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Exercise 2.A

5 (a) For α, β ∈ R, consider the equation

α(1 + i) + β(1− i) = 0.

The real part and imaginary part of L.H.S. are α + β and α − β respectively and they

must be zero. The only solution is α = β = 0. This shows that (1 + i, 1− i) is linearly

independent over R.

(b) Note that i · (1 + i) + 1 · (1 − i) = 0. Since i, 1 are not zero, (1 + i, 1 − i) is linearly

dependent over C.

9* Consider the real vector space R. Take m = 1, v1 = 1, w1 = −1. Since (v1) and (w1) are lists

with only one element which is also non-zero, they are linearly independent lists of vectors

in V . However v1 + w1 = 0 and {0} is not linearly independent since 1 · 0 = 0 but 1 6= 0.

Therefore the statement is false.

10 Given that (v1 +w, . . . , vm +w) is linearly dependent, there exists a1, . . . , am ∈ F not all zero

such that a1(v1+w)+ · · ·+am(vm+w) =
⇀
0 . After rearranging the sum, we have a1v1+ · · ·+

amvm = −(a1 + · · ·+ am)w. Let c = −(a1 + · · ·+ am). If c = 0, then a1v1 + · · ·+ amvm =
⇀
0

and this implies (v1, . . . , vm) being linearly dependent. Contradiction. Therefore c 6= 0 and
a1
c v1 + · · ·+ am

c vm = w. This implies w ∈ span(v1, . . . , vm).

11 (⇒) Assume (v1, . . . , vm, w) is linearly independent but w ∈ span(v1, . . . , vm). Then there

exists a1, . . . , am ∈ F not all zero such that a1v1 + · · · + amvm = w. Rewriting the

equation, we have a1v1 + · · ·+amvm +(−1)w =
⇀
0 . Since −1 6= 0, (v1, . . . , vm, w) cannot

be linearly independent. Contradiction. Therefore w 6∈ span(v1, . . . , vm).

(⇐) Assume w 6∈ span(v1, . . . , vm) but {v1, . . . , vm, w} is linearly dependent. Then there

exists a1, . . . , am, c ∈ F not all zero such that a1v1 + · · ·+amvm +cw =
⇀
0 . If c = 0, then

a1, . . . , am cannot be all zero. However, this implies (v1, . . . , vm) is linearly dependent.

Contradiction. If c 6= 0, then we have −a1c v1 + · · · + −am
c vm = w. Therefore w ∈

span(v1, . . . , vm). Contradiction. Hence (v1, . . . , vm, w) is linearly independent.

12 Given any six polynomials (fj(x) = a0j + a1jx+ · · ·+ a4jx
4)6j=1 of degree at most 4, consider

the following equation

y1f1(x) + · · · y6f6(x) =
⇀
0 (1)

where y1, . . . , y6 ∈ F. By comparing coefficients, we have

6∑
j=1

yjaji = 0 ∀j = 0, . . . , 4.

This is a homogeneous system of 5 linear equations in 6 unknowns. Therefore it has a

nontrivial solution, say (y1, . . . , y6) = (c1, . . . , c6) where ci are not all zero. This implies

the corresponding equation (2) is a non-trivial linear combination of
⇀
0 and the polynomials

cannot be linearly independent.
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15* Assume not, there exists a finite subset S = {v1, . . . , vn} ⊂ F∞ such that spanS = V (S

cannot be empty since F∞ contains a non-zero vector. For any i ∈ N, let ei be the sequence

such that the only non-zero entry is the ith-entry with value 1. Since ei ∈ F∞, there exists

cij ∈ F for all i, j such that
n∑

j=1

cijvj = ei ∀i ∈ N.

Now consider the following homogeneous system of linear equations:
c11x1 + c21x2 + · · ·+ c(n+1)1xn+1 = 0

...

c1nx1 + c2nx2 + · · ·+ c(n+1)nxn+1 = 0

It has n equations with n+ 1 unknowns. So there exists a nontrivial solution (x1, . . . , xn+1).

However,

n+1∑
i=1

xiei =

n+1∑
i=1

xi

 n∑
j=1

cijvj

 =

n∑
j=1

(
n+1∑
i=1

xicij

)
vj =

n∑
j=1

0vj =
⇀
0

By comparing entries, xi = 0 for all i, which is impossible by construction. Contradiction.

Therefore F∞ is infinite dimensional.

17 Since pj(2) = 0 for each j, by division algorithm, pj(x) = (x−2)qj(x) for some polynomial qj in

Pm−1(F ) for each j. Using similar argument in Problem 12, (q0, . . . , qm) is linearly dependent

in Pm−1(F ). Therefore there exists a0, . . . , am ∈ F not all zero such that a0q0+· · · amqm =
⇀
0 .

By multiplying (x − 2) on both sides, we have a0p0 + · · · ampm =
⇀
0 , which is a nontrivial

linear combination of
⇀
0 .

Exercise 2.B

3* (a) Let v1 = (3, 1, 0, 0, 0), v2 = (0, 0, 7, 1, 0), v3 = (0, 0, 0, 0, 1). For any x = (x1, x2, x3, x4, x5) ∈
U , x = x2v1 + x4v2 + x5v3. So β = (v1, v2, v3) spans U . If a1, a2, a3 ∈ R such that

a1v1 + a2v2 + a3v3 =
⇀
0 , by comparing the 2nd, 4th, 5th entries, a1, a2, a3 are all zero.

Therefore β is linearly independent and is a basis of U .

(b) Let v4 = (1, 0, 0, 0, 0), v5 = (0, 0, 1, 0, 0) and consider β′ = (v1, v2, v3, v4, v5). If a1, a2,

a3, a4, a5 ∈ R such that a1v1 + . . . + a5v5 =
⇀
0 , by above method, a1, a2, a3 are all

zero. So a4v4 + a5v5 =
⇀
0 . By comparing the 1st and 3rd entries, a4, a5 are all zero.

Therefore β′ is linearly independent. For any x = (x1, x2, x3, x4, x5) ∈ R5, note that

x = x2v1 + x4v2 + x5v3 + (x1 − 3x2)v4 + (x3 − 7x4)v5 and the coefficients of vi are in R.

Therefore β′ spans R5 and is a basis of R5 extending β.

(c) Let W = span(v4, v5). By argument in the proof of Theorem 2.34 in the textbook,

R5 = U ⊕W .

5 Consider p0(x) = 1, p1(x) = x, p2(x) = x2 + x3, p3(x) = x3. They are in P3(F) and none of

them has degree 2. For any f(x) = a0 +a1x+a2x
2 +a3x

3 ∈ P3(F) with ai ∈ F, suppose there

exists b0, . . . , b3 ∈ F such that f(x) = b0p0(x) + · · ·+ b3p3(x). By comparing the coefficients
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of 1, x, x2, we must have b0 = a0, b1 = a1, b2 = a2. Now f(x)− b2p2(x)− b1p1(x)− b0p0(x) =

a3x
3 − b2x3. Take b3 = a3 − b2 = a3 − a2 and we can see that every polynomial in P3(F) can

be written uniquely in the form f(x) = b0p0(x)+ · · ·+ b3p3(x). Thus it is a basis by Criterion

2.29 in the textbook.

6 Let v ∈ V . Since v1, v2, v3, v4 is a basis of V , there exist unique a1, a2, a3, a4 ∈ F such that

v = a1v1 + a2v2 + a3v3 + a4v4. Therefore v = a1(v1 + v2) + (a2 − a1)(v2 + v3) + (a3 −
a2 + a1)(v3 + v4) + (a4 − a3 + a2 − a1)v4. Assume there exist b1, b2, b3, b4 ∈ F such that v =

b1(v1+v2)+b2(v2+v3)+b3(v3+v4)+b4v4. Then v = b1v1+(b1+b2)v2+(b2+b3)v3+(b3+b4)v4.

By uniqueness, b1 = a1, b1 + b2 = a2, b2 + b3 = a3, b3 + b4 = a4. By repeated substitution, we

see that b2 = a2− a1, b3 = a3− a2 + a1, b4 = a4− a3 + a2− a1. Therefore the expression of v

as a linear combination of v1 + v2, v2 + v3, v3 + v4, v4 is unique and v1 + v2, v2 + v3, v3 + v4, v4
is a basis by Criterion 2.29 in the textbook.

7* Consider V = R4, v1 = (1, 0, 0, 0), v2 = (0, 1, 0, 0), v3 = (0, 0, 1, 0), v4 = (0, 0, 0, 1), U =

{(x1, x2, x3, x4) ∈ V : x3 = x4}. From Example 2.28 of textbook, v1, v2, v3, v4 is a basis of V .

Since 0 6= 1, v1, v2 ∈ U and v3, v4 6∈ U . U is a subspace of V . However, v1, v2 is not a basis of

U since (0, 0, 1, 1) ∈ U but it is not in the span of v1, v2, which is {(x1, x2, 0, 0) : x1, x2 ∈ R}.

8 Let v ∈ V , then there exist u ∈ U , w ∈ W such that v = u + w. Since u1, . . . , um is a basis

of U and w1, . . . , wn is a basis of W , there exists a1, . . . , am, b1, . . . , bn ∈ F such that

m∑
i=1

aiui = u and
n∑

j=1

bjwj = w.

Therefore

v = u+ w =

m∑
i=1

aiui +

n∑
j=1

bjwj

and u1, . . . , um, w1, . . . , wn span V .

Now suppose there exists a1, . . . , am, b1, . . . , bn ∈ F such that

m∑
i=1

aiui +

n∑
j=1

bjwj =
⇀
0 .

By rearrange the terms, we have

m∑
i=1

aiui =

n∑
j=1

−bjwj .

Now L.H.S. is in U and R.H.S. is in W . Therefore both are in U ∩W = {⇀0 }. So

m∑
i=1

aiui =
⇀
0 and

n∑
j=1

bjwj =
⇀
0 .

Since u1, . . . , um is linearly independent and w1, . . . , wn is also linearly independent, we have

a1, . . . , am, b1, . . . , bn all zero. Thus u1, . . . , um, w1, . . . , wn is linearly independent.
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Exercise 2.C

1 Let (u1, . . . , um) be a basis of U , where m = dimU . It is a linearly independent subset of V .

By Theorem 2.39 in the textbook, it is a basis of V since its length is equal to dimU = dimV .

Therefore V = span(u1, . . . , um) = U .

5* (a) Consider v0(x) = 1, v1(x) = x − 6, v3(x) = (x − 6)3, v4(x) = (x − 6)4. Let y = x − 6,

by change of variable, they are just powers of y and thus linearly independent. Suppose

p ∈ P4(R) such that p′′(6) = 0. Write q(y) = p(y + 6) = p(x) = a0 + a1y + · · · + a4y
4,

then q′′(b) = p′′(b+ 6). Therefore 2a2 = q′′(0) = p′′(6) = 0. This implies q(y) is a linear

combination of 1, y, y3, y4. Changing back the variables, we have p(x) being a linear

combination of v0, v1, v3, v4, which is therefore a basis of U .

(b) From the above discussion, adding v2(x) = (x − 6)2 to the list (v0, v1, v3, v4) is a basis

of P4(F).

(c) Let W = span{v2}. Then by the argument in the proof of Theorem 2.34 in the textbook,

P4(F) = U ⊕W .

7 (a) We claim that U = span(1, (x − 2)(x − 5)(x − 6), x(x − 2)(x − 5)(x − 6)). For p ∈ U ,

let s := p − p(2) ∈ P4(F). It satisfies s(2) = s(5) = s(6) = 0. By division algorithm,

s(x) = q(x)(x − 2)(x − 5)(x − 6) for some polynomial of degree at most 1. Therefore

v1(x) = 1, v2(x) = (x− 2)(x− 5)(x− 6), v3(x) = x(x− 2)(x− 5)(x− 6) spans U . Since

they have different degree, by comparing the coefficient of the highest degree terms in

a1v1 + a2v2 +a3v3 =
⇀
0 successively, where a1, a2, a3 ∈ F, we have a1 = a2 = a3 = 0. By

direct computation, they contained in U . Therefore v1, v2, v3 is a basis of U .

(b) Let v4(x) = x, v5(x) = x2. Consider the sum

a1v1 + a2v2 + a3v3 + a4v4 + a5v5 =
⇀
0

where a1, . . . , a5 ∈ F. By comparing the coefficient again, (v1, . . . , v5) is a linearly

independent list with length equal to the dimension of the vector space. Hence by

Theorem 2.39 in the textbook it is a basis of P4(F).

(c) Take W = span{v4, v5}. Then by the argument in the proof of Theorem 2.34 in the

textbook, P4(F) = U ⊕W .

9 If (v1 +w, . . . , vm +w) is linearly independent, it is a basis for U := span(v1 +w, . . . , vm +w).

Therefore its dimension is m > m− 1.

If (v1 + w, . . . , vm + w) is linearly dependent, by Exercise 2.A Problem 10, w ∈ X :=

span(v1, . . . , vm). So there exist unique b1, . . . , bm ∈ F such that

w = b1v1 + · · ·+ bmvm. (2)

If all bi = 0, then w = 0 and (v1+w, . . . , vm+w) = (v1, . . . , vm) which is linearly independent.

Contradiction. So there exists bi 6= 0. WLOG, assume b1 6= 0. Suppose a2, . . . , am ∈ F such

that
m∑
i=2

ai(vi + w) =
⇀
0 .
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By substituting w using Equation (2), we have

λb1v1 +
m∑
i=2

(ai + λbi)vi =
⇀
0

where λ =

m∑
i=2

ai. By linear independence, ai = −λbi for i = 2, . . . ,m and λb1 = 0. Since

b1 6= 0, λ = 0 and all ai are zero. Therefore (v2 +w, . . . , vm +w) is linearly independent and

dim span(v1 + w, . . . , vm + w) ≥ dim span(v2 + w, . . . , vm + w) = m− 1.

10* Since dimPm(F) = m+ 1, by Theorem 2.39 in the textbook, it suffices to check (p0, . . . , pm)

is linearly independent, which will be done by induction.

Consider p0, since p0 has degree 0, it is non-zero since degree of the zero polynomial is −∞.

Therefore p0 is linearly independent.

Suppose (p0, . . . , pk) is linearly independent for some non-negative integer k.

Consider (p0, . . . , pk+1). Suppose a0, . . . , ak+1 ∈ F such that a0p0 + · · · + ak+1pk+1 =
⇀
0 .

Consider the coefficient of the term xk+1. Since p0, . . . , pk has degree less than k + 1, their

coefficient of xk+1 are 0. Now the coefficient of the term xk+1 on the L.H.S. is ak+1 times the

coefficient of xk+1 in pk+1, which is non-zero since degree of pk+1 is k+1. Therefore ak+1 = 0

and by induction hypothesis (p0, . . . , pk) is linearly independent and a0 = · · · = ak = 0.

Hence (p0, . . . , pk+1) is linearly independent.

12 By Theorem 2.43 in the textbook, dim(U + W ) = dimU + dimW − dim(U ∩ W ). Since

U +W ⊂ R9, dim(U +W ) ≤ dimR9 = 9. Therefore

dim(U ∩W ) = dimU + dimW − dim(U +W ) ≥ 5 + 5− 9 = 1.

Since dim{⇀0 } = 0 6= 1, U ∩W 6= {⇀0 }.

14* The case m = 1 is true because U1 is given to be finite dimensional and L.H.S. is equal to

R.H.S. Assume the inequality is true for some positive integer k. Let U1, . . . , Uk, Uk+1 be

finite-dimensional subspaces of V . By assumption W := U1 + · · · + Uk is finite dimensional.

By the proof of Theorem 2.43 in the textbook, U1 + · · · + Uk + Uk+1 = W + Uk+1 is again

finite-dimensional and dim(W +Uk+1) ≤ dimW + dimUk+1. By assumption again dimW ≤
dimU1 + · · ·+ dimUk. Therefore

dim(U1+· · ·+Uk+Uk+1) ≤ dim(U1+· · ·+Uk)+dimUk+1 ≤ dimU1+· · ·+dimUk+dimUk+1.

17 Consider V = R3, U1 = {(x, y, y) : x, y ∈ R}, U2 = {(y, x, y) : x, y ∈ R}, U3 = {(y, y, x) :

x, y ∈ R}. They are subspace of V of dimension 2 (using Example 2.28(e) in the textbook).

Note that

U1 ∩ U2 = U1 ∩ U3 = U2 ∩ U3 = U1 ∩ U2 ∩ U3 = {(x, x, x) : x ∈ R} =: W.

It is because for any v ∈ U1 ∩ U2, v = (x1, y1, y1) = (y2, x2, y2) for some x1, x2, y1, y2 ∈ R.

Therefore x1 = y2, y1 = x2, y1 = y2 and all entries are equal. So U1∩U2 = {(x, x, x) : x ∈ R}.
The reverse inclusion is clear and the other equalities are proven similarly. Also, U1+U2+U3 =
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V since for any w = (a, b, c) ∈ V , w = (a, 0, 0) + (0, b, 0) + (0, 0, c) where these three terms

contain in U1, U2, U3 respectively. Hence dim(U1 +U2 +U3) = 3. However, dimW = 1 since

(1, 1, 1) is a basis of W . Therefore R.H.S. of the equation is 2 + 2 + 2− 1− 1− 1 + 1 = 4 6= 3.

(The problem of this analogy is that U1 ∩ (U2 ∪ U3) = (U1 ∪ U2) ∩ (U1 ∪ U3) for sets but

U1 ∩ (U2 + U3) is not equal to (U1 + U2) ∩ (U1 + U3) for vector subspaces in general.)
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