THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2070A Algebraic Structures 2019-20 Tutorial 2 Date: 16th September 2019

Problems:

1. Find the order of $(1+i)/\sqrt{2}$ and 1+i respectively as elements in the multiplicative group \mathbb{C}^{\times} of the complex number.

Solution. Note that $[(1+i)/\sqrt{2}]^2 = i$, so the order of $(1+i)/\sqrt{2}$ is 8. Or by employing the polar form, one gets $(1+i)/\sqrt{2} = cis\frac{\pi}{4}$, so the order of $(1+i)/\sqrt{2}$ is 8.

The modulus of 1 + i is $\sqrt{2}$ which suggests that the order of 1 + i is ∞ .

- 2. Let G be a group and $e \neq a \in G$ where e is the identity of G. Suppose |a| = n.
 - (a) If $a^h = e$, then show that n|h.
 - (b) Show that for any positive integer m, $|a^m| = n/(m, n)$ where (m, n) is the gcd of m and n. [Hint: You may find the following facts useful: $(\frac{a}{(a,b)}, \frac{b}{(a,b)}) = 1$ and if a|bc and (a, b) = 1, then a|c.]
 - **Solution.** (a) By Division Algorithm, h = qn + r for some $q \in \mathbb{Z}$ and $0 \le r < n$. Then $a^r = a^h (a^n)^{-q} = e$.

Claim: r must be 0.

Proof: Assume not, i.e. $r \ge 1$ (and r < n). Then $a^r = e$ where $1 \le r < n$, contradicting to n = |a| which is, by definition, the smallest positive integer ℓ for which $a^{\ell} = e$.

Hence h = qn, so n|h.

(b) $|a^{m}| = \frac{n}{(n,m)}$. To justify it, we need to show the following two assertions. $1^{\circ} (a^{m})^{\frac{n}{(n,m)}} = e$. This follows from

n mn m

$$(a^m)^{\frac{n}{(n,m)}} = a^{\frac{mn}{(n,m)}} = (a^n)^{\frac{m}{(n,m)}} \xrightarrow{a^n = e} e^{\frac{m}{(n,m)}} \xrightarrow{(n,m) \in \mathbb{Z}} e^{\frac{m}{(n,m)}} e^{\frac{m}{(n,m)}} = e^{\frac{m}{(n,m)}} e^$$

m ~7

2° If $k \in \mathbb{N}$ such that $(a^m)^k = e$, then $k \ge \frac{n}{(n,m)}$.

From $(a^m)^k = e$, Part (a) implies n | mk, so by the second part of hint $\frac{n}{(n,m)} | k$ because $(\frac{n}{(n,m)}, \frac{m}{(n,m)}) = 1$. Hence $\frac{n}{(n,m)}$ is the smallest positive integer ℓ such that $(a^m)^{\ell} = e$, i.e. $|a^m| = \frac{n}{(n,m)}$.

3. True or false: If σ is a cycle, then σ^2 must be a cycle.

Solution. False. Consider $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix} \in S_5$. Then $\sigma^2 = \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix}$.

4. Show that S_n is a nonabelian group for $n \ge 3$.

Solution.

 $(1 \ 2 \ 3)(1 \ 2) = (1 \ 3) \neq (2 \ 3) = (1 \ 2)(1 \ 2 \ 3)$

5. Draw the group table for $D_4 = \{e, r, r^2, r^3, s, rs, r^2s, r^3s\}$. [Hint: Use Question 6 of Optional part in HW2.]

Solution.

•	e	r	r^2	r^3	s	rs	r^2s	r^3s
e	e	r	r^2	r^3	s	rs	r^2s	r^3s
r	r	r^2	r^3	e	rs	r^2s	r^3s	s
r^2	r^2	r^3	e	r	r^2s	r^3s	s	rs
r^3	r^3	e	r	r^2	r^3s	s	rs	r^2s
S	s	r^3s	r^2s	rs	e	r^3	r^2	r
rs	rs	s	r^3s	r^2s	r	e	r^3	r^2
r^2s	r^2s	rs	s	r^3s	r^2	r	e	r^3
r^3s	r^3s	r^2s	rs	s	r^3	r^2	r	e

6. Show that if $n \ge 3$, then the only element of $\sigma \in S_n$ satisfying $\sigma \tau = \tau \sigma$ for all $\tau \in S_n$ is the identity element.

Solution. Assume that there exists such a non-identity element $\sigma \in S_n$. So we can find two positive integers *i* and *j* such that $i \neq j$ and $\sigma(i) = j$. Now $n \geq 3$. We can have another integer *k* different from *i* and *j*. Consider $\gamma = (i \ k) \in S_n$. Then one has

$$\gamma \sigma(i) = j \neq \sigma(k) = \sigma \gamma(i)$$

as σ is bijective and $\sigma(i) = j$. A contradiction occurs as $\sigma \gamma \neq \gamma \sigma$.

Optional Part

1. Let g and h be two elements of a group G. g and h are conjugate if $g = \alpha h \alpha^{-1}$ for some $\alpha \in G$. Let σ and τ be two elements in S_n . Show that σ and τ are conjugate if and only if they are of the same cycle pattern.

Solution. Only if part: Suppose σ and τ are conjugate. Then $\sigma = \alpha \tau \alpha^{-1}$ for some $\alpha \in S_n$. Note that any permutation in S_n can be written as a product of disjoint cycles. To argue that they are of the same cycle pattern, we need the following two facts:

$$\alpha (a_1 \quad \cdots \quad a_k) \alpha^{-1} = (\alpha(a_1) \quad \cdots \quad \alpha(a_k)),$$

and if $(a_1 \cdots a_k)$ and $(b_1 \cdots b_h)$ are disjoint, then $(\alpha(a_1) \cdots \alpha(a_k))$ and $(\alpha(b_1) \cdots \alpha(b_h))$ are also disjoint as α is bijective.

If part: Suppose σ and τ are of the same cycle pattern. WLOG, we can only consider $\sigma = (a_1 \cdots a_k)$ and $\tau = (b_1 \cdots b_k)$. We want to pick a correspondence α between $(a_1 \cdots a_k)$ and $(b_1 \cdots b_k)$. For any α satisfying $\alpha(b_i) = a_i$ for i = 1, 2, ..., k, we have $(a_1 \cdots a_k) = \alpha (b_1 \cdots b_k) \alpha^{-1}$.