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Exercise 5.A

2 For any v ∈ null S, we have that Sx = 0, then TSx = 0, combined with ST = TS, we have

STx = 0, which implies Tx ∈ null S.

8 If there exist v = (z, w) 6= (0, 0) and λ ∈ F such that Tv = λv, then we have

(z, w) = (λw, λz)⇒ z = λw,w = λz ⇒ z = λ2z, w = λ2w.

Since (z, w) 6= (0, 0), we have λ2 = 1, then λ = ±1.

For the eigenvalue λ = 1, Tv = v implies v ∈ span{(1, 1)}; For the eigenvalue λ = −1,

Tv = −v implies v ∈ span{(1,−1)}

15 (a) If λ is an eigenvalue of T , then ∃ a non-zero vector v ∈ V , such that Tv = λv. Since

S is invertible, ∃ a non-zero u ∈ V such that v = Su. Then we get TSu = λSu⇒ S−1TSu =

λu⇒ λ is an eigenvalue of S−1TS.

On the other hand, if λ is an eigenvalue of S−1TS, then ∃ a non-zero vector v ∈ V , such that

S−1TSv = λv ⇒ TSv = λSv. Let u = Sv, then u 6= 0 by S being invertible, and Tu = λu,

which means λ is an eigenvalue of T .

(b) From (a), for any eigenvalue λ of T , if v ∈ E(λ, T )(the eigenspace of T with respect

to λ, recall Def. 5.36 ), then

Tv = λv ⇐⇒ S−1TS(S−1v) = λS−1v ⇐⇒ S−1v ∈ E(λ, S−1)

Thus we have that v is an eigenvector of T if and only if S−1v is an eigenvector of S−1TS .

18* If T has an eigenvalue λ with an eigenvector v = (z1, z2, . . .), then Tv = λv implies that

0 = λz1, z1 = λz2, . . . , zn = λzn+1, . . .

If λ = 0, then zn = 0, ∀n ≥ 1, which contradicts with v 6= 0.

And if λ 6= 0, then we can get z1 = 0, and then z2 = 0, z3 = 0, . . . one by one in turn, which

is also a contradiction.

20 Assume that v = (z1, z2, . . .) satisfies Tv = λv for some λ ∈ F, then we have that zn+1 =

λzn, ∀ n ≥ 1, then zn = λn−1z1, ∀ n ≥ 1⇒ v = z1(1, λ, λ
2, . . .).

Thus any λ ∈ F is an eigenvalue of T , and its eigenspace E(λ, T ) =span{(1, λ, λ2, . . .)}.

21 (a). If λ ∈ F with λ 6= 0, then ∃ a non-zero vector v such that Tv = λv, then it

is equivalent to T−1v = λ−1v by T being invertible and λ 6= 0, which means λ−1 is an

eigenvalue of T−1.

(b). By (a), we can easily see that for any vector v ∈ V,

v ∈ E(λ, T ) ⇐⇒ v ∈ E(λ−1, T−1).

29* If T has k + 2 distinct eigenvalues, then T has at least k + 1 non-zero distinct eigenvalues,

denoted by λ0, λ1, . . . , λk. And assume their eigenvectors as v0, v1, . . . , vk, then by Theorem
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5.10, v0, v1, . . . , vk are linearly independent.

For any vector

v =
k∑
i=0

aivi ∈ span({v0, v1, . . . , vk}),

we have that

T (
k∑
i=0

aiλ
−1
i vi) =

k∑
i=0

aiλ
−1
i Tvi =

k∑
i=0

aiλ
−1
i λivi = v.

So span({v0, v1, . . . , vk}) is a k+1 dimensional subspace of Range T , which is a contradiction.

32* If we assume Tf = λf , then f ′ = λf ⇒ (e−λxf(x))′ = 0 ⇒ f(x) = Ceλx, here C is any

constant in R. So any real number λ ∈ R is an eigenvalue of T with eλx being its eigenvector.

Hence by Theorem 5.10, eλ1x, . . . , eλnx is linearly independent.

Exercise 5.B

1* (a). Recall that an operator S is invertible if and only if there exists an operator R such

that SR = I(or RS = I). And note that

(I − T )(I + T + · · ·+ Tn−1) = I + T + · · ·+ Tn−1 − (T + T 2 + · · ·+ Tn)

= I − Tn = I

(b). Recall that if x ∈ R, then 1− xn = (1− x)(1 + x+ x2 + · · ·+ xn−1).

3 Since I − T 2 = 0, then (I + T )(I − T ) = 0. Then for any v ∈ V, (I + V )(I − V )v = 0.

Since −1 is not an eigenvalue of V , then (I − V )v = 0, that is v = Tv.

9* If λ is a zero of p, then there exists a polynomial q(x), such that p(x) = (x − λ)q(x). Then

we have q(T )v 6= 0, otherwise p is not the polynomial of the smallest degree. And combined

with 0 = p(T )v = (T − λ)q(T )v, we have that λ is an eigenvalue of T .

10 Tv = λv ⇒ T 2v = λ2v ⇒ . . .⇒ Tnv = λnv, ∀ n ≥ 1.

So if p(x) =
∑n

k=0 akx
k, then we have p(T )v =

∑n
k=0 akT

kv =
∑n

k=0 akλ
kv = p(λ)v.

11 (⇒) : If α is an eigenvalue of p(T ), then ∃ v 6= 0, s.t. p(T )v = αv ⇒ (p(T )− αI)v = 0.

Since we can write p(x)− α = (x− λ1) · · · (x− λn) with λi ∈ C, then we have

(T − λ1) · · · (T − λn)v = 0

Then if (T − λ2) · · · (T − λn)v 6= 0, then λ1 is an eigenvalue of T ; Otherwise,

if (T − λ2) · · · (T − λn)v = 0, and (T − λ3) · · · (T − λn)v 6= 0, then λ2 is an eigenvalue of T ;

. . . ; keep arguing like this, if (T − λn−1)(T − λn)v = 0 and (T − λn)v 6= 0, then λn−1 is an

eigenvalue; Otherwise if (T − λn)v = 0, then λnis an eigenvalue. In any case, we can have

that ∃ 1 ≤ i ≤ n, such that λi is an eigenvalue of T , where p(λi) = α.

(⇐) : If there exists an eigenvalue λ of T , such that p(λ) = α. Then by Question 10, we have

p(T )v = p(λ)v = αv, which implies that α is an eigenvalue of p(T ).
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20 Denote n = dim V . Then by Theorem 5.27, there exist a basis α = {e1, e2, . . . , en} of V , such

that

Tek ∈ span({e1, e2, . . . , ek}), ∀ 1 ≤ k ≤ n.

So for any 1 ≤ k ≤ n, the space span({e1, e2, . . . , ek}) is a k−dimensional invariant subspace

of V with respect to T .

Exercise 5.C

6 Denote n = dim V . Since T has n distinct eigenvalues λ1, . . . , λn, then the corresponding

eigenvectors v1, . . . , vn generate a basis of V . Thus, v1, . . . , vn are also eigenvectors of S, then

there exist µ1, . . . , µn, such that Svi = µivi, ∀ 1 ≤ i ≤ n. So we have that for ∀ 1 ≤ i ≤ n,

STvi = S(λivi) = λiSvi = λiµivi

TSvi = T (µivi) = µiTvi = µiλivi.

Thus STvi = TSvi, ∀ 1 ≤ i ≤ n. And combined with that v1, . . . , vn is a basis of V , then

ST = TS.

12 Denote (λ1, λ2, λ3) = (2, 6, 7). Since the eigenvalues are distinct, we can take a basis v1, v2, v3 ∈
F3 and a basis w1, w2, w3 ∈ F3 to be the eigenvectors of R and T respectively.

Define

S : V −→ V

via Svi = wi, ∀ 1 ≤ i ≤ n, and S(

n∑
i=1

aivi) =

n∑
i=1

aiwi

then S ∈ L(V ) and is invertible. And we have

S−1TSvi = S−1Twi = λiS
−1wi = λivi = Rvi, ∀ 1 ≤ i ≤ 3.

which implies that S−1TS = R.

16 (a). Using the inductive method, firstly we have T (0, 1) = (1, 0 + 1) = (1, 1) = (F1, F2),

so it holds for n = 1. Then we assume for any 1 ≤ k ≤ n, there holds T k(0, 1) = (Fk, Fk+1),

then we have

Tn+1(0, 1) = T (Tn(0, 1)) = T (Fn, Fn+1) = (Fn+1, Fn + Fn+1) = (Fn+1, Fn+2).

So by the inductive method, it holds for all n ≥ 1.

(b). If λ is an eigenvalue, then there exists a nonzero vector (x, y), such that T (x, y) =

λ(x, y), then we have y = λx, x+ y = λy. If x = 0, then y = 0, which is a contradiction.

So x 6= 0 and by x + λx = λ2x, we have λ2 − λ − 1 = 0 ⇒ λ =
1±
√

5

2
. So T has two

eigenvalues λ1 = 1−
√
5

2 and λ2 = 1+
√
5

2 .

(c). By (b), we can have that for λ1 = 1−
√
5

2 , y = 1−
√
5

2 x, then the eigenspace E(1−
√
5

2 , T ) =

span((1, 1−
√
5

2 )). Similarly, we can have E(1+
√
5

2 , T ) = span((1, 1+
√
5

2 )).

So {(1, 1−
√
5

2 ), (1, 1+
√
5

2 )} is a basis of R2.

3



(d). Denote e1 = (1, 1−
√
5

2 ), e2 = (1, 1+
√
5

2 ). Note that (0, 1) = 1√
5
(e2 − e1), then

T (0, 1) =
1√
5

(Te2 − Te1) =
1√
5

(λ2e2 − λ1e1)

⇒ T 2(0, 1) =
1√
5

(λ2Te2 − λ1Te1) =
1√
5

(λ22e2 − λ21e1)

⇒ · · · ⇒ Tn(0, 1) =
1√
5

(λn2e2 − λn1e1)

By (a), we have (Fn, Fn+1) = 1√
5
(λn2e2−λn1e1), which implies that Fn = 1√

5

(
(1+
√
5

2 )n − (1−
√
5

2 )n
)
.

(e). Denote α = 1+
√
5

2 , then 0 < α−1 =
√
5−1
2 < 1. Then Fn = 1√

5
(αn − (−α)−n).

If n is even, then Fn = 1√
5
(αn − α−n) < 1√

5
αn = 1√

5
(1+
√
5

2 )n.

While Fn + 1− 1√
5
αn = 1√

5
(
√

5− α−n) > 0, by 0 < α−1 =
√
5−1
2 < 1. So it remains to prove

that Fn + 1 − 1√
5
αn > 1√

5
αn − Fn, which is equivalent to prove that Fn >

1√
5
αn − 1

2 , which

is equivalent to prove α−n <
√
5
2 , which obviously holds since the 0 < α−1 =

√
5−1
2 < 1 and√

5 > 2.

If n is odd, then Fn = 1√
5
(αn + α−n) > 1√

5
αn = 1√

5
(1+
√
5

2 )n.

While Fn−1− 1√
5
αn = 1√

5
(α−n−1) < 0. So it remains to prove that Fn− 1√

5
αn < 1√

5
αn−Fn+1,

which is equivalent to prove that Fn <
1√
5
αn + 1

2 , which is equivalent to prove α−n <
√
5
2 ,

which obviously holds.

Extra Question

I Firstly we find the eigenvalues of T. Assume there exists a nonzero polynomial p(x) = a2x
2 +

a1x+ a0 such that T (p) = λp(x) for some λ ∈ R. Then we have

(2a2 + a1)(x
2 − 5x) = (λ+ 1)(a2x

2 + a1x+ a0)

⇒


a0(λ+ 1) = 0

a1(λ+ 1) = −5(2a2 + a1)

a2(λ+ 1) = 2a2 + a1

⇒

λ+ 1 0 0

0 λ+ 6 10

0 −1 λ− 1

a0a1
a2

 =

0

0

0


Since p(x) is nonzero, we have that the column (a0, a1, a2)

T should be nonzero, which means

the determinant of the matrix must be 0, so we have

(λ+ 1) [(λ+ 6)(λ− 1) + 10] = 0 ⇒ λ = −1 or− 4.

For λ = −1, we have that 2a2 + a1 = 0 ⇒ p(x) = a2x
2 − 2a2x+ a0 is an eigenvector, which

implies that the eigenspace E(−1, T ) =span ({x2 − x, 1}).
For λ = −4, we have that a0 = 0, 5a2 + a1 = 0 ⇒ p(x) = a2x

2 − 5a2x is an eigenvector,

which implies that the eigenspace E(−4, T ) =span ({x2 − 5x}).
Since P(R) is 3-dimensional, and x2 − x, 1, x2 − 5x is linearly independent, we have that

{x2 − x, 1, x2 − 5x} is a basis of P(R). By Theorem 5.41, T is diagonalizable.
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II Similar to [I], we first compute the eigenvalues of T . Assume there exists a nonzero polynomial

p(x) = a2x
2 + a1x+ a0 such that T (p) = λp(x) for some λ ∈ R. Then we have

2a2x
2 + 2a1x+ 2a0 + (x2 − 9)(9a2 + 3a1 + a0) = λ(a2x

2 + a1x+ a0)

⇒


2a2 + 9a2 + 3a1 + a0 = λa2

2a1 = λa1

2a0 − 9(9a2 + 3a1 + a0) = λa0

⇒

 1 3 11− λ
0 2− λ 0

λ+ 7 27 81

a0a1
a2

 =

0

0

0


Since the determinant of the matrix is zero, we have that

(2− λ)[81− (11− λ)(λ+ 7)] = 0 ⇒ λ = 2.

So T has only one eigenvalue λ = 2, which implies that 9a2+3a1+a0 = 0 ⇒ the eigenvector

p(x) = a2x
2 + a1x− 3a1 − 9a2 = a2(x

2 − 9) + a1(x− 3). So the eigenvectors of T are in the

eigenspace E(2, T ) = span({x2− 9, x− 3}), which cannot generate a basis of T . By Theorem

5.41, T is not diagonalizable.
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