THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2070A Algebraic Structures 2019-20 Homework 10 Due Date: 5th December 2019

Compulsory Part

- 1. Determine if the following rings are fields. Justify your answers.
 - (a) $\mathbb{Q}[x]/(x^{17}+5x^2-10x+45)$
 - (b) $\mathbb{Z}[x]/(x^6 210x 616)$. (Note: It is $\mathbb{Z}[x]$ instead of $\mathbb{Q}[x]$.)
 - (c) $\mathbb{Q}[x]/(4x^3-6x-1)$
 - (d) $\mathbb{R}[x]/(x^{17}+5x^2-10x+45)$
- 2. (a) Let a be a rational number. Show that the quotient ring $\mathbb{Q}[x]/(x-a)$ is isomorphic to \mathbb{Q} by explicitly defining an isomorphism:

$$\psi: \mathbb{Q} \longrightarrow \mathbb{Q}[x]/(x-a).$$

(b) Show that $\mathbb{R}[x]/(x^2+1)$ is isomorphic to $\mathbb{R}[x]/(x^2+2)$ by explicitly defining an isomorphism.

Optional Part

1. Consider the subfield $F = \mathbb{Q}(\sqrt[3]{5})$ of \mathbb{R} . Express the multiplicative inverse of $2 + \sqrt[3]{5} \in F$ in the form:

$$a + b\gamma + c\gamma^2$$
, $a, b, c \in \mathbb{Q}; \gamma = \sqrt[3]{5}$.

- 2. Let $F = \mathbb{F}_3$. Let $p = x^3 x^2 + 1 \in F[x]$.
 - (a) Show that K = F[x]/(p) is a field.
 - (b) Express the multiplicative inverse of $x^2 + 1 + (p) \in K$ in the form:

$$a + bx + cx^2 + (p), \quad a, b, c \in F.$$

- 3. Find an irreducible polynomial $p \in \mathbb{Q}[x]$ such that:
 - (a) $\mathbb{Q}[x]/(p) \cong \mathbb{Q}(2-\sqrt{2}).$
 - (b) $\mathbb{Q}[x]/(p) \cong \mathbb{Q}\left(\sqrt{1+\sqrt{3}}\right).$
 - (c) $\mathbb{Q}[x]/(p) \cong \mathbb{Q}(\sqrt{2} + \sqrt{3}).$
- 4. (a) Show that $x^2 5$ is irreducible in $\mathbb{Q}(\sqrt{2})[x]$.
 - (b) Show that $\mathbb{Q}(5+\sqrt{2}) = \mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(2+\sqrt{5}) = \mathbb{Q}(\sqrt{5})$ as subfields of \mathbb{R} .
 - (c) Show that $\sqrt{5}$ does not lie in $\mathbb{Q}(\sqrt{2})$.

- (d) Conclude that 5+√2 and 2+√5 cannot be roots of the same irreducible polynomial in Q[x].
- 5. Let F be a subfield of a field E, and γ an element in E. Show that $F(a+b\gamma) = F(\gamma)$ for all nonzero $a, b \in F$.
- 6. (a) Show that $\sqrt{5}$ does not lie in $\mathbb{Q}(\sqrt{2})$.
 - (b) Conclude that $5+\sqrt{2}$ and $2+\sqrt{5}$ cannot be roots of the same irreducible polynomial in $\mathbb{Q}[x]$.
- 7. Let F be a subfield of a field E, and γ an element in E. Let p, q be irreducible polynomials in F[x] such that γ is a root of both p and q. Show that q = up for some nonzero element $u \in F$.