the logarithm log : (R>0, ·) −→ (R,+).
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Week 6

6.1 Group Homomorphisms (cont’d)
Example 6.1.1. • For any nonzero integer n, we have nZ < Z, and the map

φ : nZ −→ Z defined by nk 7→ k is an isomorphism. Note that nZ < Z
is proper whenever |n| > 1, so a proper subgroup can be isomorphic to the
parent group!

• On the other hand, for any integer n, the map φ : Z −→ Z defined by
k 7→ nk is a homomorphism but not an isomorphism unless |n| = 1.

• Given a positive integer n, the remainder map φ : Z −→ Zn defined by
mapping k to its remainder when divided by n is a surjective homomor-
phism (check this!).

• The map φ : Z −→ Z defined by k 7→ k + 1 is not a homomorphism.

Example 6.1.2. The group:

G =

{(
cos θ − sin θ
sin θ cos θ

) ∣∣∣∣ θ ∈ R}
is isomorphic to

G′ = {z ∈ C : |z| = 1}.

Here, the group operation on G is matrix multiplication, and the group operation
on G′ is the multiplication of complex numbers.

Proof. Each element inG′ is equal to eiθ for some θ ∈ R. Define a map φ : G −→
G′ as follows:

φ

((
cos θ − sin θ
sin θ cos θ

))
= eiθ.

Exercise: φ is a bijective group homomorphism.
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Here are some basic properties of group homomorphisms:

Proposition 6.1.3. If φ : G −→ G′ is a group homomorphism, then:

1. φ(eG) = eG′ .

2. φ(g−1) = φ(g)−1, for all g ∈ G.

3. φ(gn) = φ(g)n, for all g ∈ G, n ∈ Z.

Proof. We prove the first claim, and leave the rest as an exercise.
Since eG is the identity element of G, we have eG ∗ eG = eG. On the other

hand, since φ is a group homomorphism, we have:

φ(eG) = φ(eG ∗ eG) = φ(eG) ∗′ φ(eG).

Since G′ is a group, φ(eG)−1 exists in G′, hence:

φ(eG)−1 ∗′ φ(eG) = φ(eG)−1 ∗′ (φ(eG) ∗′ φ(eG))

The left-hand side is equal to eG′ , while by the associativity of ∗′ the right-hand
side is equal to φ(eG).

Let φ : G −→ G′ be a homomorphism of groups. The image of φ is defined
as:

imφ := φ(G) := {φ(g) : g ∈ G}

The kernel of φ is defined as:

kerφ = {g ∈ G : φ(g) = eG′}.

Proposition 6.1.4. The image of φ is a subgroup of G′. The kernel of φ is a
subgroup of G.

Proof. Exercise.

Proposition 6.1.5. A group homomorphism φ : G −→ G′ is one-to-one if and
only if kerφ = {eG}.

Proof. Exercise.

As we have mentioned, isomorphisms preserve algebraic properties. Here are
some examples.

Proposition 6.1.6. Let G be a cyclic group, then any group isomorphic to G is
also cyclic.
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Proof. Exercise.

Example 6.1.7. The cyclic group Z4 is not isomorphic to Z2 × Z2.

Proof. Each element of G = Z2 × Z2 is of order at most 2. Since |G| = 4, G
cannot be generated by any of its elements. Hence, G is not cyclic, so it cannot be
isomorphic to the cyclic group Z4.

Proposition 6.1.8. Let G be an abelian group, then any group isomorphic to G is
abelian.

Example 6.1.9. The group D6 has 12 elements. We have seen that D6 = 〈r2, s〉,
where r2 is a rotation of order 6, and s is a reflection, which has order 2. So, it is
reasonable to ask if D6 is isomorphic to Z6 × Z2. The answer is no. For Z6 × Z2

is abelian, but D6 is not.

Remark. Both claims remain true if we replace isomorphism by a surjective ho-
momorphism, namely, if φ : G −→ G′ is a surjective homomorphism, then we
have

• G is cyclic⇒ G′ is cyclic,

• G is abelian⇒ G′ is abelian.

Try to prove these assertions by yourself!

Exercise. Check that the restriction of a homomorphism φ : G −→ G′ to a
subgroup H < G gives a homomorphism from H to G′.

Proposition 6.1.10. If φ : G −→ G′ is an isomorphism, then |φ(g)| = |g| for any
g ∈ G.

Proof. By the previous exercise, the restriction of φ to the subgroup 〈g〉 gives a
homomorphism

φ|〈g〉 : 〈g〉 −→ G′,

which is injective and with image

imφ|〈g〉 = 〈φ(g)〉.

So φ|〈g〉 is an isomorphism from 〈g〉 to 〈φ(g)〉; in particular, we have |φ(g)| =
|g|.
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Week 7

7.1 Classification of cyclic groups
Example 7.1.1. Let H = {r0, r1, r2, . . . , rn−1} be the subgroup of Dn consisting
of all rotations, where r1 denotes the anti-clockwise rotation by the angle 2π/n,
and rk = rk1 . Then, H is isomorphic to Zn = (Zn,+n).

Proof. Define φ : H −→ Zn as follows:

φ(rk1) = k, k ∈ Z,

where k denotes the remainder of the division of k by n.
The map φ is well defined: If rk1 = rk

′
1 , then rk−k

′

1 = e, which implies that
n = |r1| divides k − k′. Hence, k = k′ in Zn.

For i, j ∈ Z, we have ri1r
j
1 = ri+j1 ; hence:

φ(ri1r
j
1) = φ(ri+j1 ) = i+ j = i+n j = φ(ri1) +n φ(rj1).

This shows that φ is a homomorphism. It is clear that φ is surjective, which then
implies that φ is one-to-one, for the two groups have the same size. Hence, φ is a
bijective homomorphism, i.e. an isomorphism.

In fact:

Theorem 7.1.2. Any infinite cyclic group is isomorphic to (Z,+). Any cyclic
group of finite order n is isomorphic to (Zn,+n).

Proof. Write G = 〈g〉.
Suppose |G| =∞. Consider the map

φ : Z→ G, k 7→ gk.

φ is a homomorphism because φ(k1 + k2) = gk1+k2 = gk1 · gk2 = φ(k1) · φ(k2).
φ is injective because φ(k1) = φ(k2) implies that gk1 = gk2 which forces k1 = k2
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as |g| =∞. φ is surjective because G is generated by g. We conclude that φ is an
isomorphism.

If |G| = n <∞, Claim 2.1.2 says that we can write

G = 〈g〉 = {e, g, g2, . . . , gn−1}.

Consider the bijection
φ : G→ Zn, gi 7→ i.

We have

φ(gi1 · gi2) = φ(gi1+i2)

=

{
φ(gi1+i2) if i1 + i2 < n,
φ(gi1+i2−n) if i1 + i2 ≥ n

=

{
i1 + i2 if i1 + i2 < n,
i1 + i2 − n if i1 + i2 ≥ n

= φ(gi1) + φ(gi2),

so φ is an isomorphism.

So for any n ∈ Z ∪ {∞}, there is a unique (up to isomorphism) cyclic group
of order n. In particular, we have the following:

Corollary 7.1.3. If G and G′ are two finite cyclic groups of the same order, then
G is isomorphic to G′.

For example, the multiplicative group of m-th roots of unity

Um = {z ∈ C : zm = 1} = {1, ζm, ζ2m, . . . , ζm−1m },

where ζm = e2πi/m = cos(2π/m) + i sin(2π/m) ∈ C, is cyclic of order m. So it
is isomorphic to Zm, and an isomorphism is given by

φ : Zm −→ Um, k 7→ ζkm.

7.2 Rings
Definition. A ring R (or (R,+, ·)) is a set equipped with two binary operations:

+, · : R×R→ R

which satisfy the following properties:

27



1. (R,+) is an abelian group.

2. (a) The multiplication · is associative, i.e.

(a · b) · c = a · (b · c)

for all a, b, c ∈ R.

(b) There is an element 1 ∈ R (called the multiplicative identity) such that
1 · a = a · 1 = a for all a ∈ R.

3. (Distributive laws:)

(a) a · (b+ c) = a · b+ a · c and

(b) (a+ b) · c = a · c+ b · c

for all a, b, c ∈ R.

Example 7.2.1. The following sets, equipped with the usual operations of addition
and multiplication, are rings:

1. Z, Q, R, C.

2. Z[x], Q[x], R[x], C[x] (Polynomials with integer, rational, real, complex
coefficients, respectively.)

3. Q[
√

2] = {
∑n

k=0 ak(
√

2)k : ak ∈ Q, n ∈ N} = {a+ b
√

2 : a, b ∈ Q}.

4. For a fixed n, the set of n× n matrices with integer coefficients.

5. C[a, b] = {f : [a, b]→ R : f is continuous.}

6. (N,+, ·) is not a ring because (N,+) is not a group.

Remark. • For convenience’s sake, we often write ab for a · b.

• In the definition, commutativity is required of addition, but not of multipli-
cation.

• Every element has an additive inverse, but not necessarily a multiplicative
inverse. That is, there may be an element a ∈ R such that ab 6= 1 for all
b ∈ R.

Proposition 7.2.2. In a ring R, there is a unique additive identity and a unique
multiplicative identity.
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Proof. We already know that the additive identity is unique.
Suppose there is an element 1′ ∈ R such that 1′r = r or all r ∈ R, then in

particular 1′1 = 1. But 1′1 = 1′ since 1 is a multiplicative identity element, so
1′ = 1.

Proposition 7.2.3. For any r in a ring R, its additive inverse −r is unique. That
is, if r + r′ = r + r′′ = 0, then r′ = r′′.

If r has a multiplicative inverse, then it is also unique. That is, if rr′ = 1 = r′r
and rr′′ = 1 = r′′r, then r′ = r′′.

Proposition 7.2.4. For all elements r in a ring R, we have 0r = r0 = 0.

Proof. By distributive laws,

0r = (0 + 0)r = 0r + 0r

Adding −0r (additive inverse of 0r) to both sides, we have:

0 = (0r + 0r) + (−0r) = 0r + (0r + (−0r)) = 0r + 0 = 0r.

The proof of r0 = 0 is similar and we leave it as an exercise.

Proposition 7.2.5. For all elements r in a ring, we have (−1)(−r) = (−r)(−1) =
r.

Proof. We have:

0 = 0(−r) = (1 + (−1))(−r) = −r + (−1)(−r).
Adding r to both sides, we obtain

r = r + (−r + (−1)(−r)) = (r +−r) + (−1)(−r) = (−1)(−r).
We leave it as an exercise to show that (−r)(−1) = r.

Proposition 7.2.6. For all r in a ring R, we have: (−1)r = r(−1) = −r
Proof. Exercise
Proposition 7.2.7. If R is a ring in which 1 = 0, then R = {0}. That is, it has
only one element.

We call such an R the zero ring.

Proof. Exercise.

Definition. A ring R is said to be commutative if ab = ba for all ab ∈ R.
Example 7.2.8. • Z, Q, R, C are all commutative rings, so are Z[x], Q[x],

R[x], C[x].

• For a fixed natural number n > 1, the ring of n × n matrices with integer
coefficients, under the usual operations of addition and multiplication, is not
commutative.
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Modulo m arithmetic
Example 7.2.9. Let m be a positive integer. Consider the set

Zm = {0, 1, 2, . . . ,m− 1}.

For any integer n ∈ Z, we denote by n the remainder of the division of of n by
m: n = mq + r.

On the other hand, two integers a, b ∈ Z are said to be congruent modulo m,
denoted as a ≡ b mod m, if m | (a − b). This defines an equivalence relation
on Z, and Zm can be regarded as parametrizing the equivalence classes, namely,
every a ∈ Z is congruent modulo m to exactly one element in Zm.

Remark. Congruence modulo m is exactly the same as the relation defined by
the subgroup mZ < Z, so the above partition is the same as that given by cosets
of mZ in Z.

We equip Zm with addition +m and multiplication ·m defined as follows: For
a, b ∈ Zm, let:

a+m b = a+ b,

a ·m b = a · b,

where the addition and multiplication on the right are the usual addition and mul-
tiplication for integers.

Proposition 7.2.10. With addition and multiplication thus defined, Zm is a com-
mutative ring.

Proof. 1. We already know that (Zm,+m) is an abelian group.

2. Note that If a ≡ a′ mod m and b ≡ b′ mod m, then ab ≡ a′b′ mod m.
So for r1, r2 ∈ Zm, we have

r1r2 ≡ r1r2 ≡ r1 · r2 ≡ r1 · r2 mod m.

For a, b, c ∈ Zm, we have:

a ·m (b ·m c) = a ·m bc = a · bc = a(bc),

which by the associativity of multiplication for integers is equal to:

(ab)c = ab · c = ab ·m c = (a ·m b) ·m c.

So, ·m is associative.
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3. Exercise: We can take 1 to be the multiplicative identity.

4. For a, b ∈ Zm, a ·m b = a · b = b · a = b ·m a. So ·m is commutative.

5. Lastly, we need to prove distributivity. For a, b, c ∈ Zm, we have:

a·m(b+mc) = a · b+ c = a · (b+ c) = ab+ ac = ab+ ac = a·mb+ma·mc.

It now follows from the distributivity from the left, proven above, and the
commutativity for ·m, that distributivity from the right also holds:

(a+m b) ·m c = a ·m c+ b ·m c.

31



Week 8

Rings of polynomials
Definition. Let R be a nonzero commutative ring.

A polynomial with coefficients in R (in one-variable) is a formal sum

f(x) =
∞∑
i=0

aix
i

with ai ∈ R such that ai = 0 for all but finitely many i’s.
If ai 6= 0 for some i, then the largest such i is called the degree of f(x),

denoted by deg f(x).
We denote by R[x] the set of all polynomials with coefficients in R.
Given

f(x) =
∞∑
i=0

aix
i, g(x) =

∞∑
i=0

bix
i ∈ R[x],

we define the addition and multiplication as follows (as usual):

f(x) + g(x) :=
∞∑
i=0

(ai + bi)x
i,

f(x)g(x) :=
∞∑
i=0

(
i∑

k=0

akbi−k

)
xi.

Proposition 8.0.1. With addition and multiplication thus defined, R[x] is a com-
mutative ring.

Proof. Exercise.

Remark. A polynomial f(x) defines a function f : R → R by a 7→ f(a). But
f(x) may not be determined by f : R→ R. For example, the polynomials

f(x) = 1 + x+ x2, g(x) = 1 ∈ Z2[x]

define the same (constant) function from Z2 to itself.
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Integral domains and fields
Definition. A nonzero commutative ring R is called an integral domain if the
product of two nonzero elements is always nonzero.

Definition. A nonzero element r in a ring R is called a zero divisor if there exists
nonzero s ∈ R such that rs = 0.

So a nonzero commutative ring R is an integral domain if and only if it has no
zero divisors.

Example 8.0.2. 1. Z,Q,R,C are all integral domains, so are Z[x],Q[x],R[x],
C[x]. (More generally, if R is an integral domain, so is R[x].)

2. Since 2, 3 6≡ 0 mod 6, and 2 · 3 = 6 ≡ 0 mod 6, the ring Z6 is not an
integral domain.

3. Consider R = C[−1, 1], the ring of all continuous functions on [−1, 1],
equipped with the usual operations of addition and multiplication for func-
tions. Let:

f =

{
−x, x ≤ 0,

0, x > 0.
, g =

{
0, x ≤ 0,

x, x > 0.

Then f and g are nonzero elements ofR, but fg = 0. SoR is not an integral
domain.

Proposition 8.0.3. A commutative ring R is an integral domain if and only if the
cancellation law holds for multiplication, i.e. whenever ca = cb and c 6= 0, we
have a = b.

Proof. Suppose R is an integral domain. If ca = cb, then by distributive laws,
c(a− b) = c(a+−b) = 0. Since R is an integral domain, we have either c = 0 or
a− b = 0. So, if c 6= 0, we must have a = b.

Conversely, suppose cancellation law holds. Suppose there are nonzero a, b ∈
R such that ab = 0. By a previous result we know that 0 = a0. So, ab = a0,
which by the cancellation law implies that b = 0, a contradiction.

Definition. Let R be a ring. We say that an element a ∈ R is a unit if it has a
multiplicative inverse, i.e. there is an element a−1 ∈ R such that aa−1 = a−1a =
1.

Example 8.0.4. The only units of Z are ±1.

Example 8.0.5. Let R be the ring of all real valued functions on R. Then, any
function f ∈ R satisfying f(x) 6= 0, ∀x, is a unit.
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Example 8.0.6. Let R be the ring of all continuous real valued functions on R,
then f ∈ R is a unit if and only if it is either strictly positive or strictly negative.

Proposition 8.0.7. The only units of Q[x] are nonzero constants.

Proof. Given any f ∈ Q[x] such that deg f > 0, for all nonzero g ∈ Q[x] we
have

deg fg ≥ deg f > 0 = deg 1;

hence, fg 6= 1. If g = 0, then fg = 0 6= 1. So, f has no multiplicative inverse.
If f is a nonzero constant, then f−1 = 1

f
is a constant polynomial in Q[x], and

f
(

1
f

)
=
(

1
f

)
f = 1. So, f is a unit.

Finally, if f = 0, then fg = 0 6= 1 for all g ∈ Q[x], so the zero polynomial
has no multiplicative inverse.

Definition. A field is a commutative ring, with 1 6= 0, in which every nonzero
element is a unit.

In other words, a nonzero commutative ring F is a field if and only if every
nonzero element r ∈ F has a multiplicative inverse r−1, i.e. rr−1 = r−1r = 1.

Example 8.0.8. 1. Q, R, C are fields, but Z is not a field.

2. The polynomial rings Q[x], R[x], C[x] are not fields.

Note that if every nonzero element of a commutative ring has a multiplicative
inverse, then that ring is an integral domain:

ca = cb =⇒ c−1ca = c−1cb =⇒ a = b.

So we conclude that

Proposition 8.0.9. A field is an integral domain.

Proposition 8.0.10. Let k ∈ Zm \ {0}.

• If gcd(k,m) > 1, then k is a zero divisor.

• If gcd(k,m) = 1, then k is a unit.

Proof. Let d := gcd(k,m).
If d > 1, then m/d is a nonzero element in Zm, and we have k ·m (m/d) =

(k/d) ·m = 0 in Zm. So k is a zero divisor.
If d = 1, then there exist a, b ∈ Z such that ak + bm = 1. But this means we

have ak = 1 in Zm. So k is a unit.
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Hence, the set of zero divisors in Zm is precisely given by

{k ∈ Zm \ {0} : gcd(k,m) > 1}

and the set of units in Zm is precisely given by

Z×m := {k ∈ Zm \ {0} : gcd(k,m) = 1}.

In particular, we have the following

Corollary 8.0.11. Zm is a field if and only if m is prime.

Notation. For p prime, we often denote the field Zp by Fp.

Proposition 8.0.12. Equipped with the usual operations of addition and multipli-
cations for real numbers, F = Q[

√
2] := {a+ b

√
2|a, b ∈ Q} is a field.

Proof. Observe that: (a+ b
√

2) + (c+d
√

2) = (a+ c) + (b+d)
√

2 lies in F , and
(a+ b

√
2)(c+ d

√
2) = (ac+ 2bd) + (ad+ bc)

√
2 ∈ F . Hence, addition and mul-

tiplication for real numbers are well-defined operations on F . As operations on
R, they are commutative, associative, and satisfy the distributive laws; therefore,
as F is a subset of R, they also satisfy these properties as operations on F .

It is clear that 0 and 1 are the additive and multiplicative identities of F . Given
a + b

√
2 ∈ F , where a, b ∈ Q, it is clear that its additive inverse −a − b

√
2 also

lies in F . Hence, F is a commutative ring.
To show that F is a field, for every nonzero a+ b

√
2 in F , we need to find its

multiplicative inverse. As an element of the field R, the multiplicative inverse of
a+ b

√
2 is:

(a+ b
√

2)−1 =
1

a+ b
√

2
.

It remains to show that this number lies in F . Observe that:

(a+ b
√

2)(a− b
√

2) = a2 − 2b2.

We claim that a2 − 2b2 6= 0. Suppose a2 − 2b2 = 0, then either (i) a = b = 0, or
(ii) b 6= 0,

√
2 = |a/b|. Since we have assumed that a + b

√
2 is nonzero, case (i)

cannot hold. But case (ii) also cannot hold because
√

2 is know to be irrational.
Hence a2 − 2b2 6= 0, and:

1

a+ b
√

2
=

a

a2 − 2b2
− b

a2 − 2b2

√
2,

which lies in F .

Proposition 8.0.13. All finite integral domains are fields.
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Proof. Let R be an integral domain with n elements, where n is finite. Write
R = {a1, a2, . . . , an}. We want to show that for any nonzero element a 6= 0 in R,
there exists i, 1 ≤ i ≤ n, such that ai is the multiplicative inverse of a. Consider
the set S = {aa1, aa2, . . . , aan}. Since R is an integral domain, the cancellation
law holds. In particular, since a 6= 0, we have aai = aaj if and only if i = j.
The set S is therefore a subset of R with n distinct elements, which implies that
S = R. In particular, 1 = aai for some i. This ai is the multiplicative inverse of
a.

Field of Fractions (optional)
An integral domain fails to be a field precisely when there is a nonzero element
with no multiplicative inverse. The ring Z is such an example, for 2 ∈ Z has no
multiplicative inverse. But any nonzero n ∈ Z has a multiplicative inverse 1

n
inQ,

which is a field. So, a question one could ask is, can we “enlarge” a given integral
domain to a field, by formally adding multiplicative inverses to the ring?

An Equivalence Relation

Given an integral domain R (commutative, with 1 6= 0). We consider the set:
R × R6=0 := {(a, b) : a, b ∈ R, b 6= 0}. We define a relation ≡ on R × R6=0 as
follows:

(a, b) ≡ (c, d) if ad = bc.

Lemma 8.0.14. The relation ≡ is an equivalence relation.

In other words, the relation ≡ is:

Reflexive: (a, b) ≡ (a, b) for all (a, b) ∈ R×R

Symmetric: If (a, b) ≡ (c, d), then (c, d) ≡ (a, b).

Transitive: If (a, b) ≡ (c, d) and (c, d) ≡ (e, f), then (a, b) ≡ (e, f).

Proof. Exercise.

In general, given an equivalence relation ∼ on a set S, the equivalent class of
an element a ∈ S is the set of all elements in s ∈ S which are equivalent to a (i.e.
s ∼ a).

Notation: For notational convenience, to describe an equivalence class we
may pick any element s (called a representative) belonging to the class, and label
the class as [s]. Note that if s ∼ t, then [s] = [t].
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Due to the properties (reflexive, symmetric, transitive), of an equivalence re-
lation, the equivalent classes form a partition of S. Namely, equivalent classes of
non-equivalent elements are disjoint:

[s] ∩ [t] = ∅

if s 6∼ t; and the union of all equivalent classes is equal to S:⋃
s∈S

[s] = S.

Definition. Given an equivalence relation ∼ on a set S, the quotient set S/ ∼ is
the set of all equivalence classes of S, with respect to ∼.

We now return to our specific situation of R × R6=0, with ≡ defined as above.
We define addition + and multiplication · on R×R6=0 as follows:

(a, b) + (c, d) := (ad+ bc, bd)

(a, b) · (c, d) := (ac, bd)

Proposition 8.0.15. Suppose (a, b) ≡ (a′, b′) and (c, d) ≡ (c′, d′), then:

1. (a, b) + (c, d) ≡ (a′, b′) + (c′, d′).

2. (a, b) · (c, d) ≡ (a′, b′) · (c′, d′).

Proof. By definition, (a, b) + (c, d) = (ad + bc, bd), and (a′, b′) + (c′, d′) =
(a′d′ + b′c′, b′d′). Since by assumption ab′ = a′b and cd′ = c′d, we have:

(ad+ bc)b′d′ = adb′d′ + bcb′d′ = a′bdd′ + c′dbb′ = (a′d′ + b′c′)bd;

hence, (a, b) + (c, d) ≡ (a′, b′) + (c′, d′).
For multiplication, by definition we have (a, b) · (c, d) = (ac, bd) and (a′, b′) ·

(c′, d′) = (a′c′, b′d′). Since

acb′d′ = ab′cd′ = a′bc′d = a′c′bd,

we have (a, b) · (c, d) ≡ (a′, b′) · (c′, d′).

Let:
Frac(R) := (R×R6=0)/ ≡,

and define + and · on Frac(R) as follows:

[(a, b)] + [(c, d)] = [(ad+ bc, bd)]

[(a, b)] · [(c, d)] = [(ac, bd)]
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Corollary 8.0.16. + and · thus defined are well-defined binary operations on
Frac(R).

Namely, we get the same output in Frac(R) regardless of the choice of repre-
sentatives of the equivalence classes.

Proposition 8.0.17. The set Frac(R), equipped with + and · defined as above,
forms a field, with additive identity 0 = [(0, 1)] and multiplicative identity 1 =
[(1, 1)]. The multiplicative inverse of a nonzero element [(a, b)] ∈ Frac(R) is
[(b, a)].

Proof. Exercise.

Definition. Frac(R) is called the Fraction Field of R.

Remark. Note that Frac(Z) = Q, if we identify a/b ∈ Q, a, b ∈ Z, with [(a, b)] ∈
Frac(Z).
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Week 9

9.1 Homomorphisms
Definition. LetR andR′ be rings. A ring homomorphism fromR toR′ is a map
φ : R→ R′ with the following properties:

1. φ(1R) = 1R′;

2. φ(a+ b) = φ(a) + φ(b), for all a, b ∈ R;

3. φ(a · b) = φ(a) · φ(b), for all a, b ∈ R.

Note that if φ : R→ R′ is a homomorphism, then:

•
φ(0) = φ(0 + 0) = φ(0) + φ(0),

which implies that φ(0) = 0.

• For all a ∈ R, 0 = φ(0) = φ(−a+ a) = φ(−a) + φ(a), which implies that
φ(−a) = −φ(a).

• If u is a unit in R, then 1 = φ(u ·u−1) = φ(u)φ(u−1), and 1 = φ(u−1 ·u) =
φ(u−1)φ(u); which implies that φ(u) is a unit, with φ(u)−1 = φ(u−1).

Example 9.1.1. The map φ : Z → Q defined by φ(n) = n is a homomorphism,
since:

1. φ(1) = 1,

2. φ(n+Z m) = n+Q m.

3. φ(n ·Z m) = n ·Q m.
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Example 9.1.2. Fix an integer m which is larger than 1. For n ∈ Z, let n denote
the remainder of the division of n by m. That is:

n = mq + n̄, 0 ≤ n̄ < m

Recall that Zm = {0, 1, 2, . . . ,m} is a ring, with s+ t = s+Z t and s · t = s ·Z t,
for all s, t ∈ Zm.

Define a map φ : Z→ Zm as follows:

φ(n) = n, ∀n ∈ Z.

Then, φ is a homomorphism.

Proof.

1. φ(1) = 1 = 1,

2. φ(s+ t) = s+Z t = s+Z t = s+ t = φ(s) + φ(t).

3. φ(st) = s ·Z t = s ·Z t = s · t = φ(s)φ(t).

Example 9.1.3. For any ring R, define a map φ : Z→ R as follows:

φ(0) = 0;

For n ∈ N,
φ(n) = n · 1R := 1R + 1R + · · ·+ 1R︸ ︷︷ ︸

n times

;

φ(−n) = −n · 1R := n · (−1R) = (−1R) + (−1R) + · · ·+ (−1R)︸ ︷︷ ︸
n times

.

The map φ is a homomorphism.

Proof. Exercise.

Remark. In fact this is the only homomorphism from Z to R since we need to
have φ(1) = 1R and this implies that

φ(n) = n · φ(1) = n · 1R.

Example 9.1.4. Let R be a commutative ring. For each element r ∈ R, we may
define a map φr : R[x]→ R as follows:

φr

(
n∑
k=0

akx
k

)
=

n∑
k=0

akr
k

The map φr is a ring homomorphism.
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Proof. Shown in class.

Definition. If a ring homomorphism φ : R → R′ is a bijective map, we say that
φ is an isomorphism, and that R and R′ are isomorphic as rings.

Notation. If R and R′ are isomorphic, we write R ∼= R′.

Proposition 9.1.5. If φ : R → R′ is an isomorphism, then φ−1 : R′ → R is an
isomorphism.

Proof. Since φ is bijective, φ−1 is clearly bijective. It remains to show that φ−1 is
a homomorphism:

1. Since φ(1R) = 1R′ , we have φ−1(1R′) = φ−1(φ(1R)) = 1R.

2. For all b1, b2 ∈ R′, we have

φ−1(b1 + b2) = φ−1(φ(φ−1(b1)) + φ(φ−1(b2)))

= φ−1(φ(φ−1(b1) + φ−1(b2))) = φ−1(b1) + φ−1(b2)

3. For all b1, b2 ∈ R′, we have

φ−1(b1 · b2) = φ−1(φ(φ−1(b1)) · φ(φ−1(b2)))

= φ−1(φ(φ−1(b1) · φ−1(b2))) = φ−1(b1) · φ−1(b2)

This shows that φ−1 is a bijective homomorphism.

The key point here is that an isomorphism is more than simply a bijective
map, for it must preserve algebraic structure. For example, there is a bijective
map f : Z→ Q since both are countable, but they cannot be isomorphic as rings:
Suppose φ : Z → Q is an isomorphism. Then we must have φ(n) = nφ(1) = n
for any n ∈ Z. So φ cannot be surjective.

Theorem 9.1.6. If F is a field, then Frac(F ) ∼= F .

Proof. Define a map φ : F → Frac(F ) as follows:

φ(s) = [(s, 1)], ∀s ∈ F.

Exercise:

1. Show that φ is a homomorphism.

2. Show that φ is bijective.
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Let R be a commutative ring, let R[x, y] denote the ring of polynomials in x, y
with coefficients in R:

R[x, y] =

{
m∑
i=0

n∑
j=0

aijx
iyj : m,n ∈ Z≥0, aij ∈ R

}
Proposition 9.1.7. R[x, y] is isomorphic to R[x][y].

(Here, R[x][y] is the ring of polynomials in y with coefficients in the ring
R[x].)

Proof. We define a map φ : R[x, y]→ R[x][y] as follows:

φ

(
m∑
i=0

n∑
j=0

aijx
iyj

)
=

n∑
j=0

(
m∑
i=0

aijx
i

)
yj

Exercise: Show that φ is a homomorphism.
It remains to show that φ is one-to-one and onto.
For f =

∑m
i=0

∑n
j=0 aijx

iyj ∈ kerφ, we have:

φ(f) =
n∑
j=0

(
m∑
i=0

aijx
i

)
yj = 0R[x][y] =

∑
j=0

0R[x] · yj,

which implies that, for 0 ≤ j ≤ n, we have:
m∑
i=0

aijx
i = 0R[x], 0 ≤ i ≤ m.

Hence,
aij = 0R, for 0 ≤ i ≤ m, 0 ≤ j ≤ n,

which implies that kerφ = {0}. Hence, φ is one-to-one.
Given g =

∑n
j=0 pjy

j ∈ R[x][y], where pj ∈ R[x]. We want to find f ∈
R[x, y] such that φ(f) = g. Let m be the maximum degree of the pj’s. We may
write:

g =
n∑
j=0

(
m∑
i=0

ajix
i

)
yj,

where aji is the coefficient of xi in pj , with aji = 0 if i > deg pj . It is clear that:

φ

(
m∑
i=0

n∑
j=0

ajix
iyj

)
= g.

Hence, φ is onto.
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9.1.1 Subrings
Definition. Let R be a ring. A subset S of R is said to be a subring of R if it
is a ring under the addition +R and multiplication ×R associated with R, and its
additive and multiplicative identity elements 0, 1 are those of R.

To show that a subset S of a ring R is a subring, it suffices to show that:

• S contains the multiplicative identity of R.

• a− b ∈ S for any a, b ∈ S.

• S is closed under multiplication, i.e. a · b ∈ S for all a, b ∈ S.

Definition. The kernel of a ring homomorphism φ : R→ R′ is the set:

kerφ := {a ∈ R : φ(a) = 0}

The image of φ is the set:

imφ := {b ∈ R′ : b = φ(a) for some a ∈ R}.

Proposition 9.1.8. Let φ : R→ R′ be a ring homomorphism.

1. If S is a subring of R, then φ(S) is a subring of R′.

2. If S ′ is a subring of R′, then φ−1(S ′) is a subring of R.

Proof. Let us prove 1. and leave 2. as an exercise. So let S be a subring of R.

• Since 1 ∈ S, we have φ(1) = 1 ∈ φ(S).

• φ(a)− φ(b) = φ(a− b) ∈ φ(S) for any a, b ∈ S.

• φ(a) · φ(b) = φ(a · b) ∈ φ(S) for any a, b ∈ S.

We conclude that φ(S) is a subring of R′.

Corollary 9.1.9. For a ring homomorphism φ : R→ R′, imφ is a subring of R′.

Remark. Note that kerφ is not a subring unless R′ is the zero ring.

Proposition 9.1.10. A ring homomorphism φ : R → R′ is one-to-one if and only
if kerφ = {0}.

Proof. Suppose φ is one-to-one. For any a ∈ kerφ, we have φ(0) = φ(a) = 0,
which implies that a = 0 since φ is one-to-one. Hence, kerφ = {0}.

Suppose kerφ = {0}. If φ(a) = φ(a′), then 0 = φ(a) − φ(a′) = φ(a − a′),
which implies that a − a′ ∈ kerφ = {0}. So, a − a′ = 0, which implies that
a = a′. Hence, φ is one-to-one.
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Proposition 9.1.11. A subring of a field is an integral domain.

Proof. Let F be a field and S ⊂ F be a subring. Suppose we have a, b ∈ S
with a 6= 0 such that ab = 0. We need to show that b = 0. Since F is a field,
a 6= 0 implies that it is a unit, i.e. it has a multiplicative inverse a−1. So we have
0 = a−1(ab) = b.

For example, any subring of C is an integral domain. This produces a lot of
interesting examples which are important in number theory. For instance, the ring
of Gaussian integers:

Z[i] := {a+ bi : a, b ∈ Z} ⊂ C

is an integral domain. More generally, for any ξ ∈ C, the subset

Z[ξ] = {f(ξ) : f(x) ∈ Z[x]} ⊂ C

is an integral domain.
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Week 10

10.1 Ideals
Definition. An ideal I in a commutative ring R is a subset of R which satisfies
the following properties:

1. 0 ∈ I;

2. If a, b ∈ I , then a+ b ∈ I .

3. For all a ∈ I , we have ar ∈ I for all r ∈ R.

If an ideal I is a proper subset of R, we say it is a proper ideal.
Remark. Note that if an ideal I contains 1, then r = 1 ·r ∈ I for all r ∈ R, which
implies that I = R.

Example 10.1.1. For any commutative ringR, the set {0} is an ideal, since 0+0 =
0, and 0 · r = 0 for all r ∈ R.

R itself is also an ideal.
An ideal I ( R is called proper and an ideal {0} ( I ⊂ R is called nontriv-

ial.
Example 10.1.2. For all m ∈ Z, the set I = mZ := {mn : n ∈ Z} is an ideal:

1. 0 = m · 0 ∈ I;

2. mn1 +mn2 = m(n1 + n2) ∈ I .

3. Given mn ∈ I , for all l ∈ Z, we have mn · l = m · nl ∈ I .

Example 10.1.3. Generalizing the above example, consider a commutative ring
R. Let a ∈ R. Then

(a) := {ra : r ∈ R}

is an ideal, called the principal ideal generated by a.
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Proof. 1. 0 = 0a ∈ (a);

2. Given r1a, r2a ∈ (a), we have r1a+ r2a = (r1 + r2)a ∈ (a).

3. For all ra ∈ (a) and a ∈ R, we have s(ra) = (sr)a ∈ (a).

More generally, given any nonempty subset A ⊂ R, the set of finite linear
combinations of elements in A:

(A) := {r1a1 + r2a2 + · · ·+ rkak : k ∈ Z>0, ri ∈ R, ai ∈ A}

is an ideal in R, called the ideal generated by A.

Proposition 10.1.4. If φ : R→ R′ is a ring homomorphism, then kerφ is an ideal
of R.

Proof. 1. Since φ is a homomorphism, we have φ(0) = 0. Hence, 0 ∈ kerφ.

2. If a, b ∈ kerφ, then φ(a + b) = φ(a) + φ(b) = 0 + 0 = 0. Hence,
a+ b ∈ kerφ.

3. Given any a ∈ kerφ, for all r ∈ R we have φ(ar) = φ(a)φ(r) = 0 · φ(r) =
0. Hence, ar ∈ kerφ for all r ∈ R.

Example 10.1.5. Recall the homomorphism φ : Z → Zm defined by φ(n) = n.
The kernel of φ is:

kerφ = mZ = (m).

Proposition 10.1.6. A nonzero commutative ring R is a field if and only if its only
ideals are {0} and R.

Proof. Suppose a nonzero commutative ring R is a field. If an ideal I of R is
nonzero, it contains at least one nonzero element a of R. Since R is a field, a
has a multiplicative inverse a−1 is R. Since I is a ideal, and a ∈ I , we have
1 = a−1a ∈ I . So, I is an ideal which contains 1, hence it must be the whole field
R.

Conversely, let R be a nonzero commutative ring whose only ideals are {0}
and R. Given any nonzero element a ∈ R, the principal ideal (a) generated by
a is nonzero because it contains a 6= 0. Hence, by hypothesis the ideal (a) is
necessarily the whole ring R. In particular, the element 1 lies in (a), which means
that there is an r ∈ R such that ar = 1. This shows that any nonzero element of
R is a unit. Hence, R is a field.
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Proposition 10.1.7. Let F be a field, and R a nonzero ring. Any ring homomor-
phism φ : F → R is necessarily one-to-one.

Proof. Since R is not a zero ring, it contains 1 6= 0. So, φ(1) = 1 6= 0, which
implies that kerφ is a proper ideal of F . Since F is a field, we must have kerφ =
{0}. It now follows from a previous claim that φ is one-to-one.

10.2 Quotient Rings
Let R be a commutative ring. Let I be an ideal of R. Then in particular I is an
additive subgroup of (R,+). Let R/I denote the set of all cosets of I in (R,+),
namely, the set of elements of the form

r = r + I = {r + a : a ∈ I}, r ∈ R.

Terminology: We sometimes call r the residue of r in R/I .
Note that r̄ = 0̄ if and only if r ∈ I; more generally, r̄ = r̄′ if and only if

r − r′ ∈ I .
Remark. Recall that R/I is nothing but the set of equivalence classes of the
following relation on R:

a ∼ b, if b− a ∈ I.
Notation/Terminology: If a ∼ b, we say that a is congruent modulo I to b, and
write:

a ≡ b mod I.

It is tempting to define addition and multiplication on R/I using those opera-
tions on R:

r + r′ = r + r′,

r · r′ = rr′,

for any r, r′ ∈ R/I .
Observe that: for all r, r′ ∈ R, and a, a′ ∈ I , we have

(r + a) + (r′ + a′) = (r + r′) + (a+ a′) ∈ (r + r′) + I = r + r′,

which implies (r + a) + (r′ + a′) = r + r′. So addition + is indeed well-defined
on R/I . Note that this only used the fact that I is an additive subgroup of (R,+).

On the other hand, we have the following

Theorem 10.2.1. Given any additive subgroup I < (R,+). The multiplication

r · r′ = rr′

is well-defined on R/I if and only if I is an ideal in R.
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Proof. Suppose that I is an ideal. Then for any r, r′ ∈ R, and a, a′ ∈ I , we have

(r + a) · (r′ + a′) = rr′ + ra′ + r′a+ aa′ ∈ rr′ + I = rr′.

Hence the multiplication is well-defined.
Conversely, suppose the multiplication is well-defined, meaning that for any

r, r′ ∈ R and a, a′ ∈ I , we have (r + a′)(r′ + a) = rr′. In particular, we have
ra = (r + 0)(0 + a) = r0 = I which implies ra ∈ I for any r ∈ R and a ∈ I .
So I is an ideal.

Proposition 10.2.2. The setR/I , equipped with the addition + and multiplication
· defined above, is a commutative ring.

Proof. We note here only that the additive identity element of R/I is 0 = 0 + I ,
the multiplicative identity element of R/I is 1 = 1 + I , and that −r = −r for all
r ∈ R.

We leave the rest of the proof (additive and multiplicative associativity, com-
mutativity, distributive laws) as an Exercise.

Proposition 10.2.3. The map π : R→ R/I , defined by

π(r) = r, ∀r ∈ R.

is a surjective ring homomorphism with kernel kerπ = I .

Proof. Exercise.

Theorem 10.2.4 (First Isomorphism Theorem). Let φ : R −→ R′ be a ring
homomorphism. Then:

R/ kerφ ∼= imφ,

(i.e. R/ kerφ is isomorphic to imφ.)

Proof. We define a map φ : R/ kerφ −→ imφ as follows:

φ(r) = φ(r), ∀ r ∈ R,

where r is the residue of r in R/ kerφ.
We first need to check that φ is well-defined. Suppose r = r′, then r′ − r ∈

kerφ. We have:

φ(r′)− φ(r) = φ(r′)− φ(r) = φ(r′ − r) = 0.

Hence, φ(r′) = φ(r). So, φ(r) is defined regardless of the choice of representative
for the equivalence class r.

Next, we show that φ is a homomorphism:
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• φ(1) = φ(1) = 1;

• φ(a+ b) = φ(a+ b) = φ(a+ b) = φ(a) + φ(b) = φ(a) + φ(b);

• φ(a · b) = φ(ab) = φ(ab) = φ(a)φ(b) = φ(a)φ(b).

Finally, we show that φ is a bijection, i.e. one-to-one and onto.
For any r′ ∈ imφ, there exists r ∈ R such that φ(r) = r′. Since φ(r) =

φ(r) = r′, φ is onto.
Let r be an element in R such that φ(r) = φ(r) = 0. We have r ∈ kerφ,

which implies that r = 0 in R/ kerφ. Hence, kerφ = {0}, and it follows that φ is
one-to-one.

Corollary 10.2.5. If a ring homomorphism φ : R −→ R′ is surjective, then:

R′ ∼= R/ kerφ

Example 10.2.6. Let m be a natural number. The remainder or mod m map
φ : Z −→ Zm defined by:

φ(n) = n, ∀n ∈ Z,

where n is the remainder of the division of n by m, is a surjective homomorphism
such that kerφ = (m) = mZ. So, it follows from the First Isomorphism Theorem
that:

Zm ∼= Z/mZ.

Example 10.2.7. The ring Z[i]/(1 + 3i) is isomorphic to Z/10Z.

Proof. Define a map φ : Z −→ Z[i]/(1 + 3i) as follows:

φ(n) = n, ∀n ∈ Z,

where n is the equivalence class of n ∈ Z[i] modulo (1 + 3i).
It is clear that φ is a homomorphism (Exercise).
Observe that in Z[i], we have:

1 + 3i ≡ 0 mod (1 + 3i),

which implies that:
i ≡ 3 mod (1 + 3i).

Hence, for all a, b ∈ Z,

a+ bi = a+ 3b = φ(a+ 3b)
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in Z[i]/(1 + 3i). Hence, φ is surjective.
Suppose n is an element of Z such that φ(n) = n = 0. Then, by the definition

of the quotient ring we have:
n ∈ (1 + 3i).

This means that there exist a, b ∈ Z such that:

n = (a+ bi)(1 + 3i) = (a− 3b) + (3a+ b)i,

which implies that 3a+ b = 0, or equivalently, b = −3a. Hence:

n = a− 3b = a− 3(−3a) = 10a,

which implies that kerφ ⊆ 10Z. Conversely, for all m ∈ Z, we have:

φ(10m) = 10m = (1 + 3i)(1− 3i)m = 0

in Z[i]/(1 + 3i). This shows that 10Z ⊆ kerφ. Hence, kerφ = 10Z.
It now follows from the First Isomorphism Theorem that:

Z/10Z ∼= Z[i]/(1 + 3i).

Example 10.2.8. The rings R[x]/(x2 + 1) and C are isomorphic.

Proof. Define a map φ : R[x] −→ C as follows:

φ(
n∑
k=0

akx
k) =

n∑
k=0

aki
k.

Exercise: φ is a homomorphism.
For all a+ bi (a, b ∈ R) in C, we have:

φ(a+ bx) = a+ bi.

Hence, φ is surjective.
It remains to compute kerφ = {f(x) =

∑n
k=0 akx

k : f(i) = 0}. Note that
f(x) is a real polynomial, so f(i) = 0 also implies that f(−i) = 0. Hence
both ±i are roots of f(x) if it lies in kerφ. Factor Theorem then tells us that
(x2 + 1) = (x− i)(x + i) | f(x). So kerφ ⊂ (x2 + 1). On the other hand, i is a
root of x2 + 1, so we have (x2 + 1) ⊂ kerφ. We conclude that kerφ = (x2 + 1).

It now follows from the First Isomorphism Theorem that R[x]/(x2 + 1) ∼= C.
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Week 11

11.1 Polynomial ring as a PID
Recall that an ideal (a) = {ar : r ∈ R} generated by one element a ∈ R is called
a principal ideal. Note that R = (1) and {0} = (0) are both principal ideals.

Definition. If R is an integral domain in which every ideal is principal, we say
that R is a Principal Ideal Domain (abbrev. PID).

Any field is a PID because a field F contains only two ideals (0) = {0} and
(1) = F .

The first nontrivial example of a PID is given by Z: Since every ideal I in Z is
in particular an additive subgroup, the classification of subgroups of cyclic groups
tells us that I can only be of the form (m) = mZ. So any ideal is principal.

Next we claim that for any field F , the ring of polynomials F [x] is also a PID.
To prove this we first establish the following:

Proposition 11.1.1. Let R be a commutative ring. For all d, f ∈ R[x], such that
the leading coefficient of d is a unit in R, there exist q, r ∈ R[x] such that:

f = qd+ r,

with deg r < deg d.

Proof. We prove by induction: The base case corresponds to the case where
deg f < deg d; and the inductive step corresponds to showing that, for any fixed
d, the claim holds for f if it holds for all f ′ with deg f ′ > deg f .

Base case: If deg f < deg d, we take r = f . Then, indeed f = 0 · d+ r, with
deg r < deg d.

Inductive step: Let d =
∑n

i=0 aix
i ∈ R[x] be fixed, where an is a unit in R.

For any given f =
∑m

i=0 bix
i ∈ R[x], m ≥ n, suppose the claim holds for all f ′

with deg f ′ < deg f . Let:

f ′ = f − a−1n bmx
m−nd.
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Then, deg f ′ < deg f , hence by hypothesis there exist q′, r′ ∈ R[x], with deg r′ <
deg d, such that:

f − a−1n bmx
m−nd = f ′ = q′d+ r′,

which implies that:
f = (q′ + a−1n bmx

m−n)d+ r′.

So, f = qd+ r′, where q = q′ + a−1n bmx
m−n ∈ R[x], and deg r′ < deg d.

Theorem 11.1.2. Let F be a field. Then, F [x] is a PID.

Proof. Since F is a field, the previous claim holds for all d, f ∈ F [x] such that
d 6= 0.

Let I be an ideal of F [x]. Let d be a nonzero polynomial in I with the least
leading degree. Such a d exists because the leading degree of a polynomial is a
nonnegative integer. Since I is an ideal, we have (d) ⊆ I . It remains to show that
I ⊆ (d).

For all f ∈ I , by the division theorem we have:

f = qd+ r,

for some q, r ∈ F [x] such that deg r < deg d. Observe that r = f − qd lies in
I . Since d is a nonzero element of I with the least degree, the element r must
necessarily be zero. In order words f = qd, which implies that f ∈ (d). Hence,
I ⊆ (d), and we conclude that I = (d).

11.2 Factorization of polynomials
Definition. Let F be a field. Let f =

∑n
i=0 cix

i be a polynomial in F [x]. An
element a ∈ F is a root of f if:

f(a) :=
n∑
i=0

cia
i = 0

in F .

Lemma 11.2.1. For all f ∈ F [x], a ∈ F , there exists q ∈ F [x] such that:

f = q(x− a) + f(a)

Proof. By the division theorem, there exist q, r ∈ F [x] such that:

f = q(x− a) + r, deg r < deg(x− a) = 1.
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This implies that r is a constant polynomial. Viewing the polynomials as functions
and evaluating both sides of the above equation at x = a, we have:

f(a) = q(a− a) + r = r.

Proposition 11.2.2 (Factor Theorem). Let F be a field, f a polynomial is F [x].
Then, a ∈ F is a root of f if and only if (x− a) divides f in F [x].

Proof. If a ∈ F is a root of f , then by the previous lemma there exists q ∈ F [x]
such that:

f = q(x− a) + f(a)︸︷︷︸
=0

= q(x− a),

so (x− a) divides f in F [x].
Conversely, if f = q(x− a) for some q ∈ F [x], then f(a) = q(a)(a− a) = 0.

Hence, a is a root of f .

Theorem 11.2.3. Let F be a field, f a nonzero polynomial in F [x].

1. If f has degree n, then it has at most n roots in F .

2. If f has degree n and a1, a2, . . . , an ∈ F are distinct roots of f , then:

f = c · Πn
i=1(x− ai) := c(x− a1)(x− a2) · · · (x− an)

for some c ∈ F .

Proof.

1. We prove Part 1 of the claim by induction. If f has degree 0, then f is a
nonzero constant, which implies that it has no roots. So, in this case the
claim holds.

Let f be a polynomial with degree n > 0. Suppose the claim holds for all
nonzero polynomials with degrees strictly less than n. We want to show that
the claim also holds for f . If f has no roots in F , then the claim holds for f
since 0 < n. If f has a root a ∈ F , then by the previous claim there exists
q ∈ F [x] such that:

f = q(x− a).

For any other root b ∈ F of f which is different from a, we have:

0 = f(b) = q(b)(b− a).

Since F is a field, it has no zero divisors; so, it follows from b− a 6= 0 that
q(b) = 0. In other words, b is a root of q. Since deg q < n, by the induction
hypothesis q has at most n− 1 roots. So, f has at most n− 1 roots different
from a. This shows that f has at most n roots.
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2. Let f be a polynomial inF [x] which has n = deg f distinct roots a1, a2, . . . , an ∈
F .

If n = 1, then f = c0 + c1x for some ci ∈ F , with c1 6= 0. We have:

0 = f(a1) = c0 + c1a1,

which implies that: c0 = −c1a1. Hence,

f = −c1a1 + c1x = c1(x− a1).

Suppose n > 1. Suppose for all n′ ∈ N, such that 1 ≤ n′ < n, the claim
holds for any polynomial of degree n′ which has n′ distinct roots in F . By
the previous claim, there exists q ∈ F [x] such that:

f = q(x− an).

Note that deg q = n− 1. For 1 ≤ i < n, we have

0 = f(ai) = q(ai) (ai − an)︸ ︷︷ ︸
6=0

.

Since F is a field, this implies that q(ai) = 0 for 1 ≤ i < n. So,
a1, a2, . . . , an−1 are n − 1 distinct roots of q. By the induction hypothe-
sis there exists c ∈ F such that:

q = c(x− a1)(x− a2) · · · (x− an−1).

Hence, f = q(x− an) = c(x− a1)(x− a2) · · · (x− an−1)(x− an).

Corollary 11.2.4. Let F be a field. Let f, g be nonzero polynomials in F [x]. Let
n = max{deg f, deg g}. If f(a) = g(a) for n+ 1 distinct a ∈ F . Then, f = g.

Proof. Let h = f − g, then deg h ≤ n. By hypothesis, there are n + 1 distinct
elements a ∈ F such that h(a) = f(a)− g(a) = 0. If h 6= 0, then it is a nonzero
polynomial with degree ≤ n which has n + 1 distinct roots, which contradicts
the previous theorem. Hence, h must necessarily be the zero polynomial, which
implies that f = g.

Recall the theorem:

Theorem 11.2.5. Let F be a field. The ring F [x] is a PID.
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Definition. A polynomial in F [x] is called a monic polynomial if its leading
coefficient is 1.

Corollary 11.2.6. Let F be a field. Let f, g be nonzero polynomials in F [x]. There
exists a unique monic polynomial d ∈ F [x] with the following properties:

1. (f, g) = (d)

2. d divides both f and g, i.e. there exists a, b ∈ F [x] such that f = ad,
g = bd.

3. There are polynomials p, q ∈ F [x] such that d = pf + qg.

4. If h ∈ F [x] is a divisor of f and g, then h divides d.

Terminology. This d ∈ F [x] is called the greatest common divisor (abbrev.
gcd) of f and g. We say that f and g are relatively prime if their gcd is 1.

Proof of Corollary 11.2.6. 1. By the theorem, there exists d =
∑n

i=0 aix
i ∈

F [x] such that (d) = (f, g). Replacing d by a−1n d if necessary, we may
assume that d is a monic polynomial. It remains to show that d is unique.

Suppose (d) = (d′), where both d and d′ are monic polynomials. Then,
there exist nonzero p, q ∈ F [x] such that:

d′ = pd, d = qd′.

Examining the degrees of the polynomials, we have:

deg d′ = deg d+ deg p,

and:
deg d = deg q + deg d′ = deg p+ deg q + deg d.

This implies that deg p+deg q = 0. Hence, p and q must both have degree 0;
in other words, they are constant polynomials. Moreover, we have deg d =
deg d′. Comparing the leading coefficients of d′ and pd, we have p = 1.
Hence, d = d′.

2. f ∈ (f, g) = (d) implies that d divides f ; similarly, d divides g.

3. d ∈ (d) = (f, g) implies that d = pf + qg for some p, q ∈ F [x].

4. Part 3. says that there are p, q ∈ F [x] such that d = pf + qg. It is then clear
that if h divides both f and g, then h must divide d.

55



Week 12

12.1 Factorization of polynomials (cont’d)
Definition. A nonconstant polynomial p ∈ F [x] is said to be irreducible if there
do not exist f, g ∈ F [x], with deg f, deg g < deg p, such that fg = p.

Example 12.1.1. • Any degree 1 polynomial f(x) = ax + b, a 6= 0, is irre-
ducible in F [x].

• x2+1 is irreducible inR[x] but reducible inC[x]. So irreducibility is relative
to the field F .

• By the Fundamental Theorem of Algebra, which states that any noncon-
stant polynomial f(x) ∈ C[x] splits over C meaning that there exists
c, α1, . . . , αn (where n = deg f(x)) such that f(x) = c(x−α1) · · · (x−αn),
the only irreducible polynomials in C[x] are degree 1 polynomials and the
only irreducible polynomials in R[x] are polynomials of degree 1 and 2.

Theorem 12.1.2. Any PID D is a unique factorization domain (abbrev. UFD)
which means that any nonzero nonunit r ∈ D can be factorized into a finite
product of irreducible elements, and the factorization is unique up to reordering
of factors (and also up to multiplication by units).

Proof. Omitted. For those who are interested in it, see Chapter 11, Section 2 in
M. Artin’s Algebra.

Let F be a field. Then F [x] is a PID.

Lemma 12.1.3. A polynomial f ∈ F [x] is a unit if and only if it is a nonzero
constant polynomial.

Proof. If f, g ∈ F [x] are nonzero polynomials satisfying fg = 1, then comparing
degrees on both sides gives deg f + deg g = 0. This is possible only if deg f =
deg g = 0 which means that both f and g are constants.
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So we have the following

Corollary 12.1.4. Every nonconstant polynomial f ∈ F [x] may be written as:

f = cp1 · · · pn,

where c is a nonzero constant, and each pi is a monic irreducible polynomial in
F [x]. The factorization is unique up to reordering of the factors.

In particular, the gcd of two polynomials can be computed using the Euclidean
Algorithm as in the case of Z.

Example 12.1.5. Unique Factorization does not necessarily hold if F is not a
field. In Z4[x], we have:

x2 = x · x = (x+ 2)(x− 2).

All the factors are linear, so they are irreducible. But clearly x+ 2 is not equal to
x.

Theorem 12.1.6. Let F be a field. Let p be a polynomial in F [x]. The following
statements are equivalent:

1. F [x]/(p) is a field.

2. F [x]/(p) is an integral domain.

3. p is irreducible in F [x].

Proof. 1⇒ 2: Clear, since every field is an integral domain.
2 ⇒ 3: If p is not irreducible, there exist f, g ∈ F [x], with degrees strictly

less than that of p, such that p = fg. Since deg f, deg g < deg p, the polynomial
p does not divide f or g in F [x]. Consequently, the equivalence classes f and g
of f and g, respectively, modulo (p) is not equal to zero in F [x]/(p). On the other
hand, f · g = fg = p = 0 in F [x]/(p). This implies that F [x]/(p) is not an
integral domain. Hence, p is irreducible if F [x]/(p) is an integral domain.

3 ⇒ 1: By definition, the multiplicative identity element 1 of a field is differ-
ent from the additive identity element 0. So we need to check that the equivalence
class of 1 ∈ F [x] in F [x]/(p) is not 0. Since p is irreducible, by definition we
have deg p > 0. Hence, 1 6∈ (p), for a polynomial of degree > 0 cannot divide a
polynomial of degree 0 in F [x]. We conclude that that 1 6= 0 in F [x].

Next, we need to prove the existence of the multiplicative inverse of any
nonzero element in F [x]/(p). Given any f ∈ F [x] whose equivalence class f
modulo (p) is nonzero in F [x]/(p), we want to find its multiplicative inverse f

−1
.

If f 6= 0 in F [x]/(p), then by definition f − 0 /∈ (p), which means that p does
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not divide f . Since p is irreducible, this implies that gcd(p, f) = 1. By Corol-
lary 11.2.6, there exist g, h ∈ F [x] such that fg + hp = 1. It is then clear that
g = f

−1
, since fg− 1 = hp implies that fg− 1 ∈ (p), which by definition means

that f · g = fg = 1 in F [x]/(p).

12.2 Polynomials over Z and Q
We are interested in determining which polynomials in Q[x] are irreducible.

Proposition 12.2.1. Let f = a0 + a1x + · · · + anx
n be a polynomial in Q[x],

with ai ∈ Z. Every rational root r of f in Q has the form r = b/c (b, c ∈ Z with
gcd(b, c) = 1) where b|a0 and c|an.

Proof. Let r = b/c be a rational root of f , where b, c are relatively prime integers.
We have:

0 =
n∑
i=0

ai(b/c)
i

Multiplying both sides of the above equation by cn, we have:

0 = a0c
n + a1c

n−1b+ a2c
n−2b2 + · · ·+ anb

n,

or equivalently:

a0c
n = −(a1c

n−1b+ a2c
n−2b2 + · · ·+ anb

n).

Since b divides the right-hand side, and b and c are relatively prime, b must divide
a0. Similarly, we have:

anb
n = −(a0c

n + a1c
n−1b+ a2c

n−2b2 + · · ·+ an−1cb
n−1).

Since c divides the right-hand side, and b and c are relatively prime, c must divide
an.

This proposition is useful mainly for polynomials f ∈ Q[x] of deg ≤ 3,
because such a polynomial is reducible only if it has a root in Q.

Example 12.2.2. Consider the polynomial f(x) = x3 + 3x + 2 ∈ Q[x]. The
above proposition says that the only possible roots of f(x) are ±1 or ±2, but one
directly checks that none of these is a root. So f(x) is irreducible in Q[x].

Example 12.2.3. In fact the same argument applies to polynomials of deg ≤ 3
with coefficients in other fields. For example, we may consider f(x) = x3 + 3x+
2 ∈ Z5[x]. Then one checks that f has no root in Z5 (by directly computing the
values of f(k) for each k ∈ Z5). So f(x) is also irreducible in Z5[x].
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For a polynomial of arbitrary degree in Q[x], we will discuss some general
methods to determine whether it is irreducible; these methods stem from a theo-
rem of Gauss.

Definition. A polynomial f ∈ Z[x] is said to be primitive if the gcd of its coeffi-
cients is 1.

Remark. Note that if f ∈ Z[x] is monic, i.e. its leading coefficient is 1, then it is
primitive.

More generally, if d is the gcd of the coefficients of f ∈ Z[x], then 1
d
f is a

primitive polynomial in Z[x].

Lemma 12.2.4 (Gauss’s Lemma). If f, g ∈ Z[x] are both primitive, then fg is
primitive.

Proof. Write f =
∑m

k=0 akx
k, g =

∑n
k=0 bkx

k. Then, fg =
∑m+n

k=0 ckx
k, where:

ck =
∑
i+j=k

aibj.

Suppose fg is not primitive. Then, there exists a prime p such that p divides
ck for k = 0, 1, 2, . . . ,m + n. Since f is primitive, there exists a least u ∈
{0, 1, 2, . . . ,m} such that au is not divisible by p. Similarly, since g is primitive,
there is a least v ∈ {0, 1, 2, . . . , n} such that bu it not divisible by p. We have:

cu+v =
∑

i+j=u+v
(i,j)6=(u,v)

aibj + aubv,

hence:
aubv = cu+v −

∑
i+j=u+v
i<u

aibj −
∑

i+j=u+v
j<v

aibj

By the minimality conditions on u and v, each term on the right-hand side of the
above equation is divisible by p. Hence, p divides aubv, which by Euclid’s Lemma
implies that p divides either au or bv, a contradiction.

Lemma 12.2.5. Every nonzero f ∈ Q[x] can be uniquely written as:

f = c(f)f0,

where c(f) is a positive rational number, and f0 is a primitive polynomial in Z[x].

Definition. The rational number c(f) is called the content of f .
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Proof. Existence:
Write f =

∑n
k=0(ak/bk)x

k, where ak, bk ∈ Z. Let B = b0b1 · · · bn. Then, g :=
Bf is a polynomial in Z[x]. Let d be the gcd of the coefficients of g. Let D = ±d,
with the sign chosen such that D/B > 0. Observe that f = c(f)f0, where

c(f) = D/B,

and
f0 :=

B

D
f =

1

D
g

is a primitive polynomial in Z[x].
Uniqueness:

Suppose f = ef1 for some positive e ∈ Q and primitive f1 ∈ Z[x]. We have:

ef1 = c(f)f0.

Writing e/c(f) = u/v where u, v are relatively prime positive integers, we have:

uf1 = vf0.

Since gcd(u, v) = 1, v divides each coefficient of f1, and u divides each coeffi-
cient of f0. But f0 and f1 are primitive, so we must have u = v = 1. Hence,
e = c(f), and f1 = f0.

Corollary 12.2.6. For f ∈ Z[x], we have c(f) ∈ Z.

Proof. Let d be the gcd of the coefficients of f . Then, (1/d)f is a primitive
polynomial, and

f = d

(
1

d
f

)
is a factorization of f into a product of a positive rational number and a primitive
polynomial in Z[x]. Hence, by uniqueness of c(f) and f0, we have c(f) = d ∈
Z.

Corollary 12.2.7. Let f, g, h be nonzero polynomials in Q[x] such that f = gh.
Then c(f) = c(g)c(h) and f0 = g0h0.

Proof. The condition f = gh implies that:

c(f)f0 = c(g)c(h)g0h0,

where f0, g0, h0 are primitive polynomials and c(f), c(g), c(h) are positive rational
numbers. By Gauss’s Lemma, g0h0 is primitive. The uniqueness part of Lemma
12.2.5 implies that that c(f) = c(g)c(h) and f0 = g0h0.

60



Theorem 12.2.8 (Gauss). Let f be a nonzero polynomial in Z[x]. If f = GH for
some G,H ∈ Q[x], then f = gh for some g, h ∈ Z[x], where deg g = degG,
deg h = degH .

Consequently, if f cannot be factored into a product of polynomials of smaller
degrees in Z[x], then it is irreducible as a polynomial in Q[x].

Proof. Suppose f = GH for someG,H inQ[x]. Then f = c(f)f0 = c(G)c(H)G0H0,
where f0, G0, H0 are primitive polynomials in Z[x]. The above corollaries tell
us that c(G)c(H) = c(f) ∈ Z>0 and f0 = G0H0. Hence, g := c(f)G0 and
h := H0 are polynomials in Z[x], with deg g = degG, deg h = degH , such that
f = gh.
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Week 13

13.1 Polynomials over Z and Q (cont’d)
Let p be a prime. Let Zp ∼= Z/pZ. It is a field, since p is prime. For a ∈ Z, let a
denote the residue of a in Zp.

Theorem 13.1.1. Let f =
∑n

k=0 akx
k be a monic polynomial in Z[x]. If f :=∑n

k=0 akx
k is irreducible in Zp[x] for some prime p, then f is irreducible in Q[x].

Proof. Suppose f is irreducible in Zp[x], but f is not irreducible in Q[x]. By
Gauss’s theorem, there exist g, h ∈ Z[x] such that deg g, deg h < deg f and
f = gh. Since f is by assumption monic, and p - 1, we have deg f = deg f .
Moreover, gh = g · h. Hence, f = gh = g · h, where deg g, deg h < deg f . This
contradicts the irreducibility of f in Zp[x].

Hence, f is irreducible in Q[x] if f is irreducible in Zp[x].

Remark. The above theorem holds in the more general case when an 6= 0 in Zp,
i.e. p - an.
Example 13.1.2. The polynomial f(x) = x4−5x3+2x+3 ∈ Q[x] is irreducible.

Proof. Consider f = x4 − 5x3 + 2x + 3 = x4 − x3 + 1 in Z2[x]. If we can
show that f is irreducible, then by the previous theorem we can conclude that f is
irreducible.

Since Z2 = {0, 1} and f(0) = f(1) = 1 6= 0, we know right away that f has
no linear factors. So, if f is not irreducible, it must be a product of two quadratic
factors:

f = (ax2 + bx+ c)(dx2 + ex+ g), a, b, c, d, e, g ∈ Z2.

Note that by assumption a, d are nonzero elements of Z2, so a = d = 1. This
implies that, in particular:

1 = f(0) = cg

1 = f(1) = (1 + b+ c)(1 + e+ g)
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The first equation implies that c = g = 1. The second equation then implies that
1 = (2 + b)(2 + e) = be. Hence, b = e = 1. We have:

x4−x3 + 1 = (x2 +x+ 1)(x2 +x+ 1) = x4 + 2x3 + 3x2 + 2x+ 1 = x4 +x2 + 1,

a contradiction.
Hence, f is irreducible in Z2[x], which implies that f is irreducible in Q[x].

Theorem 13.1.3 (Eisenstein’s Criterion). Let f = a0 + a1x + · · · + anx
n be a

polynomial in Z[x]. If there exists a prime p such that p|ai for 0 ≤ i < n, but
p - an and p2 - a0, then f is irreducible in Q[x].

Proof. We prove by contradiction. Suppose f is not irreducible in Q[x]. Then,
by Gauss’s Theorem, there exists g =

∑l
k=0 bkx

k, h =
∑n−l

k=0 ckx
k ∈ Z[x], with

deg g, deg h < deg f , such that f = gh.
Consider the image of these polynomials in Zp[x]. By assumption, we have:

anx
n = f = gh.

This implies that g and h are divisors of anxn. Since Zp is a field, unique factor-
ization holds for Zp[x]. Hence, we must have g = bux

u, h = cn−ux
n−u, for some

u ∈ {0, 1, 2, . . . , l}. If u < l, then n − u > n − l ≥ deg h, which cannot hold.
So, we conclude that g = blx

l, h = cn−lx
n−l. In particular, b0 = c0 = 0 in Zp,

which implies that p divides both b0 and c0. Since a0 = b0c0, we have p2|a0, a
contradiction.

Example 13.1.4. The polynomial x5 + 3x4− 6x3 + 12x+ 3 is irreducible inQ[x]
by the Eisenstein’s criterion using p = 3.

13.2 Field extensions
Recall that any ring homomorphism between two fields is injective.

Definition. A subfield F of a field E is a subring of E which is a field; in this
case, we also say E is an extension of F , or E/F is a field extension. Caution:
Note that the notation E/F does not mean a quotient ring!

LetE/F be a field extension (or a subfield F of a fieldE). Let α be an element
of E. Consider the evaluation map

φα : F [x]→ E, f 7→ f(α),
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which is a homomorphism such that φα|F = idF . The image of φα is the subring

F [α] := imφα = {f(α) : f ∈ F [x]}

in E. Since E is a field, F [α] is an integral domain. Also, the subfield

F (α) =

{
f(α)

g(α)
: f, g ∈ F [x], g(α) 6= 0

}
in E is precisely the field of fractions of F [α].

There are two scenarios:

• kerφα = {0}, i.e. α is not a root of any nonzero polynomial f ∈ F [x].
In this case, we say α ∈ E is transcendental over F . Then φα gives an
isomorphism F [x] ∼= F [α].

• kerφα 6= {0}, i.e. α is a root of some nonzero polynomial f ∈ F [x]. In this
case, we say α ∈ E is algebraic over F . Since F [x] is a PID, kerφα = (p)
for some p ∈ F [x]. Then the First Isomorphism Theorem implies that

φα : F [x]/(p) ∼= F [α].

As F [α] is an integral domain, Theorem 12.1.6 tells us that p is irreducible
and that F [x]/(p) ∼= F [α] is in fact a field. Hence we have

F [x]/(p) ∼= F [α] = F (α).

Remark. Note that F (α) is the smallest subfield of E containing F and α. We
say that F (α) is obtained from F by adjoining α.

Theorem 13.2.1. Let E/F be a field extension and α be an element of E.

1. If α is algebraic over F , then α is a root of an irreducible polynomial p ∈
F [x], such that p | f for any f ∈ F [x] with f(α) = 0.

2. For p be an irreducible polynomial F [x] of which α is a root. Then, the map
φα : F [x]/(p) −→ F (α), defined by:

φ(
n∑
j=0

cjx
j + (p)) =

n∑
j=0

cjα
j,

is a ring isomorphism mapping x+ (p) to α and a+ (p) to a for any a ∈ F .
(Here,

∑n
j=0 cjx

j+(p) is the equivalence class of
∑n

j=0 cjx
j ∈ F [x] modulo

(p).)
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3. Let p be an irreducible polynomial in F [x] of which α is a root. Then, each
element in F (α) has a unique expression of the form:

c0 + c1α + · · · cn−1αn−1,

where ci ∈ F , and n = deg p.

4. If α, β ∈ E are both roots of an irreducible polynomial p in F [x], then
there exists a ring isomorphism σ : F (α) −→ F (β), with σ(α) = β and
σ(s) = s, for all s ∈ F .

Proof. 1. We only need to prove the last part. So let f ∈ F [x] be such that
f(α) = 0. Then f ∈ kerφα = (p) which means that p | f .

2. This was done above.

3. Since φα in Part 2 is an isomorphism, we know that each element γ ∈ F (α)
is equal to φα(f + (p)) = f(α) :=

∑
cjα

j for some f =
∑
cjx

j ∈ F [x].
By the division theorem for F [x]. There exist m, r ∈ F [x] such that f =
mp + r, with deg r < deg p = n. Write r =

∑n−1
j=0 bjx

j , with bj = 0 if
j > deg r. We have:

γ = φα(f + (p)) = φα(r + (p)) =
n−1∑
j=0

bjα
j.

It remains to show that this expression for γ is unique. Suppose γ = g(α) =∑n−1
j=0 b

′
jα

j for some g =
∑n−1

j=0 b
′
jx
j ∈ F [x]. Then, g(α) = r(α) = γ

implies that (g − r) + (p) ∈ F [x]/(p) is in the kernel of the map φα in Part
2. Since φα is one-to-one, we have (g − r) ≡ 0 modulo (p), which implies
that p | (g − r) in F [x]. Since deg g, deg r < p, this implies that g − r = 0.
So, the expression γ = b0 + b1α + · · ·+ bn−1α

n−1 is unique.

4. By Part 2, we have an isomorphism φβ : F [x]/(p) −→ F (β), such that
φβ(x + (p)) = β, and φβ(a + (p)) = a for all a ∈ F . So the map φαβ :=

φβ ◦ φ
−1
α : F (α) −→ F (β) is the desired isomorphism between F (α) and

F (β).

Remark. Suppose p is an irreducible polynomial in F [x] of which α ∈ E is a root.
Part 4 of the theorem essentially says that F (α) is a vector space of dimension
deg p over F , with basis:

{1, α, α2, . . . , αn−1}.
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Example 13.2.2. Consider F = Q as a subfield of E = R. The element α ∈
3
√

2 ∈ R is a root of the the polynomial p = x3 − 2 ∈ Q[x], which is irreducible
in Q[x] by the Eisenstein’s Criterion for the prime 2.

The theorem applied to this case says thatQ(α), i.e. the smallest subfield of R
containing Q and α, is equal to the set:

{c0 + c1α + c2α
2 : ci ∈ Q}

The addition and multiplication operations in Q(α) are those associated with R,
in other words:

(c0 + c1α + c2α
2) + (b0 + b1α + b2α

2) = (c0 + b0) + (c1 + b1)α + (c2 + b2)α
2,

(c0 + c1α + c2α
2) · (b0 + b1α + b2α

2)

= c0b0 + c0b1α+ c0b2α
2 + c1b0α+ c1b1α

2 + c1b2α
3 + c2b0α

2 + c2b1α
3 + c2b2α

4

= (c0b0 + 2c1b2 + 2c2b1) + (c0b1 + c1b0 + 2c2b2)α + (c0b2 + c1b1 + c2b0)α
2

Exercise: Given a nonzero γ = c0 + c1α + c2α
2 ∈ Q(α), ci ∈ Q, find

b0, b1, b2 ∈ Q such that b0 + b1α+ b2α
2 is the multiplicative inverse of γ in Q(α).

Example 13.2.3. Since 3
√

2 is a root of x3 − 2, the polynomial p = x3 − 2 has a
linear factor in Q( 3

√
2)[x]. More precisely,

x3 − 2 = (x− 3
√

2)(x2 +
3
√

2x+ (
3
√

2)2).
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Week 14

14.1 Finite fields
Theorem 14.1.1 (Kronecker). If F is a field, and f is a nonconstant polynomial
in F [x], then there exists a field extension E of F , such that f ∈ F [x] ⊂ E[x] is a
product of linear polynomials in E[x].

In other words, there exists a field extension E of F , such that:

f = c(x− α1) · · · (c− αn),

for some c, αi ∈ E.

Proof. We prove by induction on deg f .
If deg f = 1, we are done.
Inductive Step: Suppose deg f > 1. Suppose, for any field extension F ′ of F ,

and any polynomial g ∈ F ′[x] with deg g < deg f , there exists a field extension
E of F ′ such that g splits into a product of linear factors in E[x].

If f is irreducible, then F ′ := F [x]/(f) contains a root α of f , namely α =
x+(f) ∈ F [x]/(f). Hence, f = (x−α)q in F ′[x], with deg q < deg f . Moreover,
F ′ is a field extension of F if we identify F with the subset {c+(p) : c ∈ k} ⊂ F ′,
where c is considered as a constant polynomial in F [x]. Then, by the induction
hypothesis, there is an extension field E of F ′ such that q splits into a product of
linear factors in E[x]. Consequently, f splits into a product of linear factors in
E[x].

If f is not irreducible, then f = gh for some g, h ∈ F [x], with deg g, deg h <
deg f . So, by the induction hypothesis, there is a field extension F ′ of F such that
g is a product of linear factors in F ′[x]. Hence, f = (x−α1) · · · (x−αn)h in F ′[x].
Since deg h < deg f , by the inductive hypothesis there exists a field extension E
of F ′ such that h splits into linear factors in E[x]. Hence, f is a product of linear
factors in E[x].
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Remark. There is a theorem saying that for any field F , there exists a unique field
extension F of F in which every element is algebraic over F and such that any
polynomial in F [x] splits over F . The field extension F is called the algebraic
closure of F .

Recall the following definition.

Definition. Let D be an integral domain. The characteristic charD of D is the
smallest positive integer n such that:

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0.

If such an integer does not exist, we say that the integral domain has characteris-
tic zero.

Example 14.1.2. The field Q has characteristic zero. charZp = p for any prime
p.

Exercise: If an integral domain D has positive characteristic charD, then charD
is a prime number. Example: charZ5 = 5, which is prime.

Note that all finite integral domains have positive characteristics, but there
are integral domains with positive characteristics which have infinitely many ele-
ments, e.g. the polynomial ring Z5[x].

Proposition 14.1.3. Let F be a finite field. Then, the number of elements of F is
equal to pn for some prime p and n ∈ N.

Proof. Since F is finite, it has finite characteristic. Since it is a field, charF is a
prime p.

Exercise: Zp is isomorphic to a subfield of F .
Viewing Zp as a subfield of F , we see that F is a vector space over Zp. Since

the cardinality of F is finite, the dimension n of F over Zp must necessarily be
finite. Hence, there exist n basis elements α1, α2, . . . , αn in F , such that each
element of F may be expressed uniquely as:

c1α1 + c2α2 + · · ·+ cnαn,

where ci ∈ Zp. Since Zp has p elements, it follows that F has pn elements.

Theorem 14.1.4 (Galois). Given any prime p and n ∈ N, there exists a finite field
F with pn elements.

Proof. Consider the polynomial:

f = xp
n − x ∈ Zp[x]
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By Kronecker’s theorem (or by the existence of algebraic closure), there exists a
field extension K of Zp such that f splits into a product of linear factors in K[x].
Let:

F = {α ∈ K : f(α) = 0}.
Exercise: Let g = (x − a1)(x − a2) · · · (x − an) be a polynomial in k[x],

where k is a field. Show that the roots a1, a2, . . . , an are distinct if and only if
gcd(g, g′) = 1, where g′ is the derivative of g.

In this case, we have f ′ = pnxp
n−1− 1 = −1 in Zp[x]. Hence, gcd(f, f ′) = 1,

which implies by the exercise that the roots of f are all distinct. So, f has pn

distinct roots in K, hence F has exactly pn elements.
It remains to show that F is a field. Let q = pn. By definition, an element

a ∈ K belongs to F if and only if f(a) = aq − a = 0, which holds if and only if
aq = a. For a, b ∈ F , we have:

(ab)q = aqba = ab,

which implies that F is closed under multiplication. Since K, being a extension
of Zp, has characteristic p. we have (a+ b)p = ap + bp. Hence,

(a+ b)q = (a+ b)p
n

= ((a+ b)p)p
n−1

= (ap + bp)p
n−1

= (ap + bp)p)p
n−2

= (ap
2

+ bp
2

)p
n−2

= · · · = ap
n

+ bp
n

= a+ b,

which implies that F is closed under addition.
Let 0, 1 be the additive and multiplicative identity elements, respectively, of

K. Since 0q = 0 and 1q = 1, they are also the additive and multiplicative identity
elements of F .

For nonzero a ∈ F , we need to prove the existence of the additive and multi-
plicative inverses of a in F .

Let −a be the additive inverse of a in K. Since (−1)q = −1 (even if p = 2,
since 1 = −1 in Z2), we have:

(−a)q = (−1)qaq = −a,

so −a ∈ F . Hence, a ∈ F has an additive inverse in F .
Since aq = a in K, we have:

aq−2a = aq−1 = 1

in K. Since a ∈ F and F is closed under multiplication, aq−2 = a · · · a︸ ︷︷ ︸
q−2 times

lies in F .

So, aq−2 is a multiplicative inverse of a in F .
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Proposition 14.1.5. Let F be a field, f a nonzero irreducible polynomial in F [x],
then F [x]/(f) is a vector space of dimension deg f over F .

Proof. Let E = F [x]/(f), then E is a field extension of F which contains a root
α of f , namely, α = x := x + (f). By Theorem 13.2.1, E = F (α), and every
element in E may be expressed uniquely in the form:

c0 + c1α + c2α
2 + · · ·+ cn−1α

n−1, ci ∈ k, n = deg f.

This shows that E is a vector space of dimension deg f over F .

Corollary 14.1.6. If F is a finite field with |F | elements, and f is an irreducible
polynomial of degree n in F [x], then the field F [x]/(f) has |F |n elements.

Example 14.1.7. Let p = 2, n = 2. To construct a finite field with pn = 4
elements. We first start with the finite field Z2, then try to find an irreducible poly-
nomial f ∈ Z2[x] such that Z2[x]/(f) has 4 elements. Based on our discussion so
far, the degree of f should be equal to n = 2, since n is precisely the dimension
of the desired finite field over Z2. Consider f = x2 + x + 1. Since p is of degree
2 and has no root in Z2, it is irreducible in Z2[x]. Hence, Z2[x]/(x2 + x + 1) is a
field with 4 elements.
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