MATH2040C Linear Algebra II 2017-18 Solution to Homework 3

Exercise 3.A

1* First we prove the "if" part. b = c = 0 implies that $T : \mathbb{R}^3 \to \mathbb{R}^2$ is defined as T(x, y, z) = (2x - 4y + 3z, 6x). For any $(x, y, z), (u, v, w) \in \mathbb{R}^3$,

$$T((x, y, z) + (u, v, w)) = T(x + u, y + v, z + w)$$

= $(2(x + u) - 4(y + v) + 3(z + w), 6(x + u))$
= $(2x - 4y + 3z, 6x) + (2u - 4v + 3w, 6u)$
= $T(x, y, z) + T(u, v, w)$

Thus, this map is additive.

For any $(x, y, z) \in \mathbb{R}^3$ and $a \in \mathbb{R}$,

$$T(a(x, y, z)) = T(ax, ay, az)$$

= $(2ax - 4ay + 3az, 6ax)$
= $a(2x - 4y + 2z, 6x)$
= $aT(x, y, z)$

Thus, this map is homogeneous of degree 1. We conclude that T is a linear map.

Then we prove the "only if" part. Now T is linear, thus additive and homogeneous of degree 1 by definition. For any $(x, y, z) \in \mathbb{R}^3$ and $a \in \mathbb{R}$,

$$T(a(x, y, z)) = T(ax, ay, az)$$

= (2ax - 4ay + 3az + b, 6ax + ca³xyz)

and

$$aT(x, y, z) = a(2x - 4y + 2z + b, 6x + cxyz)$$

= $(2ax - 4ay + 3az + ab, 6ax + caxyz)$

By homogeneity, T(a(x, y, z)) = aT(x, y, z). This implies that $(2ax - 4ay + 3az + b, 6ax + ca^3xyz) = (2ax - 4ay + 3az + ab, 6ax + caxyz)$ for any $(x, y, z) \in \mathbb{R}^3$ and $a \in \mathbb{R}$. Thus b = ab, $ca^3xyz = caxyz$ for any $x, y, z, a \in \mathbb{R}$. This can only happen when b = c = 0 (say, take a = 2 and x = y = z = 1 to see this). This proves the "only if" part.

4^{*} Suppose there exists $a_1, \ldots, a_m \in \mathbb{F}$ such that

$$a_1v_1 + \cdots + a_mv_m = \mathbf{0}.$$

Then apply the linear transformation T on both sides, we have

$$T(a_1v_1 + \cdots + a_mv_m) = T(\mathbf{0}).$$

By linearity of T, we have

$$a_1Tv_1 + \cdots + a_mTv_m = \mathbf{0}.$$

Since (Tv_1, \ldots, Tv_m) is given to be linearly independent, by definition, we have a_1, \ldots, a_m being all zero. Therefore (v_1, \ldots, v_m) is linearly independent.

9 Consider the conjugation function on \mathbb{C} defined by $\varphi(a + bi) = a - bi$ for all $a, b \in \mathbb{R}$. Let $w = a + bi, z = c + di \in \mathbb{C}$ with $a, b, c, d \in \mathbb{R}$. We see that

 $\varphi(w)+\varphi(z)=(a-bi)+(c-di)=(a+c)-(b+d)i=\varphi((a+c)+(b+d)i)=\varphi(w+z).$

However, we check that $i\varphi(1) = i \cdot 1 = i$ while $\varphi(i \cdot 1) = \varphi(i) = -i \neq i$. Therefore φ is not \mathbb{C} -linear.

(For the \mathbb{R} case: Consider \mathbb{R} as a vector space over \mathbb{Q} . Let $(1, \pi)$ be a list of vectors in \mathbb{R} . It is linearly independent over \mathbb{Q} by irrationality of π . The advance tools that we will use are "Every linearly independent subset of a vector space can be extended to a basis" and "Value at basis of domain determines a linear map" which are analogs to Theorem 2.33 and 3.5 of textbook in vector spaces which are not necessarily finite dimensional. Let β be a \mathbb{Q} -basis of \mathbb{R} containing 1 and π . Define a \mathbb{Q} -linear operator φ on \mathbb{R} such that $\varphi(1) = \pi$, $\varphi(\pi) = 1$, and $\varphi(x) = x$ for $x \in \beta$ not equal to 1 nor π . Then it is additive but not \mathbb{R} -linear since $\pi\varphi(1) = \pi^2$ while $\varphi(\pi) = 1$.)

11 V is a finite dimensional vector space and U is a subspace of V. Hence we can pick a basis $\{u_1, \dots, u_k\}$ of U, which extends to a basis $\{u_1, \dots, u_k, v_1, \dots, v_l\}$ of V. $S(u_1), \dots, S(u_k)$ are vectors in W and we pick ℓ vectors $\{w_1, \dots, w_\ell\}$ in W. Then by Theorem 3.5 in the textbook, we have a unique linear map $T: V \to W$ such that $Tu_i = Su_i$ for $i = 1, \dots, k$ and $Tv_j = w_j$ for $j = 1, \dots, \ell$.

Finally, $T\boldsymbol{u} = S\boldsymbol{u}$ for all $\boldsymbol{u} \in U$. Indeed, for any $\boldsymbol{u} \in U$, write $\boldsymbol{u} = a_1\boldsymbol{u}_1 + \cdots + a_k\boldsymbol{u}_k$ since $\{\boldsymbol{u}_1, \cdots, \boldsymbol{u}_k\}$ is a basis of U. Then

$$T\boldsymbol{u} = T(a_1\boldsymbol{u}_1 + \dots + a_k\boldsymbol{u}_k)$$

= $a_1T\boldsymbol{u}_1 + \dots + a_kT\boldsymbol{u}_k$
= $a_1S\boldsymbol{u}_1 + \dots + a_kS\boldsymbol{u}_k$
= $S(a_1\boldsymbol{u}_1 + \dots + a_k\boldsymbol{u}_k)$
= $S\boldsymbol{u}$

Note that we used above the linearity of S and T.

Exercise 3.B

- 5* Let $\{v_1, \dots, v_4\}$ be the standard basis of \mathbb{R}^4 . Let $Tv_1 = Tv_2 = 0$, $Tv_3 = v_1$ and $Tv_4 = v_2$. For any $v \in \mathbb{R}^4$, $v = a_1v_1 + \dots + a_4v_4$ for some a_1, \dots, a_4 . Define $Tv = a_1Tv_1 + \dots + a_4Tv_4$. This defines a linear map $T : \mathbb{R}^4 \to \mathbb{R}^4$. Then ker $T = \operatorname{span}\{v_1, v_2\} = \operatorname{range} T$ (Here we used Exercise 3.B Q10).
- 6^* Suppose that there exists such a linear map. By the fundamental theorem dim range $T + \dim \ker T = 5$. And by assumption, $\ker T = \operatorname{range} T$. Thus dim range $T = \dim \ker T = 2.5$. This is absurd because by definition, dimensions are integers. This shows that there does not exist such a linear map.
- **8**^{*} Let (v_1, \ldots, v_n) and (w_1, \ldots, w_m) be bases of V and W respectively, where $n = \dim V$ and $m = \dim W$. It is given that $n \ge m \ge 2$. Define linear maps $T, S \in \mathcal{L}(V, W)$ by

$$T(v_i) = \begin{cases} w_i & \text{for } i = 1, \dots, m-1; \\ \mathbf{0} & \text{otherwise,} \end{cases}$$

and

$$S(v_i) = \begin{cases} w_m & \text{ for } i = m; \\ \mathbf{0} & \text{ otherwise.} \end{cases}$$

We claim that T and S are not surjective. Note that

range
$$T = \operatorname{span}\{T(v_1), \ldots, T(v_n)\} = \operatorname{span}\{w_1, \ldots, w_{m-1}, \mathbf{0}, \ldots, \mathbf{0}\}$$

and

range
$$S = \operatorname{span}\{S(v_1), \ldots, S(v_n)\} = \operatorname{span}\{\mathbf{0}, \ldots, \mathbf{0}, w_m, \mathbf{0}, \ldots, \mathbf{0}\}$$

(Here we used Exercise 3.B Q10). Since (w_1, \ldots, w_m) is linearly independent by construction, $w_m \notin \{w_1, \ldots, w_{m-1}\} = \operatorname{range} T$ and $w_1 \notin \operatorname{span}\{w_m\} = \operatorname{range} S$. Now the sum (T + S) satisfies

$$(T+S)(v_i) = \begin{cases} w_i & \text{for } i = 1, \dots, m; \\ \mathbf{0} & \text{otherwise.} \end{cases}$$

Therefore range $(T+S) = \text{span}\{(T+S)(v_1), \ldots, (T+S)(v_n)\} = \text{span}\{w_1, \ldots, w_m, \mathbf{0}, \ldots, \mathbf{0}\} = \text{span}\{w_1, \ldots, w_m\} = W$. Therefore the sum of two non-surjective map can be surjective and the set

 ${T \in \mathcal{L}(V, W) : T \text{ is not surjective.}}$

is not a subspace of $\mathcal{L}(V, W)$.

9 Suppose there exists $a_1, \ldots, a_n \in \mathbb{F}$ such that

 $a_1Tv_1 + \cdots + a_nTv_n = \mathbf{0}.$

Since T is linear, we have

$$T(a_1v_1 + \cdots + a_nv_n) = \mathbf{0}.$$

By injectivity of T, we have

$$a_1v_1+\cdots a_nv_n=\mathbf{0}.$$

Since (v_1, \ldots, v_n) is given to be linearly independent, by definition, we have a_1, \ldots, a_n being all zero. Therefore (Tv_1, \ldots, Tv_n) is linearly independent in W.

10 By definition of range, $Tv_1, \ldots, Tv_n \in \text{range } T$. Therefore $\text{span}(Tv_1, \ldots, Tv_n) \subset \text{range } T$. Let $w \in \text{range } T$. There exists $w \in V$ such that T(w) = w. Since w = w, spans V, the

Let $w \in \operatorname{range} T$. There exists $v \in V$ such that T(v) = w. Since v_1, \ldots, v_n spans V, there exists $a_1, \ldots, a_n \in \mathbb{F}$ such that $a_1v_1 + \cdots + a_nv_n = v$. Thus

$$w = T(v) = T(a_1v_1 + \dots + a_nv_n) = a_1Tv_1 + \dots + a_nTv_n \in \operatorname{span}(Tv_1 \dots, Tv_n).$$

Hence $\operatorname{span}(Tv_1\ldots,Tv_n) = \operatorname{range} T$.

12* Since V is finite dimensional, null T is finite dimensional too. Let (v_1, \ldots, v_n) be a basis of null T. Extend it to $(v_1, \ldots, v_n, w_1, \ldots, w_m)$ a basis of V. We claim that $U = \operatorname{span}(w_1, \ldots, w_m)$ has the desired property. By construction, it is a subspace of V. By Theorem 2.34 in the textbook, we have $U \oplus \operatorname{null} T = V$. In particular, $U \cap \operatorname{null} T = \{\mathbf{0}\}$. By definition of range, $Tu \in \operatorname{range} T$ for all u in U. Therefore $\{Tu : u \in U\} \subset \operatorname{range} T$. It

remains to show that range $T \subset \{Tu : u \in U\}$. Suppose $w \in \text{range } T$. Then there exists $v \in V$ such that w = T(v). Since U + null T = V, there exists $u \in U$, $x \in \text{null } T$ such that v = u + x. Therefore

$$w = T(v) = T(u+x) = Tu + Tx = Tu + \mathbf{0} = Tu$$

and range $T = \{Tu : u \in U\}.$

15 Let $N = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{F}^5 : x_1 = 3x_2 \text{ and } x_3 = x_4 = x_5\}$. We claim that dim N = 2. It suffices to show that span $\{(3, 1, 0, 0, 0), (0, 0, 1, 1, 1)\} = N$ since $\{(3, 1, 0, 0, 0), (0, 0, 1, 1, 1)\}$ is linearly independent (compare the components). By direct check $(3, 1, 0, 0, 0), (0, 0, 1, 1, 1) \in N$ so span $\{(3, 1, 0, 0, 0), (0, 0, 1, 1, 1)\} \subset N$. If $x = (x_1, x_2, x_3, x_4, x_5) \in N$, $x_1 = 3x_2$ and $x_3 = x_4 = x_5$. Therefore $x = x_2(3, 1, 0, 0, 0) + x_5(0, 0, 1, 1, 1) \in \text{span}\{(3, 1, 0, 0, 0), (0, 0, 1, 1, 1)\}$. Hence we have the claim.

Since dim N = 2, if N was the kernel of a linear map T from \mathbb{F}^5 to \mathbb{F}^2 , then by the fundamental theorem, we would have

$$\dim \operatorname{null} T + \dim \operatorname{range} T = 5$$

However, range $T \subset \mathbb{F}^2$ so dim range $T \leq 2$. Therefore $5 = \dim \operatorname{null} T + \dim \operatorname{range} T \leq 2 + 2 = 4$, a contradiction. Therefore there is no such transformation.

- **18** Let $\{v_1, \ldots, v_n\}$ be a basis of V.
 - (⇒) Suppose T is a surjective linear map from V onto W. Then range T = W. By Exercise 3.B Q10, range $T = \text{span}(Tv_1 \dots, Tv_n)$. Therefore W is span by n vectors. Since length of a spanning list is not less than the dimension, dim $W \le n = \dim V$.
 - (\Leftarrow) Suppose $m := \dim W \leq \dim V$, let $\{w_1, \ldots, w_m\}$ be a basis of W. Define a linear map T from V to W by

$$T(v_i) = \begin{cases} w_i & \text{for } i = 1, \dots, m; \\ \mathbf{0} & \text{otherwise.} \end{cases}$$

This is possible since $n \ge m$. Then we have range $T = \text{span}\{T(v_1), \ldots, T(v_n)\} = \text{span}\{w_1, \ldots, w_m, \mathbf{0}, \ldots, \mathbf{0}\} = \text{span}\{w_1, \ldots, w_m\} = W$ and T is surjective.

22 Since U is finite dimensional, let $\alpha = \{u_1, \ldots, u_n\}$ be a basis of null T. If $v \in \text{null } T$, $ST(v) = S(\mathbf{0}) = \mathbf{0}$. Therefore $v \in \text{null } ST$ and null $T \subset \text{null } ST$. Extend α to a basis $\beta = \{u_1, \ldots, u_n, v_1, \ldots, v_m\}$ of null ST. Note that $ST(v_i) = \mathbf{0}$ for all *i*. Therefore $\{Tv_1, \ldots, Tv_m\} \subset \text{null } S$. We claim that $\{Tv_1, \ldots, Tv_m\}$ is linearly independent in null S. Suppose there exists $a_1, \ldots, a_m \in \mathbb{F}$ such that

$$a_1Tv_1 + \cdots + a_mTv_m = \mathbf{0}.$$

Since T is linear, we have

$$T(a_1v_1 + \cdots + a_mv_m) = \mathbf{0}$$

Therefore $a_1v_1 + \cdots + a_mv_m \in \text{null } T$ and there exists $b_1, \ldots, b_n \in \mathbb{F}$ such that

$$a_1v_1 + \cdots + a_nv_m = b_1u_1 + \cdots + b_nu_n.$$

Rewriting, we have

$$a_1v_1 + \cdots + a_nv_m - b_1u_1 - \cdots - b_nu_n = \mathbf{0}.$$

Since $\{u_1, \ldots, u_n, v_1, \ldots, v_m\}$ is constructed to be linearly independent, by definition, we have $a_1, \ldots, a_m, b_1, \ldots, b_n$ being all zero. Therefore $\{Tv_1, \ldots, Tv_m\}$ is linearly independent in null S. Hence dim null $S \ge \#\{Tv_1, \ldots, Tv_m\} = m$. Therefore

 $\dim \operatorname{null} ST = n + m \leq \dim \operatorname{null} S + \dim \operatorname{null} T.$

27 Suppose $p \in \mathcal{P}(\mathbb{R})$. If $p \equiv 0$ the zero polynomial, take $q \equiv 0 \in \mathcal{P}(\mathbb{R})$. So we may assume $p \not\equiv 0$. Let d be the degree of p which is a non-negative integer. Let $V = \mathcal{P}_{d+1}(\mathbb{R})$ and $W = \mathcal{P}_d(\mathbb{R})$. Define the linear map $T: V \to W$ by T(f) = 5f'' + 3f'. Suppose $f \in V$ such that $T(f) \equiv 0$, i.e. 5f'' + 3f' = 0. Then $5f' + 3f \equiv c$ where c is a constant. If $f \not\equiv 0$, then the degree of f is greater than the degree of f'. So the highest degree term of 3f + 5f' is that of 3f. By comparing the coefficient of the highest degree term on both sides, the degree of f can only be 0 and so $f' \equiv 0$. Hence f can only be constant. It is also true that $Tf \equiv 0$ for any constant polynomial f. Therefore the kernel of T must be the subspace of constant functions which has dimension 1. By fundamental theorem, dim null T + dim range $T = \dim V = d + 2$. Therefore dim range $T = d+2-1 = d+1 = \dim W$ and range T = W (note that range $T \subset W$ by construction of T). So T is surjective and there exists $q \in \mathcal{P}_{d+1}(\mathbb{R}) \subset \mathcal{P}(\mathbb{R})$ such that Tq = 5q'' + 3q' = p.

Exercise 3.C

2 Let $\beta = (x^3, x^2, x, 1) \subset \mathcal{P}_3(\mathbb{R})$ and $\gamma = (3x^2, 2x, 1) \subset \mathcal{P}_2(\mathbb{R})$. Since the elements in β (resp. γ) have different degree, they are linearly independent. Since $|\beta| = \dim \mathcal{P}_3(\mathbb{R})$ and $|\gamma| = \dim \mathcal{P}_2(\mathbb{R})$, they are basis of $\mathcal{P}_3(\mathbb{R})$ and $\mathcal{P}_2(\mathbb{R})$ respectively.

Now we have $Dx^3 = 3x^2$, $Dx^2 = 2x$, Dx = 1, D1 = 0. Therefore we have

$$\mathcal{M}(D,\beta,\gamma) = \begin{bmatrix} \mathcal{M}(Dx^3,\gamma) & \mathcal{M}(Dx^2,\gamma) & \mathcal{M}(Dx,\gamma) & \mathcal{M}(D1,\gamma) \end{bmatrix}$$
$$= \begin{bmatrix} \mathcal{M}(3x^2,\gamma) & \mathcal{M}(2x,\gamma) & \mathcal{M}(1,\gamma) & \mathcal{M}(0,\gamma) \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 \end{bmatrix}$$

3 Let (u_1, \ldots, u_r) be a basis of null *T*. Extends it to a basis $(u_1, \ldots, u_r, v_1, \ldots, v_n)$ of *V*. We may we order it into $\alpha := (v_1, \ldots, v_n, u_1, \ldots, u_r)$.

We claim that $(Tv_1, \ldots Tv_n)$ is linearly independent in W. Suppose there exists $a_1, \ldots, a_n \in \mathbb{F}$ such that

$$a_1Tv_1 + \cdots + a_nTv_n = \mathbf{0}.$$

Since T is linear, we have

$$T(a_1v_1+\cdots a_nv_n)=\mathbf{0}.$$

Therefore $a_1v_1 + \cdots + a_nv_n \in \text{null } T$ and there exists $b_1, \ldots, b_r \in \mathbb{F}$ such that

$$a_1v_1 + \cdots + a_nv_n = b_1u_1 + \cdots + b_ru_r.$$

Rewriting, we have

$$a_1v_1 + \cdots + a_nv_n - b_1u_1 - \cdots - b_ru_r = \mathbf{0}.$$

Since $(v_1, \ldots, v_n, u_1, \ldots, u_r)$ is constructed to be linearly independent, by definition, we have $a_1, \ldots, a_n, b_1, \ldots, b_r$ being all zero. Therefore (Tv_1, \ldots, Tv_n) is linearly independent in W. Extend (Tv_1, \ldots, Tv_n) to a basis $\beta := (Tv_1, \ldots, Tv_n, w_1, \ldots, w_m)$ of W. We check that

$$\mathcal{M}(Tv_i,\beta) = e_i, \ \mathcal{M}(Tu_i,\beta) = \mathbf{0} \text{ for } i = 1,\ldots,n, \ j = 1,\ldots,n$$

where e_i is the $(n+m) \times 1$ column vector with only non-zero entry is the *i*-th one with value 1. Hence

$$\mathcal{M}(T, \alpha, \beta) = \begin{bmatrix} e_1 & e_2 & \cdots & e_n & \mathbf{0} & \cdots & \mathbf{0} \end{bmatrix}.$$

By Exercise 3.B Q10, we have

range
$$T = \operatorname{span}(Tv_1, \ldots, Tv_n, Tu_1, \ldots, Tu_r) = \operatorname{span}(Tv_1, \ldots, Tv_n).$$

Since (Tv_1, \ldots, Tv_n) is linearly independent, dim range T = n.

Exercise 3.D

1 Note that

$$(ST)T^{-1}S^{-1} = S(TT^{-1})S^{-1} = SIS^{-1} = SS^{-1} = I$$

and

$$T^{-1}S^{-1}(ST) = T(SS^{-1})T^{-1} = TIT^{-1} = TT^{-1} = I.$$

Therefore ST is invertible and $(ST)^{-1} = T^{-1}S^{-1}$.

2 Let (v_1, \ldots, v_n) be a basis of V where $n = \dim V \ge 2$. Define linear maps $T, S \in \mathcal{L}(V)$ by

$$T(v_i) = \begin{cases} v_i & \text{for } i = 1, \dots, n-1; \\ \mathbf{0} & \text{otherwise,} \end{cases}$$

and

$$S(v_i) = \begin{cases} v_n & \text{for } i = n; \\ \mathbf{0} & \text{otherwise.} \end{cases}$$

We claim that T and S are non-invertible. Note that $T(v_n) = 0$ and $S(v_1) = 0$. Therefore they are not injective and hence non-invertible.

Now the sum (T+S) satisfies

$$(T+S)(v_i) = v_i$$
 for all *i*.

Therefore $(T + S) = I_V$ and hence invertible. As a result,

$$\{T \in \mathcal{L}(V) : T \text{ is not invertible.}\}\$$

is not a subspace of $\mathcal{L}(V)$.

4 (\Rightarrow) Assume null T_1 = null T_2 . Let U_1 = range T_1 , U_2 = range T_2 . We claim that U_1 and U_2 are isomorphic.

For $u \in U_2$, we claim that for any $v, v' \in V$ satisfying $T_2v = T_2v' = u$, we have $T_1v = T_1v'$. Indeed, if $T_2v = T_2v'$ then $T_2(v - v') = T_2v - T_2v' = u - u = 0$. By assumption, $v - v' \in \text{null } T_1$. Therefore $T_1v - T_1v' = T_1(v - v') = 0$. Hence we may define a function $Q : U_2 \to U_1$ by $Qu = T_1v$ for any $u \in U_2$ and $v \in V$ such that $u = T_2v$. Suppose $u, u' \in U_2$ and $v, v' \in V$ such that $u = T_2v$ and $u' = T_2v'$ and $\lambda \in \mathbb{F}$, we have $\lambda u + u' = \lambda T_2v + T_2v' = T_2(\lambda v + v')$ and $\lambda v + v' \in V$. Therefore $Q(\lambda u + u') = T_1(\lambda v + v') = \lambda T_1v + T_1v' = \lambda Qu + Qu'$. Hence Q is linear. Suppose $u \in U_2$ such that Qu = 0. Pick $v \in V$ such that $T_2v = u$. Then Qu = 0 implies $T_1v = 0$ and $v \in \text{null } T_1 = \text{null } T_2$. Thus u = 0 and Q is injective. Let $u' \in U_1$. Pick $v \in V$ such that $T_1v = u'$. Let $u = T_2v$. Then $Qu = T_1v = u'$ and Q is surjective. Hence Q is bijective and invertible.

Now we have U_1 and U_2 being isomorphic through the isomorphism Q. In particular, dim $U_1 = \dim U_2$. By Theorem 2.34 in the textbook, there exist subspaces Z_1, Z_2 of Wsuch that $W = Z_1 \oplus U_1 = Z_2 \oplus U_2$. Apply Theorem 2.43 in the textbook, dim W =dim $Z_1 + \dim U_1 = \dim Z_2 + \dim U_2$. So dim $Z_1 = \dim Z_2$ since every terms in the previous equation are just integers. By Theorem 3.59 in the textbook, Z_1 is isomorphic to Z_2 . Let $R : Z_2 \to Z_1$ be such an isomorphism. For any $w \in W$, since we have $W = Z_2 \oplus U_2$, there exist unique $z \in Z_2$ and $u \in U_2$ such that w = z + u. Define a function $S : W \to W$ by Sw = Rz + Qu. Suppose $\lambda \in \mathbb{F}$ and $w' = z' + u' \in W$ such that $z' \in Z_2$ and $u' \in U_2$. Then $\lambda w + w' = \lambda(z + u) + z' + u' = (\lambda z + z') + (\lambda u + u')$. Note that $\lambda z + z' \in Z_2$ and $\lambda u + u' \in U_2$ since they are vector subspaces. Therefore this is the decomposition of $\lambda w + w'$ into a sum of an element of Z_2 and an element of U_2 . Hence

$$S(\lambda w + w') = R(\lambda z + z') + Q(\lambda u + u') = \lambda Rz + Rz' + \lambda Qu + Qu'$$
$$= \lambda (Rz + Qu) + (Rz' + Qu') = \lambda Sw + Sw'$$

and so S is linear. If $w = z + u \in W$ such that $z \in Z_2$ and $u \in U_2$ and Sw = 0. Then Rz + Qu = 0. Since $Rz \in Z_1$, $Qu \in U_1$ and $Z_1 \cap U_1 = \{0\}$, Rz = Qu = 0. Since R and Q are invertible, they are injective. Therefore z = u = 0. As a result S is injective. By Theorem 3.69 of textbook, S is invertible.

(\Leftarrow) Assume there exists invertible $S \in \mathcal{L}(V)$ such that $ST_2 = T_1$. Suppose $v \in \text{null } T_1$ then $\mathbf{0} = T_1 v = ST_2 v$. Since S is invertible, it is injective. Therefore $T_2 v = \mathbf{0}$ and $v \in \text{null } T_2$. Suppose $u \in \text{null } T_2$. Then $T_1 u = ST_2 u = S\mathbf{0} = \mathbf{0}$. Hence $u \in \text{null } T_1$. Hence $\text{null } T_1 = \text{null } T_2$.

(Remark: the "only if" direction will be much easier if we have the quotient space construction. By Theorem 3.91, we have range T_1 isomorphic to V/ null T_1 which is equal to V/ null T_2 , which in turn isomorphic to range T_2 . Therefore the isomorphism Q can be obtained easily.)

- 7* (a) We have $T_0 \in E$ since $T_0 v = 0$ by definition of T_0 . Suppose $T, S \in E$, i.e. Tv = 0 and Sv = 0. Then (T + S)v = Tv + Sv = 0 + 0 = 0 and (aT)v = a(Tv) = a(0) = 0 for any $a \in \mathbb{F}$. Hence, E is closed under addition and scalar multiplication, which means E is a subspace.
 - (b) Let dim V = n and dim W = m. If $v \neq \mathbf{0}$, let $U = \operatorname{span}\{v\}$. We can write $V = U \oplus V'$ for some subspace V' of V with dim V' = n 1. We claim that $\mathcal{L}(V', W)$ is isomorphic

to E. For $x \in V$, there exists unique $u \in \operatorname{span}\{v\}$ and $z \in V'$ such that x = u + z. Define a function $(\bullet)_! : \mathcal{L}(V', W) \to E$ by $T_!(x) = Tz$. We check that $T_! \in E$. Note that for $\lambda \in \mathbb{F}$ and $x' \in V$, there exists unique $u' \in \operatorname{span}\{v\}$ and $z' \in V'$ such that x' = u' + z'. So $\lambda x + x' = (\lambda u + u') + (\lambda z + z')$ is the unique decomposition. Now $T_!(\lambda x + x') = T(\lambda z + z') = \lambda Tz + Tz' = \lambda T_!(x) + T_!(x')$. Also for $u \in U$, $u = u + \mathbf{0}$. Therefore $T_!(u) = T\mathbf{0} = \mathbf{0}$. Now we check that $(\bullet)_!$ is linear. We have

$$(\lambda T + S)_!(x) = (\lambda T + S)(z) = \lambda T z + S z = \lambda (T_! x) + S_! x.$$

Let $(\bullet)|_{V'}$ be the restriction map from $E \subset \mathcal{L}(V, W)$ to $\mathcal{L}(V', W)$. It is easy to check that it is linear and the composition $(\bullet)|_{V'} \circ (\bullet)_!$ is the identity map on $\mathcal{L}(V', W)$.

Now we check that the composition $(\bullet)_! \circ (\bullet)|_{V'}$ is the identity map on E. Let $T \in E$. For all $x \in V$ with decomposition x = u + z, we have

$$(T|_{V'})_!(x) = (T|_{V'})(z) = Tz = Tu + Tz = Tx.$$

Since x is arbitrary, $(T|_{V'})_! = T$. Therefore we obtain an isomorphism between E and $\mathcal{L}(V', W)$. Hence we have the following formula

$$\dim E = \dim \{T \in \mathcal{L}(V, W) : Tv = 0\} = \dim \mathcal{L}(V', W) = \dim V' \dim W = (n-1)m.$$

10^{*} Suppose ST = I. Assume $v \in V$ such that Tv = 0. Then v = Iv = STv = S0 = 0 and T is injective. By Theorem 3.69 in the textbook, T is invertible. So there exists $T^{-1} \in \mathcal{L}(V)$ such that $TT^{-1} = I$. In particular

$$S = SI = STT^{-1} = IT^{-1} = T^{-1}.$$

By definition of inverse, $TS = TT^{-1} = I$. The reverse direction can be achieved by exchanging T and S in the above proof.

18 Define a map $\operatorname{eval}_1 : \mathcal{L}(\mathbb{F}, V) \to V$ by $(\operatorname{eval}_1 T) = T(1)$ for all $T \in \mathcal{L}(\mathbb{F}, V)$. Note that for all $T, S \in \mathcal{L}(\mathbb{F}, V), \lambda \in \mathbb{F}$, we have

$$\operatorname{eval}_1(\lambda T + S) = (\lambda T + S)(1) = \lambda T(1) + S(1) = \lambda \operatorname{eval}_1(T) + \operatorname{eval}_1(S)$$

and hence eval₁ is linear. If $\operatorname{eval}_1(T) = \mathbf{0}$ the zero vector, for all $\lambda \in \mathbb{F}$, $T(\lambda) = \lambda T(1) = \lambda \mathbf{0} = \mathbf{0}$. Therefore $T = T_0$ the zero transformation and eval_1 is injective. For $v \in V$, define $T_v : \mathbb{F} \to V$ by $T_v(c) = cv$. It is clearly linear and $\operatorname{eval}_1(T_v) = T_v(1) = 1v = v$. Therefore eval_1 is surjective. Hence eval_1 is invertible and thus V and $\mathcal{L}(\mathbb{F}, V)$ are isomorphic.