MATH2040C Linear Algebra II 2017-18 Solution to Homework 4

Exercise 5.A

- **2** For any $v \in \text{null } S$, we have that Sx = 0, then TSx = 0, combined with ST = TS, we have STx = 0, which implies $Tx \in \text{null } S$.
- 8 If there exist $v = (z, w) \neq (0, 0)$ and $\lambda \in \mathbb{F}$ such that $Tv = \lambda v$, then we have

$$(z,w) = (\lambda w, \lambda z) \Rightarrow z = \lambda w, w = \lambda z \Rightarrow z = \lambda^2 z, w = \lambda^2 w$$

Since $(z, w) \neq (0, 0)$, we have $\lambda^2 = 1$, then $\lambda = \pm 1$. For the eigenvalue $\lambda = 1$, Tv = v implies $v \in \text{span}\{(1, 1)\}$; For the eigenvalue $\lambda = -1$, Tv = -v implies $v \in \text{span}\{(1, -1)\}$

15 (a) If λ is an eigenvalue of T, then \exists a non-zero vector $v \in V$, such that $Tv = \lambda v$. Since S is invertible, \exists a non-zero $u \in V$ such that v = Su. Then we get $TSu = \lambda Su \Rightarrow S^{-1}TSu = \lambda u \Rightarrow \lambda$ is an eigenvalue of $S^{-1}TS$.

On the other hand, if λ is an eigenvalue of $S^{-1}TS$, then \exists a non-zero vector $v \in V$, such that $S^{-1}TSv = \lambda v \Rightarrow TSv = \lambda Sv$. Let u = Sv, then $u \neq 0$ by S being invertible, and $Tu = \lambda u$, which means λ is an eigenvalue of T.

(b) From (a), for any eigenvalue λ of T, if $v \in E(\lambda, T)$ (the eigenspace of T with respect to λ , recall Def. 5.36), then

$$Tv = \lambda v \iff S^{-1}TS(S^{-1}v) = \lambda S^{-1}v \iff S^{-1}v \in E(\lambda, S^{-1})$$

Thus we have that v is an eigenvector of T if and only if $S^{-1}v$ is an eigenvector of $S^{-1}TS$.

18^{*} If T has an eigenvalue λ with an eigenvector $v = (z_1, z_2, \ldots)$, then $Tv = \lambda v$ implies that $0 = \lambda z_1, z_1 = \lambda z_2, \ldots, z_n = \lambda z_{n+1}, \ldots$ If $\lambda = 0$, then $z_n = 0$, $\forall n \ge 1$, which contradicts with $v \ne 0$. And if $\lambda \ne 0$, then we can get $z_1 = 0$, and then $z_2 = 0, z_3 = 0, \ldots$ one by one in turn, which is also a contradiction.

- **20** Assume that $v = (z_1, z_2, ...)$ satisfies $Tv = \lambda v$ for some $\lambda \in \mathbf{F}$, then we have that $z_{n+1} = \lambda z_n$, $\forall n \ge 1$, then $z_n = \lambda^{n-1} z_1$, $\forall n \ge 1 \Rightarrow v = z_1(1, \lambda, \lambda^2, ...)$. Thus any $\lambda \in \mathbf{F}$ is an eigenvalue of T, and its eigenspace $E(\lambda, T) = \operatorname{span}\{(1, \lambda, \lambda^2, ...)\}$.
- **21** (a). If $\lambda \in \mathbf{F}$ with $\lambda \neq 0$, then \exists a non-zero vector v such that $Tv = \lambda v$, then it is equivalent to $T^{-1}v = \lambda^{-1}v$ by T being invertible and $\lambda \neq 0$, which means λ^{-1} is an eigenvalue of T^{-1} .

(b). By (a), we can easily see that for any vector $v \in V$,

$$v \in E(\lambda, T) \iff v \in E(\lambda^{-1}, T^{-1}).$$

29^{*} If T has k + 2 distinct eigenvalues, then T has at least k + 1 non-zero distinct eigenvalues, denoted by $\lambda_0, \lambda_1, \ldots, \lambda_k$. And assume their eigenvectors as v_0, v_1, \ldots, v_k , then by Theorem

5.10, v_0, v_1, \ldots, v_k are linearly independent. For any vector

$$v = \sum_{i=0}^{k} a_i v_i \in \text{span}(\{v_0, v_1, \dots, v_k\}),$$

we have that

$$T(\sum_{i=0}^{k} a_i \lambda_i^{-1} v_i) = \sum_{i=0}^{k} a_i \lambda_i^{-1} T v_i = \sum_{i=0}^{k} a_i \lambda_i^{-1} \lambda_i v_i = v.$$

So span $(\{v_0, v_1, \ldots, v_k\})$ is a k+1 dimensional subspace of Range T, which is a contradiction.

32* If we assume $Tf = \lambda f$, then $f' = \lambda f \Rightarrow (e^{-\lambda x} f(x))' = 0 \Rightarrow f(x) = Ce^{\lambda x}$, here C is any constant in \mathbb{R} . So any real number $\lambda \in \mathbb{R}$ is an eigenvalue of T with $e^{\lambda x}$ being its eigenvector. Hence by Theorem 5.10, $e^{\lambda_1 x}, \ldots, e^{\lambda_n x}$ is linearly independent.

Exercise 5.B

1* (a). Recall that an operator S is invertible if and only if there exists an operator R such that SR = I (or RS = I). And note that

$$(I - T)(I + T + \dots + T^{n-1}) = I + T + \dots + T^{n-1} - (T + T^2 + \dots + T^n)$$

= $I - T^n = I$

(b). Recall that if $x \in \mathbb{R}$, then $1 - x^n = (1 - x)(1 + x + x^2 + \dots + x^{n-1})$.

- **3** Since $I T^2 = 0$, then (I + T)(I T) = 0. Then for any $v \in V$, (I + V)(I V)v = 0. Since -1 is not an eigenvalue of V, then (I - V)v = 0, that is v = Tv.
- **9**^{*} If λ is a zero of p, then there exists a polynomial q(x), such that $p(x) = (x \lambda)q(x)$. Then we have $q(T)v \neq 0$, otherwise p is not the polynomial of the smallest degree. And combined with $0 = p(T)v = (T \lambda)q(T)v$, we have that λ is an eigenvalue of T.
- **10** $Tv = \lambda v \Rightarrow T^2 v = \lambda^2 v \Rightarrow \ldots \Rightarrow T^n v = \lambda^n v, \forall n \ge 1.$ So if $p(x) = \sum_{k=0}^n a_k x^k$, then we have $p(T)v = \sum_{k=0}^n a_k T^k v = \sum_{k=0}^n a_k \lambda^k v = p(\lambda)v.$
- **11** (\Rightarrow): If α is an eigenvalue of p(T), then $\exists v \neq 0, s.t. \ p(T)v = \alpha v \Rightarrow (p(T) \alpha I)v = 0$. Since we can write $p(x) - \alpha = (x - \lambda_1) \cdots (x - \lambda_n)$ with $\lambda_i \in \mathbb{C}$, then we have

$$(T - \lambda_1) \cdots (T - \lambda_n)v = 0$$

Then if $(T - \lambda_2) \cdots (T - \lambda_n) v \neq 0$, then λ_1 is an eigenvalue of T; Otherwise, if $(T - \lambda_2) \cdots (T - \lambda_n) v = 0$, and $(T - \lambda_3) \cdots (T - \lambda_n) v \neq 0$, then λ_2 is an eigenvalue of T; ...; keep arguing like this, if $(T - \lambda_{n-1})(T - \lambda_n)v = 0$ and $(T - \lambda_n)v \neq 0$, then λ_{n-1} is an eigenvalue; Otherwise if $(T - \lambda_n)v = 0$, then λ_n is an eigenvalue. In any case, we can have that $\exists 1 \leq i \leq n$, such that λ_i is an eigenvalue of T, where $p(\lambda_i) = \alpha$. (\Leftarrow) : If there exists an eigenvalue λ of T, such that $p(\lambda) = \alpha$. Then by Question 10, we have

 (\Leftarrow) : If there exists an eigenvalue λ of T, such that $p(\lambda) = \alpha$. Then by Question 10, we have $p(T)v = p(\lambda)v = \alpha v$, which implies that α is an eigenvalue of p(T).

20 Denote $n = \dim V$. Then by Theorem 5.27, there exist a basis $\alpha = \{e_1, e_2, \ldots, e_n\}$ of V, such that

 $Te_k \in \operatorname{span}(\{e_1, e_2, \dots, e_k\}), \ \forall \ 1 \le k \le n.$

So for any $1 \le k \le n$, the space span $(\{e_1, e_2, \ldots, e_k\})$ is a k-dimensional invariant subspace of V with respect to T.

Exercise 5.C

6 Denote $n = \dim V$. Since T has n distinct eigenvalues $\lambda_1, \ldots, \lambda_n$, then the corresponding eigenvectors v_1, \ldots, v_n generate a basis of V. Thus, v_1, \ldots, v_n are also eigenvectors of S, then there exist μ_1, \ldots, μ_n , such that $Sv_i = \mu_i v_i$, $\forall 1 \le i \le n$. So we have that for $\forall 1 \le i \le n$,

$$STv_i = S(\lambda_i v_i) = \lambda_i Sv_i = \lambda_i \mu_i v_i$$

$$TSv_i = T(\mu_i v_i) = \mu_i Tv_i = \mu_i \lambda_i v_i.$$

Thus $STv_i = TSv_i$, $\forall 1 \leq i \leq n$. And combined with that v_1, \ldots, v_n is a basis of V, then ST = TS.

12 Denote $(\lambda_1, \lambda_2, \lambda_3) = (2, 6, 7)$. Since the eigenvalues are distinct, we can take a basis $v_1, v_2, v_3 \in \mathbf{F}^3$ and a basis $w_1, w_2, w_3 \in \mathbf{F}^3$ to be the eigenvectors of R and T respectively. Define

$$S: V \longrightarrow V$$

via $Sv_i = w_i, \ \forall \ 1 \le i \le n, \ \text{and} \ S(\sum_{i=1}^n a_i v_i) = \sum_{i=1}^n a_i w_i$

then $S \in \mathcal{L}(V)$ and is invertible. And we have

$$S^{-1}TSv_i = S^{-1}Tw_i = \lambda_i S^{-1}w_i = \lambda_i v_i = Rv_i, \ \forall \ 1 \le i \le 3.$$

which implies that $S^{-1}TS = R$.

16 (a). Using the inductive method, firstly we have $T(0,1) = (1,0+1) = (1,1) = (F_1,F_2)$, so it holds for n = 1. Then we assume for any $1 \le k \le n$, there holds $T^k(0,1) = (F_k,F_{k+1})$, then we have

$$T^{n+1}(0,1) = T(T^n(0,1)) = T(F_n, F_{n+1}) = (F_{n+1}, F_n + F_{n+1}) = (F_{n+1}, F_{n+2}).$$

So by the inductive method, it holds for all $n \ge 1$.

(b). If λ is an eigenvalue, then there exists a nonzero vector (x, y), such that $T(x, y) = \lambda(x, y)$, then we have $y = \lambda x$, $x + y = \lambda y$. If x = 0, then y = 0, which is a contradiction. So $x \neq 0$ and by $x + \lambda x = \lambda^2 x$, we have $\lambda^2 - \lambda - 1 = 0 \Rightarrow \lambda = \frac{1 \pm \sqrt{5}}{2}$. So T has two eigenvalues $\lambda_1 = \frac{1 - \sqrt{5}}{2}$ and $\lambda_2 = \frac{1 + \sqrt{5}}{2}$.

(c). By (b), we can have that for $\lambda_1 = \frac{1-\sqrt{5}}{2}$, $y = \frac{1-\sqrt{5}}{2}x$, then the eigenspace $E(\frac{1-\sqrt{5}}{2},T) = \operatorname{span}((1,\frac{1-\sqrt{5}}{2}))$. Similarly, we can have $E(\frac{1+\sqrt{5}}{2},T) = \operatorname{span}((1,\frac{1+\sqrt{5}}{2}))$. So $\{(1,\frac{1-\sqrt{5}}{2}),(1,\frac{1+\sqrt{5}}{2})\}$ is a basis of \mathbb{R}^2 . (d). Denote $e_1 = (1, \frac{1-\sqrt{5}}{2}), e_2 = (1, \frac{1+\sqrt{5}}{2})$. Note that $(0, 1) = \frac{1}{\sqrt{5}}(e_2 - e_1)$, then

$$T(0,1) = \frac{1}{\sqrt{5}}(Te_2 - Te_1) = \frac{1}{\sqrt{5}}(\lambda_2 e_2 - \lambda_1 e_1)$$

$$\Rightarrow T^2(0,1) = \frac{1}{\sqrt{5}}(\lambda_2 Te_2 - \lambda_1 Te_1) = \frac{1}{\sqrt{5}}(\lambda_2^2 e_2 - \lambda_1^2 e_1)$$

$$\Rightarrow \dots \Rightarrow T^n(0,1) = \frac{1}{\sqrt{5}}(\lambda_2^n e_2 - \lambda_1^n e_1)$$

By (a), we have $(F_n, F_{n+1}) = \frac{1}{\sqrt{5}} (\lambda_2^n e_2 - \lambda_1^n e_1)$, which implies that $F_n = \frac{1}{\sqrt{5}} \left((\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n \right)$. (e). Denote $\alpha = \frac{1+\sqrt{5}}{2}$, then $0 < \alpha^{-1} = \frac{\sqrt{5}-1}{2} < 1$. Then $F_n = \frac{1}{\sqrt{5}} (\alpha^n - (-\alpha)^{-n})$.

If n is even, then $F_n = \frac{1}{\sqrt{5}}(\alpha^n - \alpha^{-n}) < \frac{1}{\sqrt{5}}\alpha^n = \frac{1}{\sqrt{5}}(\frac{1+\sqrt{5}}{2})^n$. While $F_n + 1 - \frac{1}{\sqrt{5}}\alpha^n = \frac{1}{\sqrt{5}}(\sqrt{5} - \alpha^{-n}) > 0$, by $0 < \alpha^{-1} = \frac{\sqrt{5}-1}{2} < 1$. So it remains to prove that $F_n + 1 - \frac{1}{\sqrt{5}}\alpha^n > \frac{1}{\sqrt{5}}\alpha^n - F_n$, which is equivalent to prove that $F_n > \frac{1}{\sqrt{5}}\alpha^n - \frac{1}{2}$, which is equivalent to prove $\alpha^{-n} < \frac{\sqrt{5}}{2}$, which obviously holds since the $0 < \alpha^{-1} = \frac{\sqrt{5}-1}{2} < 1$ and $\sqrt{5} > 2$. If n is odd, then $F_n = \frac{1}{\sqrt{5}}(\alpha^n + \alpha^{-n}) > \frac{1}{\sqrt{5}}\alpha^n = \frac{1}{\sqrt{5}}(\frac{1+\sqrt{5}}{2})^n$. While $F_n - 1 - \frac{1}{\sqrt{5}}\alpha^n = \frac{1}{\sqrt{5}}(\alpha^{-n} - 1) < 0$. So it remains to prove that $F_n - \frac{1}{\sqrt{5}}\alpha^n < \frac{1}{\sqrt{5}}\alpha^n - F_n + 1$, which is equivalent to prove that $F_n < \frac{1}{\sqrt{5}}\alpha^n + \frac{1}{2}$, which is equivalent to prove $\alpha^{-n} < \frac{\sqrt{5}}{2}$, which obviously holds.

Extra Question

I Firstly we find the eigenvalues of T. Assume there exists a nonzero polynomial $p(x) = a_2 x^2 + a_1 x + a_0$ such that $T(p) = \lambda p(x)$ for some $\lambda \in \mathbb{R}$. Then we have

$$(2a_2 + a_1)(x^2 - 5x) = (\lambda + 1)(a_2x^2 + a_1x + a_0)$$

$$\Rightarrow \begin{cases} a_0(\lambda + 1) = 0 \\ a_1(\lambda + 1) = -5(2a_2 + a_1) \\ a_2(\lambda + 1) = 2a_2 + a_1 \end{cases} \Rightarrow \begin{bmatrix} \lambda + 1 & 0 & 0 \\ 0 & \lambda + 6 & 10 \\ 0 & -1 & \lambda - 1 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Since p(x) is nonzero, we have that the column $(a_0, a_1, a_2)^T$ should be nonzero, which means the determinant of the matrix must be 0, so we have

$$(\lambda+1)\left[(\lambda+6)(\lambda-1)+10\right] = 0 \implies \lambda = -1 \text{ or } -4.$$

For $\lambda = -1$, we have that $2a_2 + a_1 = 0 \Rightarrow p(x) = a_2x^2 - 2a_2x + a_0$ is an eigenvector, which implies that the eigenspace $E(-1,T) = \text{span}(\{x^2 - x, 1\}).$

For $\lambda = -4$, we have that $a_0 = 0, 5a_2 + a_1 = 0 \Rightarrow p(x) = a_2x^2 - 5a_2x$ is an eigenvector, which implies that the eigenspace $E(-4, T) = \text{span}(\{x^2 - 5x\})$.

Since $\mathcal{P}(\mathbb{R})$ is 3-dimensional, and $x^2 - x, 1, x^2 - 5x$ is linearly independent, we have that $\{x^2 - x, 1, x^2 - 5x\}$ is a basis of $\mathcal{P}(\mathbb{R})$. By Theorem 5.41, T is diagonalizable.

II Similar to [I], we first compute the eigenvalues of T. Assume there exists a nonzero polynomial $p(x) = a_2 x^2 + a_1 x + a_0$ such that $T(p) = \lambda p(x)$ for some $\lambda \in \mathbb{R}$. Then we have

$$2a_{2}x^{2} + 2a_{1}x + 2a_{0} + (x^{2} - 9)(9a_{2} + 3a_{1} + a_{0}) = \lambda(a_{2}x^{2} + a_{1}x + a_{0})$$

$$\Rightarrow \begin{cases} 2a_{2} + 9a_{2} + 3a_{1} + a_{0} = \lambda a_{2} \\ 2a_{1} = \lambda a_{1} \\ 2a_{0} - 9(9a_{2} + 3a_{1} + a_{0}) = \lambda a_{0} \end{cases} \Rightarrow \begin{bmatrix} 1 & 3 & 11 - \lambda \\ 0 & 2 - \lambda & 0 \\ \lambda + 7 & 27 & 81 \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Since the determinant of the matrix is zero, we have that

$$(2-\lambda)[81-(11-\lambda)(\lambda+7)] = 0 \implies \lambda = 2.$$

So T has only one eigenvalue $\lambda = 2$, which implies that $9a_2 + 3a_1 + a_0 = 0 \Rightarrow$ the eigenvector $p(x) = a_2x^2 + a_1x - 3a_1 - 9a_2 = a_2(x^2 - 9) + a_1(x - 3)$. So the eigenvectors of T are in the eigenspace $E(2,T) = \text{span}(\{x^2 - 9, x - 3\})$, which cannot generate a basis of T. By Theorem 5.41, T is not diagonalizable.