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Exercise 3.A

1* First we prove the “if” part. b = c = 0 implies that T : R3 → R2 is defined as T (x, y, z) =

(2x− 4y + 3z, 6x). For any (x, y, z), (u, v, w) ∈ R3,

T ((x, y, z) + (u, v, w)) = T (x+ u, y + v, z + w)

= (2(x+ u)− 4(y + v) + 3(z + w), 6(x+ u))

= (2x− 4y + 3z, 6x) + (2u− 4v + 3w, 6u)

= T (x, y, z) + T (u, v, w)

Thus, this map is additive.

For any (x, y, z) ∈ R3 and a ∈ R,

T (a(x, y, z)) = T (ax, ay, az)

= (2ax− 4ay + 3az, 6ax)

= a(2x− 4y + 2z, 6x)

= aT (x, y, z)

Thus, this map is homogeneous of degree 1. We conclude that T is a linear map.

Then we prove the “only if” part. Now T is linear, thus additive and homogeneous of degree

1 by definition. For any (x, y, z) ∈ R3 and a ∈ R,

T (a(x, y, z)) = T (ax, ay, az)

= (2ax− 4ay + 3az + b, 6ax+ ca3xyz)

and

aT (x, y, z) = a(2x− 4y + 2z + b, 6x+ cxyz)

= (2ax− 4ay + 3az + ab, 6ax+ caxyz)

By homogeneity, T (a(x, y, z)) = aT (x, y, z). This implies that (2ax − 4ay + 3az + b, 6ax +

ca3xyz) = (2ax− 4ay+ 3az+ ab, 6ax+ caxyz) for any (x, y, z) ∈ R3 and a ∈ R. Thus b = ab,

ca3xyz = caxyz for any x, y, z, a ∈ R. This can only happen when b = c = 0 (say, take a = 2

and x = y = z = 1 to see this). This proves the “only if” part.

4* Suppose there exists a1, . . . , am ∈ F such that

a1v1 + · · · amvm = 0.

Then apply the linear transformation T on both sides, we have

T (a1v1 + · · · amvm) = T (0).

By linearity of T , we have

a1Tv1 + · · · amTvm = 0.

Since (Tv1, . . . , T vm) is given to be linearly independent, by definition, we have a1, . . . , am
being all zero. Therefore (v1, . . . , vm) is linearly independent.
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9 Consider the conjugation function on C defined by ϕ(a + bi) = a − bi for all a, b ∈ R. Let

w = a+ bi, z = c+ di ∈ C with a, b, c, d ∈ R. We see that

ϕ(w) + ϕ(z) = (a− bi) + (c− di) = (a+ c)− (b+ d)i = ϕ((a+ c) + (b+ d)i) = ϕ(w + z).

However, we check that iϕ(1) = i · 1 = i while ϕ(i · 1) = ϕ(i) = −i 6= i. Therefore ϕ is not

C-linear.

(For the R case: Consider R as a vector space over Q. Let (1, π) be a list of vectors in R. It

is linearly independent over Q by irrationality of π. The advance tools that we will use are

“Every linearly independent subset of a vector space can be extended to a basis” and “Value

at basis of domain determines a linear map” which are analogs to Theorem 2.33 and 3.5 of

textbook in vector spaces which are not necessarily finite dimensional. Let β be a Q-basis of

R containing 1 and π. Define a Q-linear operator ϕ on R such that ϕ(1) = π, ϕ(π) = 1, and

ϕ(x) = x for x ∈ β not equal to 1 nor π. Then it is additive but not R-linear since πϕ(1) = π2

while ϕ(π) = 1.)

11 V is a finite dimensional vector space and U is a subspace of V . Hence we can pick a basis

{u1, · · · ,uk} of U , which extends to a basis {u1, · · · ,uk,v1, · · · ,vl} of V . S(u1), · · · , S(uk)

are vectors in W and we pick ` vectors {w1, · · · ,w`} in W . Then by Theorem 3.5 in the

textbook, we have a unique linear map T : V →W such that Tui = Sui for i = 1, · · · , k and

Tvj = wj for j = 1, · · · , `.
Finally, Tu = Su for all u ∈ U . Indeed, for any u ∈ U , write u = a1u1 + · · · + akuk since

{u1, · · · ,uk} is a basis of U . Then

Tu = T (a1u1 + · · ·+ akuk)

= a1Tu1 + · · ·+ akTuk

= a1Su1 + · · ·+ akSuk

= S(a1u1 + · · ·+ akuk)

= Su

Note that we used above the linearity of S and T .

Exercise 3.B

5* Let {v1, · · · ,v4} be the standard basis of R4. Let Tv1 = Tv2 = 0, Tv3 = v1 and Tv4 = v2.

For any v ∈ R4, v = a1v1 + · · ·+a4v4 for some a1, · · · , a4. Define Tv = a1Tv1 + · · ·+a4Tv4.

This defines a linear map T : R4 → R4. Then kerT = span{v1,v2} = rangeT (Here we used

Exercise 3.B Q10).

6* Suppose that there exists such a linear map. By the fundamental theorem dim rangeT +

dim kerT = 5. And by assumption, kerT = rangeT . Thus dim rangeT = dim kerT = 2.5.

This is absurd because by definition, dimensions are integers. This shows that there does not

exist such a linear map.

8* Let (v1, . . . , vn) and (w1, . . . , wm) be bases of V and W respectively, where n = dimV and

m = dimW . It is given that n ≥ m ≥ 2. Define linear maps T, S ∈ L(V,W ) by

T (vi) =

{
wi for i = 1, . . . ,m− 1;

0 otherwise,
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and

S(vi) =

{
wm for i = m;

0 otherwise.

We claim that T and S are not surjective. Note that

rangeT = span{T (v1), . . . , T (vn)} = span{w1, . . . , wm−1,0, . . . ,0}

and

rangeS = span{S(v1), . . . , S(vn)} = span{0, . . . ,0, wm,0, . . . ,0}

(Here we used Exercise 3.B Q10). Since (w1, . . . , wm) is linearly independent by construction,

wm 6∈ {w1, . . . , wm−1} = rangeT and w1 6∈ span{wm} = rangeS.

Now the sum (T + S) satisfies

(T + S)(vi) =

{
wi for i = 1, . . . ,m;

0 otherwise.

Therefore range(T +S) = span{(T +S)(v1), . . . , (T +S)(vn)} = span{w1, . . . , wm,0, . . . ,0} =

span{w1, . . . , wm} = W . Therefore the sum of two non-surjective map can be surjective and

the set

{T ∈ L(V,W ) : T is not surjective.}

is not a subspace of L(V,W ).

9 Suppose there exists a1, . . . , an ∈ F such that

a1Tv1 + · · · anTvn = 0.

Since T is linear, we have

T (a1v1 + · · · anvn) = 0.

By injectivity of T , we have

a1v1 + · · · anvn = 0.

Since (v1, . . . , vn) is given to be linearly independent, by definition, we have a1, . . . , an being

all zero. Therefore (Tv1, . . . , T vn) is linearly independent in W .

10 By definition of range, Tv1, . . . , T vn ∈ rangeT . Therefore span(Tv1 . . . , T vn) ⊂ rangeT .

Let w ∈ rangeT . There exists v ∈ V such that T (v) = w. Since v1, . . . , vn spans V , there

exists a1, . . . , an ∈ F such that a1v1 + · · ·+ anvn = v. Thus

w = T (v) = T (a1v1 + · · ·+ anvn) = a1Tv1 + · · ·+ anTvn ∈ span(Tv1 . . . , T vn).

Hence span(Tv1 . . . , T vn) = rangeT .

12* Since V is finite dimensional, nullT is finite dimensional too. Let (v1, . . . , vn) be a ba-

sis of nullT . Extend it to (v1, . . . , vn, w1, . . . , wm) a basis of V . We claim that U =

span(w1, . . . , wm) has the desired property. By construction, it is a subspace of V . By

Theorem 2.34 in the textbook, we have U ⊕ nullT = V . In particular, U ∩ nullT = {0}.
By definition of range, Tu ∈ rangeT for all u in U . Therefore {Tu : u ∈ U} ⊂ rangeT . It
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remains to show that rangeT ⊂ {Tu : u ∈ U}. Suppose w ∈ rangeT . Then there exists

v ∈ V such that w = T (v). Since U + nullT = V , there exists u ∈ U , x ∈ nullT such that

v = u+ x. Therefore

w = T (v) = T (u+ x) = Tu+ Tx = Tu+ 0 = Tu

and rangeT = {Tu : u ∈ U}.

15 LetN = {(x1, x2, x3, x4, x5) ∈ F5 : x1 = 3x2 and x3 = x4 = x5}. We claim that dimN = 2. It

suffices to show that span{(3, 1, 0, 0, 0), (0, 0, 1, 1, 1)} = N since {(3, 1, 0, 0, 0), (0, 0, 1, 1, 1)} is

linearly independent (compare the components). By direct check (3, 1, 0, 0, 0), (0, 0, 1, 1, 1) ∈
N so span{(3, 1, 0, 0, 0), (0, 0, 1, 1, 1)} ⊂ N . If x = (x1, x2, x3, x4, x5) ∈ N , x1 = 3x2 and x3 =

x4 = x5. Therefore x = x2(3, 1, 0, 0, 0) + x5(0, 0, 1, 1, 1) ∈ span{(3, 1, 0, 0, 0), (0, 0, 1, 1, 1)}.
Hence we have the claim.

Since dimN = 2, if N was the kernel of a linear map T from F5 to F2, then by the fundamental

theorem, we would have

dim nullT + dim rangeT = 5.

However, rangeT ⊂ F2 so dim rangeT ≤ 2. Therefore 5 = dim nullT + dim rangeT ≤ 2 + 2 =

4, a contradiction. Therefore there is no such transformation.

18 Let {v1, . . . , vn} be a basis of V .

(⇒) Suppose T is a surjective linear map from V onto W . Then rangeT = W . By Exercise

3.B Q10, rangeT = span(Tv1 . . . , T vn). Therefore W is span by n vectors. Since length

of a spanning list is not less than the dimension, dimW ≤ n = dimV .

(⇐) Suppose m := dimW ≤ dimV , let {w1, . . . , wm} be a basis of W . Define a linear map

T from V to W by

T (vi) =

{
wi for i = 1, . . . ,m;

0 otherwise.

This is possible since n ≥ m. Then we have rangeT = span{T (v1), . . . , T (vn)} =

span{w1, . . . , wm,0, . . . ,0} = span{w1, . . . , wm} = W and T is surjective.

22 Since U is finite dimensional, let α = {u1, . . . , un} be a basis of nullT . If v ∈ nullT ,

ST (v) = S(0) = 0. Therefore v ∈ nullST and nullT ⊂ nullST . Extend α to a basis β =

{u1, . . . , un, v1, . . . , vm} of nullST . Note that ST (vi) = 0 for all i. Therefore {Tv1, . . . T vm} ⊂
nullS. We claim that {Tv1, . . . T vm} is linearly independent in nullS. Suppose there exists

a1, . . . , am ∈ F such that

a1Tv1 + · · · amTvm = 0.

Since T is linear, we have

T (a1v1 + · · · amvm) = 0.

Therefore a1v1 + · · · amvm ∈ nullT and there exists b1, . . . , bn ∈ F such that

a1v1 + · · · anvm = b1u1 + · · ·+ bnun.

Rewriting, we have

a1v1 + · · · anvm − b1u1 − · · · − bnun = 0.
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Since {u1, . . . , un, v1, . . . , vm} is constructed to be linearly independent, by definition, we

have a1, . . . , am, b1, . . . , bn being all zero. Therefore {Tv1, . . . , T vm} is linearly independent

in nullS. Hence dim nullS ≥ #{Tv1, . . . , T vm} = m. Therefore

dim nullST = n+m ≤ dim nullS + dim nullT.

27 Suppose p ∈ P(R). If p ≡ 0 the zero polynomial, take q ≡ 0 ∈ P(R). So we may assume

p 6≡ 0. Let d be the degree of p which is a non-negative integer. Let V = Pd+1(R) and

W = Pd(R). Define the linear map T : V → W by T (f) = 5f ′′ + 3f ′. Suppose f ∈ V such

that T (f) ≡ 0, i.e. 5f ′′ + 3f ′ = 0. Then 5f ′ + 3f ≡ c where c is a constant. If f 6≡ 0, then

the degree of f is greater than the degree of f ′. So the highest degree term of 3f + 5f ′ is that

of 3f . By comparing the coefficient of the highest degree term on both sides, the degree of f

can only be 0 and so f ′ ≡ 0. Hence f can only be constant. It is also true that Tf ≡ 0 for any

constant polynomial f . Therefore the kernel of T must be the subspace of constant functions

which has dimension 1. By fundamental theorem, dim nullT + dim rangeT = dimV = d+ 2.

Therefore dim rangeT = d+2−1 = d+1 = dimW and rangeT = W (note that rangeT ⊂W
by construction of T ). So T is surjective and there exists q ∈ Pd+1(R) ⊂ P(R) such that

Tq = 5q′′ + 3q′ = p.

Exercise 3.C

2 Let β = (x3, x2, x, 1) ⊂ P3(R) and γ = (3x2, 2x, 1) ⊂ P2(R). Since the elements in β

(resp. γ) have different degree, they are linearly independent. Since |β| = dimP3(R) and

|γ| = dimP2(R), they are basis of P3(R) and P2(R) respectively.

Now we have Dx3 = 3x2, Dx2 = 2x, Dx = 1, D1 = 0. Therefore we have

M(D,β, γ) =
[
M(Dx3, γ) M(Dx2, γ) M(Dx, γ) M(D1, γ)

]
=
[
M(3x2, γ) M(2x, γ) M(1, γ) M(0, γ)

]
=

1 0 0 0

0 1 0 0

0 0 1 0


3 Let (u1, . . . , ur) be a basis of nullT . Extends it to a basis (u1, . . . , ur, v1, . . . , vn) of V . We

may we order it into α := (v1, . . . , vn, u1, . . . , ur).

We claim that (Tv1, . . . T vn) is linearly independent in W . Suppose there exists a1, . . . , an ∈ F
such that

a1Tv1 + · · · anTvn = 0.

Since T is linear, we have

T (a1v1 + · · · anvn) = 0.

Therefore a1v1 + · · · anvn ∈ nullT and there exists b1, . . . , br ∈ F such that

a1v1 + · · · anvn = b1u1 + · · ·+ brur.

Rewriting, we have

a1v1 + · · · anvn − b1u1 − · · · − brur = 0.
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Since (v1, . . . , vn, u1, . . . , ur) is constructed to be linearly independent, by definition, we have

a1, . . . , an, b1, . . . , br being all zero. Therefore (Tv1, . . . , T vn) is linearly independent in W .

Extend (Tv1, . . . , T vn) to a basis β := (Tv1, . . . , T vn, w1, . . . , wm) of W . We check that

M(Tvi, β) = ei, M(Tuj , β) = 0 for i = 1, . . . , n, j = 1, . . . r

where ei is the (n+m)× 1 column vector with only non-zero entry is the i-th one with value

1. Hence

M(T, α, β) =
[
e1 e2 · · · en 0 · · · 0

]
.

By Exercise 3.B Q10, we have

rangeT = span(Tv1, . . . , T vn, Tu1, . . . , Tur) = span(Tv1, . . . , T vn).

Since (Tv1, . . . , T vn) is linearly independent, dim rangeT = n.

Exercise 3.D

1 Note that

(ST )T−1S−1 = S(TT−1)S−1 = SIS−1 = SS−1 = I

and

T−1S−1(ST ) = T (SS−1)T−1 = TIT−1 = TT−1 = I.

Therefore ST is invertible and (ST )−1 = T−1S−1.

2 Let (v1, . . . , vn) be a basis of V where n = dimV ≥ 2. Define linear maps T, S ∈ L(V ) by

T (vi) =

{
vi for i = 1, . . . , n− 1;

0 otherwise,

and

S(vi) =

{
vn for i = n;

0 otherwise.

We claim that T and S are non-invertible. Note that T (vn) = 0 and S(v1) = 0. Therefore

they are not injective and hence non-invertible.

Now the sum (T + S) satisfies

(T + S)(vi) = vi for all i.

Therefore (T + S) = IV and hence invertible. As a result,

{T ∈ L(V ) : T is not invertible.}

is not a subspace of L(V ).
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4 (⇒) Assume nullT1 = nullT2. Let U1 = rangeT1, U2 = rangeT2. We claim that U1 and U2

are isomorphic.

For u ∈ U2, we claim that for any v, v′ ∈ V satisfying T2v = T2v
′ = u, we have

T1v = T1v
′. Indeed, if T2v = T2v

′ then T2(v − v′) = T2v − T2v
′ = u − u = 0. By

assumption, v − v′ ∈ nullT1. Therefore T1v − T1v′ = T1(v − v′) = 0. Hence we may

define a function Q : U2 → U1 by Qu = T1v for any u ∈ U2 and v ∈ V such that

u = T2v. Suppose u, u′ ∈ U2 and v, v′ ∈ V such that u = T2v and u′ = T2v
′ and

λ ∈ F, we have λu + u′ = λT2v + T2v
′ = T2(λv + v′) and λv + v′ ∈ V . Therefore

Q(λu + u′) = T1(λv + v′) = λT1v + T1v
′ = λQu + Qu′. Hence Q is linear. Suppose

u ∈ U2 such that Qu = 0. Pick v ∈ V such that T2v = u. Then Qu = 0 implies T1v = 0

and v ∈ nullT1 = nullT2. Thus u = 0 and Q is injective. Let u′ ∈ U1. Pick v ∈ V

such that T1v = u′. Let u = T2v. Then Qu = T1v = u′ and Q is surjective. Hence Q is

bijective and invertible.

Now we have U1 and U2 being isomorphic through the isomorphism Q. In particular,

dimU1 = dimU2. By Theorem 2.34 in the textbook, there exist subspaces Z1, Z2 of W

such that W = Z1 ⊕ U1 = Z2 ⊕ U2. Apply Theorem 2.43 in the textbook, dimW =

dimZ1 + dimU1 = dimZ2 + dimU2. So dimZ1 = dimZ2 since every terms in the

previous equation are just integers. By Theorem 3.59 in the textbook, Z1 is isomorphic

to Z2. Let R : Z2 → Z1 be such an isomorphism. For any w ∈ W , since we have

W = Z2 ⊕ U2, there exist unique z ∈ Z2 and u ∈ U2 such that w = z + u. Define a

function S : W →W by Sw = Rz+Qu. Suppose λ ∈ F and w′ = z′+u′ ∈W such that

z′ ∈ Z2 and u′ ∈ U2. Then λw + w′ = λ(z + u) + z′ + u′ = (λz + z′) + (λu + u′). Note

that λz+ z′ ∈ Z2 and λu+u′ ∈ U2 since they are vector subspaces. Therefore this is the

decomposition of λw + w′ into a sum of an element of Z2 and an element of U2. Hence

S(λw + w′) =R(λz + z′) +Q(λu+ u′) = λRz +Rz′ + λQu+Qu′

=λ(Rz +Qu) + (Rz′ +Qu′) = λSw + Sw′

and so S is linear. If w = z + u ∈ W such that z ∈ Z2 and u ∈ U2 and Sw = 0. Then

Rz +Qu = 0. Since Rz ∈ Z1, Qu ∈ U1 and Z1 ∩ U1 = {0}, Rz = Qu = 0. Since R and

Q are invertible, they are injective. Therefore z = u = 0. As a result S is injective. By

Theorem 3.69 of textbook, S is invertible.

(⇐) Assume there exists invertible S ∈ L(V ) such that ST2 = T1. Suppose v ∈ nullT1
then 0 = T1v = ST2v. Since S is invertible, it is injective. Therefore T2v = 0 and

v ∈ nullT2. Suppose u ∈ nullT2. Then T1u = ST2u = S0 = 0. Hence u ∈ nullT1.

Hence nullT1 = nullT2.

(Remark: the “only if” direction will be much easier if we have the quotient space construc-

tion. By Theorem 3.91, we have rangeT1 isomorphic to V/ nullT1 which is equal to V/ nullT2,

which in turn isomorphic to rangeT2. Therefore the isomorphism Q can be obtained easily.)

7* (a) We have T0 ∈ E since T0v = 0 by definition of T0. Suppose T, S ∈ E, i.e. Tv = 0 and

Sv = 0. Then (T + S)v = Tv + Sv = 0 + 0 = 0 and (aT )v = a(Tv) = a(0) = 0 for any

a ∈ F. Hence, E is closed under addition and scalar multiplication, which means E is a

subspace.

(b) Let dimV = n and dimW = m. If v 6= 0, let U = span{v}. We can write V = U ⊕ V ′
for some subspace V ′ of V with dimV ′ = n− 1. We claim that L(V ′,W ) is isomorphic
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to E. For x ∈ V , there exists unique u ∈ span{v} and z ∈ V ′ such that x = u + z.

Define a function (•)! : L(V ′,W ) → E by T!(x) = Tz. We check that T! ∈ E. Note

that for λ ∈ F and x′ ∈ V , there exists unique u′ ∈ span{v} and z′ ∈ V ′ such that

x′ = u′ + z′. So λx + x′ = (λu + u′) + (λz + z′) is the unique decomposition. Now

T!(λx + x′) = T (λz + z′) = λTz + Tz′ = λT!(x) + T!(x
′). Also for u ∈ U , u = u + 0.

Therefore T!(u) = T0 = 0. Now we check that (•)! is linear. We have

(λT + S)!(x) = (λT + S)(z) = λTz + Sz = λ(T!x) + S!x.

Let (•)|V ′ be the restriction map from E ⊂ L(V,W ) to L(V ′,W ). It is easy to check

that it is linear and the composition (•)|V ′ ◦ (•)! is the identity map on L(V ′,W ).

Now we check that the composition (•)! ◦ (•)|V ′ is the identity map on E. Let T ∈ E.

For all x ∈ V with decomposition x = u+ z, we have

(T |V ′)!(x) = (T |V ′)(z) = Tz = Tu+ Tz = Tx.

Since x is arbitrary, (T |V ′)! = T . Therefore we obtain an isomorphism between E and

L(V ′,W ). Hence we have the following formula

dimE = dim{T ∈ L(V,W ) : Tv = 0} = dimL(V ′,W ) = dimV ′ dimW = (n− 1)m.

10* Suppose ST = I. Assume v ∈ V such that Tv = 0. Then v = Iv = STv = S0 = 0 and T

is injective. By Theorem 3.69 in the textbook, T is invertible. So there exists T−1 ∈ L(V )

such that TT−1 = I. In particular

S = SI = STT−1 = IT−1 = T−1.

By definition of inverse, TS = TT−1 = I. The reverse direction can be achieved by exchanging

T and S in the above proof.

18 Define a map eval1 : L(F, V )→ V by (eval1 T ) = T (1) for all T ∈ L(F, V ). Note that for all

T, S ∈ L(F, V ), λ ∈ F, we have

eval1(λT + S) = (λT + S)(1) = λT (1) + S(1) = λ eval1(T ) + eval1(S)

and hence eval1 is linear. If eval1(T ) = 0 the zero vector, for all λ ∈ F, T (λ) = λT (1) =

λ0 = 0. Therefore T = T0 the zero transformation and eval1 is injective. For v ∈ V , define

Tv : F → V by Tv(c) = cv. It is clearly linear and eval1(Tv) = Tv(1) = 1v = v. Therefore

eval1 is surjective. Hence eval1 is invertible and thus V and L(F, V ) are isomorphic.
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