MATH 2040C Linear Algebra II

2017-18 Term 2

Midterm 1

Honesty in Academic Work: The Chinese University of Hong Kong places very high importance on honesty in academic work submitted by students, and adopts a policy of zero tolerance on cheating and plagiarism. Any related offence will lead to disciplinary action including termination of studies at the University.

NAME: Solution

ID:_____

Instruction: Answer ALL questions and show your work with explanation.

Time: 60 minutes

Question	Score
1	
2	
3	
4	
5	
Total	/40

- 1. (True or False) Please circle the correct answer. Each question is worth 1 point.
 - (a) Suppose U and W are both four-dimensional subspaces of \mathbb{R}^7 . Then $U \cap W$ is not the zero subspace.

(b) If S is a linearly independent subset of a vector space V, and $v \in V$ is a vector such that $S \cup \{v\}$ is linearly dependent, then $v \in \text{span } S$.

(c) The real vector space $\mathbb{R}^{(0,1)} = \{f : (0,1) \to \mathbb{R}\}$ of all real-valued functions defined on (0,1), with the standard addition and scalar multiplication, do not have a basis.

(d) Let $T: V \to W$ be a linear map between vector spaces V and W. Then the range of T is a subspace of W.

(e) The real vector space of all 4×4 skew-symmetric matrices has dimension 10.

$$\dim = 6$$

- TRUE
- (f) Let V be a complex vector space and W_1, W_2, W_3 be its subspaces with intersection $W_1 \cap W_2 \cap W_3 = \{0\}$. Then $W_1 + W_2 + W_3$ is a direct sum.

FALSE

FALSE

FALSE

(g) Let V be a n-dimensional vector space and $S \subset V$ be a linearly independent subset consisting of n vectors. Then S is a basis of V.

W₁

(h) The vector space $\mathbb{R}^{\infty} = \{(x_1, x_2, \ldots) : x_i \in \mathbb{R} \text{ for all } i \in \mathbb{N}\}$ of all sequences of real numbers has a basis $\{e_1, e_2, \ldots\}$, where e_k is the sequence with the k-th term equals to 1 and all other terms equal to 0.

Span
$$\{e_{i}, e_{2}, \cdots\}$$

= $\{(X_{i}, X_{2}, \cdots) \in \mathbb{R}^{\infty} : \exists n \text{ s.t. } X_{i} = 0 \forall i \ge n\}$
= Subspace of all sequences with finitely many non-zero terms

- 2. (12 pts) Answer the following questions.
 - (a) Consider \mathbb{C}^2 as a vector space over $\mathbb{F} = \mathbb{C}$. Express $(2,0) \in \mathbb{C}^2$ as a linear combination of the vectors (1,i) and (i,1) or show that it is impossible.

$$(2,0) = (1,i) + (-i)(i,1)$$

$$\frac{Rmk}{Rmk} \text{ One may also find the coefficients using Gaussian elemination:}$$

$$Suppose \quad a(1,i) + b(i,1) = (2,0)$$

$$\text{then } \begin{cases} a+ib = 2\\ia+b = 0 \end{cases}$$

$$\begin{bmatrix} 1 & i & |2\\i&1&0 \end{bmatrix} \sim \begin{bmatrix} 0 & 2 & |-2i| \\ 0 & 2 & |-2i| \end{bmatrix} R_2 \Rightarrow R_2 - iR_1$$

$$\sim \begin{bmatrix} 1 & i & |2\\0&1&|-i| \end{bmatrix}$$

$$\therefore \quad b = -i$$

$$a+ib = 2 \Rightarrow a = 2 - i(-i) = 1$$

(b) Is the subset $\{(x,y) \in \mathbb{R}^2 : xy = 0\}$ a subspace of the vector space \mathbb{R}^2 ? Justify your answer.

No. let
$$S = \{(x,y) \in \mathbb{R}^2 : xy = 0\}$$

Note that $(1)(0) = (0)(1) = 0$
 $\Rightarrow (1,0), (0,1) \in S$
but $(1)(1) = 1 \neq 0$
 $\Rightarrow (1,0) + (0,1) = (1,1) \notin S$
 $\therefore S$ is not closed under addition
 $\therefore S$ is not a subspace.

(c) Is $\{1 + x, 1 + 2x + 3x^2, x + 2x^2\}$ a linearly independent subset of the vector space of all real polynomials?

Suppose

$$C_{1}(1+x) + (_{2}(1+2x+3x^{2}) + C_{3}(x+2x^{2}) = 0$$

$$(c_{1}+(x)) + (c_{1}+2c_{2}+c_{3})x + (3c_{2}+2c_{3})x^{2} = 0$$

$$(c_{1}+c_{2}) + (c_{1}+2c_{2}+c_{3})x + (c_{1}+2c_{2}+c_{3}+c_{3})x + (c_{1}+2c_{2}+c_{3})x + (c_{1}+2c_{2}+c_{3}+c_{3})x + (c_{1}+2c_{2}+c_{3}+c_{3})x + (c_{1}+2c_{2}+c_{3}+c_{3})x + (c_{1}+2c_{2}+c_{3}+c_{3})x + (c_{1}+2c_{2}+c_{3}+c_{3})x + (c_{1}+2c_{2}+c_{3}+c_{$$

>> the subset is linearly independent.

- 3. (7 pts) Let $\mathcal{P}_2(\mathbb{R})$ be the real vector space of all real polynomials of degree at most 2 and $U = \{p(x) \in \mathcal{P}_2(\mathbb{R}) : p'(1) = 0\}$ be its subspace.
 - (a) Find a basis S of U;
 - (b) Extend the set S in part (a) to a basis of $\mathcal{P}_2(\mathbb{R})$;
 - (c) Find a subspace W of $\mathcal{P}_2(\mathbb{R})$ such that $\mathcal{P}_2(\mathbb{R}) = U \oplus W$.

a. Note
$$x \notin U \Rightarrow U \notin P_{2}(\mathbb{R})$$

 $\therefore dim U < dim P_{2}(\mathbb{R}) = 3$
(et $S = \{1, (x-1)^{2}\} < U$. S is lin. indept
 $\therefore dim U \ge 2$
 $\therefore dim U \ge 2$ and S is a basis.
Alt soln (et $p(x) = at bx + cx^{2} \in P_{2}(\mathbb{R})$
 $P'(x) = b + 2cx$
 $p'(1) = b + 2c$
 $\therefore p(x) \in U \iff b + 2c = 0$
 $\iff \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a \\ -2c \\ c \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}$
We con take $S = \{1, -2x + x^{2}\}$

b.
$$X \notin U = \text{span } S$$

 $\therefore S' = \{1, (x - 1)^2, x\}$ is lin indept, $|S'| = 3$
dim $P_2(IR) = 3 \implies S'$ is a basis of $P_2(IR)$

C. We can take
$$W = \text{span} \{x\}$$
.
= $\{kx : k \in \mathbb{R}\}$

4. (8 pts) Let V be a vector space and T: V → V be a linear map.
(a) Show that W = {v ∈ V : T(v) = v} is a subspace of V.
(b) Suppose that T² = T. Show that V = null T ⊕ W.

a
$$(\bigcirc T(\vec{o}) = \vec{O}$$
 because T is linear. Hence $\vec{O} \in W$
(a) If $w_{i1}w_{i2} \in W$, then $T(w_{i1}w_{i2}) = T(w_{i1}) + T(w_{i2})$
 $= W_{i1} + W_{i2}$
 $\Rightarrow w_{i1} + w_{i2} \in W$
(b) If $w \in W$, $\lambda \in iF$, then $T(\lambda w) = \lambda T(w)$
 $= \lambda w$
 $\Rightarrow \lambda w \in W$

... Wis a subspace.

6.
$$\forall v \in V, \quad v = (v - T(v)) + T(v)$$

Note that $T(v - T(v)) = T(v) - T^2(v) = \overline{0}$
and $T(T(v)) = T^2(v) = T(v)$
 $\therefore v - T(v) \in null T, \quad T(v) \in W$
 $\therefore V = null T + W$
To show it is a direct sum, suppose $V \in null T \cap W$

then
$$V = T(v) = 0 \implies null T \cap W = \{0\}$$

5. (5 pts) Let V be a real vector space, W_1 and W_2 be its subspaces of dimension 2. Suppose $\{v_0\}$ is a basis of $W_1 \cap W_2$, $\{v_0, v_1\}$ is a basis of W_1 and $\{v_0, v_2\}$ is a basis of W_2 . Prove that $\{v_0, v_1, v_2\}$ is linearly independent from the definition.

Suppose
$$C_0 : C_1 : C_2 \in IR$$
 and
 $C_0 V_0 + C_1 V_1 + C_2 V_2 = \overrightarrow{O}$.
Then $C_0 V_0 + (r_1 V_1 = -C_2 V_2 \in W_2)$
But $C_0 V_0 + C_1 V_1 \in W_1$
 $\Rightarrow -C_2 V_2 \in W_1 \cap W_2 = \text{span} \{V_0\}$
Hence $-C_2 V_2 = K V_0$ for some $K \in IR$
 $\Rightarrow K V_0 + C_2 V_2 = \overrightarrow{O}$
 $\{V_0, V_2\}$ is lin indept $\Rightarrow C_2 = 0$
 $\Rightarrow C_0 V_0 + C_1 V_1 = -C_2 V_2 = \overrightarrow{O}$
 $\{V_0, V_1\}$ is lin indept $\Rightarrow C_0 = C_1 = 0$
 $\therefore C_0 = C_1 = C_2 = 0 \Rightarrow \{V_0, V_1, V_2\}$ is lin. indept