THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2070A Algebraic Structures 2019-20 Tutorial 2 Date: 16th September 2019

Problems:

1. Find the order of $(1+i)/$ √ 2 and $1+i$ respectively as elements in the multiplicative group \mathbb{C}^{\times} of the complex number.

Solution. Note that $\left[(1 + i) / \right]$ √ $\sqrt{2}$ ² = *i*, so the order of $(1+i)$ / √ 2 is 8. Or by employing the polar form, one gets $(1 + i)$ / ∐' $\overline{2} = cis \frac{\pi}{4}$, so the order of $(1 + i)$ / √ 2 is 8.

 \blacktriangleleft

The modulus of $1 + i$ is $\sqrt{2}$ which suggests that the order of $1 + i$ is ∞ .

- 2. Let G be a group and $e \neq a \in G$ where e is the identity of G. Suppose $|a| = n$.
	- (a) If $a^h = e$, then show that $n|h$.
	- (b) Show that for any positive integer m, $|a^m| = n/(m, n)$ where (m, n) is the gcd of m and *n*. [Hint: You may find the following facts useful: $\left(\frac{a}{a}\right)$ $\frac{a}{(a,b)}, \frac{b}{(a,b)}$ $\frac{b}{(a,b)}) = 1$ and if $a|bc$ and $(a, b) = 1$, then $a|c$.]
	- **Solution.** (a) By Division Algorithm, $h = qn + r$ for some $q \in \mathbb{Z}$ and $0 \le r \le n$. Then $a^{r} = a^{h}(a^{n})^{-q} = e.$

Claim: *r* must be 0.

Proof: Assume not, i.e. $r \ge 1$ (and $r < n$). Then $a^r = e$ where $1 \le r <$ n, contradicting to $n = |a|$ which is, by definition, the smallest positive integer ℓ for which $a^{\ell} = e$.

Hence $h = qn$, so $n|h$.

(b) $|a^m| = \frac{n}{a}$ $\frac{n}{(n,m)}$. To justify it, we need to show the following two assertions. 1° $(a^m)^{\frac{n}{(n,m)}} = e.$ This follows from

$$
(a^m)^{\frac{n}{(n,m)}} = a^{\frac{mn}{(n,m)}} = (a^n)^{\frac{m}{(n,m)}} \xrightarrow{a^n = e} e^{\frac{m}{(n,m)}} \xrightarrow{\frac{m}{(n,m)} \in \mathbb{Z}} e
$$

2° If $k \in \mathbb{N}$ such that $(a^m)^k = e$, then $k \geq \frac{n}{(n\pi)^k}$ $\frac{n}{(n,m)}$. From $(a^m)^k = e$, Part (a) implies $n|mk$, so by the second part of hint $\frac{n}{(n,m)}$ $\vert k$ because $\left(\frac{n}{\ln n}\right)$ $\frac{n}{(n,m)}, \frac{m}{(n,n)}$ $\frac{m}{(n,m)}$) = 1. Hence $\frac{n}{(n,m)}$ is the smallest positive integer ℓ such that $(a^m)^\ell = e$, i.e. $|a^m| =$ \overline{n} $\frac{n}{(n,m)}$. \blacktriangleleft

3. True or false: If σ is a cycle, then σ^2 must be a cycle.

Solution. False. Consider $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix} \in S_5$. Then $\sigma^2 = \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix}$.

4. Show that S_n is a nonabelian group for $n \geq 3$.

Solution.

 $(1 \t2 \t3) (1 \t2) = (1 \t3) \neq (2 \t3) = (1 \t2) (1 \t2 \t3)$

5. Draw the group table for $D_4 = \{e, r, r^2, r^3, s, rs, r^2s, r^3s\}$. [Hint: Use Question 6 of Optional part in HW2.]

Solution.

 \blacktriangleleft

 \blacktriangleleft

 \blacktriangleleft

6. Show that if $n \geq 3$, then the only element of $\sigma \in S_n$ satisfying $\sigma \tau = \tau \sigma$ for all $\tau \in S_n$ is the identity element.

Solution. Assume that there exists such a non-identity element $\sigma \in S_n$. So we can find two positive integers i and j such that $i \neq j$ and $\sigma(i) = j$. Now $n \geq 3$. We can have another integer k different from i and j. Consider $\gamma = (i \quad k) \in S_n$. Then one has

$$
\gamma \sigma(i) = j \neq \sigma(k) = \sigma \gamma(i)
$$

as σ is bijective and $\sigma(i) = j$. A contradiction occurs as $\sigma \gamma \neq \gamma \sigma$.

Optional Part

1. Let g and h be two elements of a group G. g and h are conjugate if $g = \alpha h \alpha^{-1}$ for some $\alpha \in G$. Let σ and τ be two elements in S_n . Show that σ and τ are conjugate if and only if they are of the same cycle pattern.

Solution. Only if part: Suppose σ and τ are conjugate. Then $\sigma = \alpha \tau \alpha^{-1}$ for some $\alpha \in S_n$. Note that any permutation in S_n can be written as a product of disjoint cycles. To argue that they are of the same cycle pattern, we need the following two facts:

$$
\alpha \left(a_1 \quad \cdots \quad a_k \right) \alpha^{-1} = \left(\alpha(a_1) \quad \cdots \quad \alpha(a_k) \right),
$$

and if $(a_1 \cdots a_k)$ and $(b_1 \cdots b_h)$ are disjoint, then $(\alpha(a_1) \cdots \alpha(a_k))$ and $(\alpha(b_1) \cdots \alpha(b_h))$ are also disjoint as α is bijective.

If part: Suppose σ and τ are of the same cycle pattern. WLOG, we can only consider $\sigma = (a_1 \cdots a_k)$ and $\tau = (b_1 \cdots b_k)$. We want to pick a correspondence α between $(a_1 \cdots a_k)$ and $(b_1 \cdots b_k)$. For any α satisfying $\alpha(b_i) = a_i$ for $i = 1, 2, \ldots, k$, we have $(a_1 \cdots a_k) = \alpha (b_1 \cdots b_k) \alpha^{-1}$.

 \blacktriangleleft

 \blacktriangleleft