THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2070A Algebraic Structures 2019-20 Tutorial 6 Date: 21th October 2019

Problems:

- 1. Mark each of the following statements "True" (meaning that it is a true statement) or "False" (meaning that there are counterexamples to the statement or disprove to the statement). No reasoning is required.
 - (a) Any group of order 6 is cyclic.
 - (b) Any group of order 6 is abelian.
 - (c) It is possible that a group of order 6 has an element of order 4.
 - (d) It is not possible to have a nontrivial homomorphism of a finite group to an infinite group.
 - (e) There is a nontrivial homomorphism form \mathbb{Z}_{2010} to \mathbb{Z} .
 - (f) There is a nontrivial homomorphism form S_4 to S_3 .

Solution. (a) F. Consider S_3 .

- (b) F. Consider S_3 .
- (c) F. Because |a| divides |G| for any finite group G and $a \in G$.
- (d) F. Consider $\phi : \mathbb{Z}_2 \to \mathbb{Z}_2 \times \mathbb{Z}$ defined by $\phi(n) = (n, 0)$.
- (e) F. There is no nontrivial finite subgroup in \mathbb{Z} .
- (f) T. Let $\phi(\sigma) = (1, 2)$ for each odd permutation $\sigma \in S_4$, and let $\phi(\sigma)$ be the identity permutation for each even $\sigma \in S_4$.

2. Determine whether the given subset is a subgroup. If it is a subgroup, prove it. If it is not a subgroup, explain why.

The set of matrices having trace 0 inside $GL_2(\mathbb{R})$ equipped with matrix multiplication. (Trace of matrix is the sum of diagonals.)

Solution. It is not closed. Consider
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}^2 = I_2$$
.

3. Write down all the left cosets of $\langle 3 \rangle$ in \mathbb{Z}_{12} .

Solution. $\langle 3 \rangle = \{0, 3, 6, 9\}, 1 + \langle 3 \rangle = \{1, 4, 7, 10\}, 2 + \langle 3 \rangle = \{2, 5, 8, 11\}.$

4. Find all of the homomorphisms $\phi : \mathbb{Z}_{15} \to \mathbb{Z}_6$.

Solution. Let ϕ be a homomorphism from \mathbb{Z}_{15} to \mathbb{Z}_6 . Let $\phi(1) = a$. Notice that

$$0 = \phi(0) = \phi(15) = 15\phi(1) = 15a.$$

We then get 6 divides 15a. So a can be 0, 2, 4.

5. Let \mathbb{Z}_{18}^{\times} be the group of all positive integers less than 18 and relative prime to 18, with the group operation given by the multiplication modulo 18. Show that \mathbb{Z}_{18}^{\times} is cyclic.

Solution. First we have $\mathbb{Z}_{18}^{\times} = \{1, 5, 7, 11, 13, 17\}$. The order of 5 is 6 which is the order of $|\mathbb{Z}_{18}^{\times}|$, as $5^2 \equiv 7 \pmod{18}$ and $5^3 \equiv 17 \pmod{18}$.

6. Under the addition and multiplication as the operations in \mathbb{C} , determine whether the set of imaginary complex numbers is a ring.

Solution. No. It is not closed under multiplication.

Optional Part

1. Let H and K be subgroups of a group G. Define

$$HK = \{hk | h \in H, k \in K\}.$$

- (a) Show that HK is a subgroup of G if and only if HK = KH.
- (b) Give an example a group G and two subgroups H and K such that HK is not a subgroup of G.
- (c) Let $V_4 = \{Id, a, b, c\}$ where a = (1, 2)(3, 4), b = (1, 3)(2, 4) and c = (1, 4)(2, 3). Let $H_1 = \langle a \rangle$, $H_2 = \langle b \rangle$ and $H_3 = \langle a \rangle$. Show that $H_i \cap H_j = \{Id\}$ for all $i \neq j$ and $V_4 = H_i H_j$ for all i and j.
- Solution. (a) Suppose HK is a subgroup of G. Let kh ∈ KH where h ∈ H and k ∈ K. Then h = he ∈ HK and k = ek ∈ HK and since HK is closed under products, we deduce kh ∈ HK. Thus we have KH ⊂ HK.
 Also let hk ∈ HK where h ∈ H and k ∈ K. We have (hk)⁻¹ ∈ HK, so (hk)⁻¹ = xy where x ∈ H and y ∈ K. Then hk = (xy)⁻¹ = y⁻¹x⁻¹ ∈ KH (as x⁻¹ ∈ H and y⁻¹ ∈ K). This shows that HK ⊂ KH.
 Conversely suppose HK = KH. Let a, b ∈ HK; say a = h₁k₁ and b = h₂k₂ where h₁, h₂ ∈ H and k₁, k₂ ∈ K. Then k₁h₂ ∈ KH = HK; say k₁h₂ = hk where h ∈ H and k ∈ K. Now ab = h₁k₁h₂k₂ = h₁hkk₂ ∈ HK since h₁h ∈ H and kk₂ ∈ K. Also a⁻¹ = (h₁k₁)⁻¹ = k₁⁻¹h₁⁻¹ ∈ KH = HK. Hence HK is closed
- (b) Take $G = S_3$, $H = \langle (1,2) \rangle$ and $K = \langle (2,3) \rangle$. Then H and K are subgroups of G (each containing two elements) and

under products and inverses, so it is a subgroup of G.

$$HK = \{Id, (1, 2), (2, 3), (1, 2, 3)\}$$

a set of size 4. Therefore HK is not a subgroup of G (by Lagrange's Theorem) since 4 does not divide 6.

(c) Since a, b and c are permutations of order 2, we have |H_i| = 2 for all i. Since these subgroups are distinct, clearly H_i ∩ H_j is a proper subgroup of H_i for all i and j, so H_i ∩ H_j = {Id} by Lagrange's Theorem.

Since V_4 is an abelian group, H_iH_j is a subgroup of V_4 (by Question (a)) while it contains at least three elements (namely those in $H_i \cup H_j$). Hence $|H_iH_j| = 4$ by Lagrange's Theorem and we deduce $V_4 = H_iH_j$.

[Alternatively $H_i \cap H_j = \{Id\}$ can be checked directly and that $V_4 = H_i H_j$ can be done by simply calculating all the elements in $H_i H_j$ directly.]