
THE CHINESE UNIVERSITY OF HONG KONG
Department of Mathematics

MATH2060B Mathematical Analysis II (Spring 2020)
Suggested Solution of Homework 7: Section 8.1: 5, 15, 22, 23

5. Evaluate lim((sinnx)/(1 + nx)) for x ∈ R, x ≥ 0. (2 marks)

Solution. If x = 0, then clearly, lim((sinnx)/(1 + nx)) = 0. If x > 0 is fixed, then∣∣∣∣ sinnx

1 + nx

∣∣∣∣ ≤ 1

1 + nx
≤ 1

nx
→ 0 as n→∞.

Therefore, for each fixed x ≥ 0, we conclude that lim((sinnx)/(1 + nx)) = 0.

15. Show that if a > 0, then the convergence of the sequence in Exercise 5 is uniform
on the interval [a,∞), but is not uniform on the interval [0,∞). (3 marks)

Solution. First, we show that for each a > 0, the sequence {fn(x)} of functions,
defined by

fn(x) =
sinnx

1 + nx
for x ≥ 0,

converges uniformly on the interval [a,∞). Since the pointwise limit is the zero
function, we only need to check that this sequence converges uniformly to the zero
function on [a,∞).

Note that for every x ∈ [a,∞)∣∣∣∣ sinnx

1 + nx

∣∣∣∣ ≤ 1

1 + nx
≤ 1

nx
≤ 1

na

Since for every x ∈ [a,∞), |fn(x)| shares the same bound 1
na

, and 1
na
→ 0 as n→∞,

we have verified that the convergence on [a,∞) is uniform.

However, the sequence of functions does not converge uniformly on [0,∞). It suffices
to propose an ε > 0 so that for any N ∈ N, we can find some integer n ≥ N and
some number xn ∈ [0,∞) satisfying the inequality |fn(xn)− 0| ≥ ε.

We propose ε = 1/3. For each N ∈ N, we consider n = N and xn = π/(2n) ∈ [0,∞).
Hence,

|fn(xn)− 0| = 1

1 + π
2

≥ 1

3
= ε.

This shows the claim.

22. Show that if fn(x) := x + 1/n and f(x) := x for x ∈ R, then (fn) converges
uniformly on R to f , but the sequence (f 2

n) does not converge uniformly on R.
(Thus the product of uniformly convergent sequences of functions may not converge
uniformly.) (2 marks)



2

Solution. Notice that for every x ∈ R,

|fn(x)− f(x)| = 1

n
→ 0 as n→∞.

Therefore, (fn) converges uniformly on R.

To see that (f 2
n) does not converge uniformly, we first observe that the pointwise

limit of this sequence of functions is f 2. Therefore, it suffices to propose an ε > 0
so that for any N ∈ N, we can find some integer n ≥ N and some number xn ∈ R
satisfying the inequality |fn(xn)2 − f(xn)2| ≥ ε.

We propose ε = 1. For each N ∈ N, we consider n = N and xn = n ∈ R. Note that

|fn(xn)2 − f(xn)2| = 2 +
1

n2
> 1 = ε

This shows the claim.

23. Let (fn), (gn) be sequences of bounded functions on A that converge uniformly on
A to f, g, respectively. Show that (fngn) converges uniformly on A to fg. (3 marks)

Solution. First, we will show that there is some M > 0 such that |fn(x)| ≤ M
for every n ∈ N and x ∈ A. Since the sequence (fn) converges uniformly on A, by
Cauchy criterion, there is some N ∈ N, so that

sup
x∈A
|fn(x)− fm(x)| < 1 for any n,m ≥ N .

In particular,

|fn(x)− fm(x)| < 1 for any n,m ≥ N , x ∈ A.

We fix m = N . The assumption that fN is a bounded function tells us that ‖fN‖ :=
sup{|fN(x)| : x ∈ A} exists. Therefore, we may conclude that |fn(x)| < 1 + ‖fN‖
for every n ≥ N and x ∈ A, using triangle inequality. We can simply put M =
max{1 + ‖fN‖, ‖f1‖, · · · , ‖fN−1‖}.
Without loss of generality, we can assume that |fn(x)|, |gn(x)| ≤M for every n ∈ N
and x ∈ A. Up to now, we have argued that the sequences (fn), (gn) of functions
are uniformly bounded, independent of n.

By definition of uniform convergence, there is some N ∈ N such that |fn(x) −
f(x)|, |gn(x) − g(x)| < ε/(2M) for all n ≥ N and x ∈ A. Now, for any n ≥ N and
x ∈ A, we have

|fn(x)gn(x)− f(x)g(x)| ≤ |fn(x)− f(x)| |gn(x)|+ |gn(x)− g(x)| |f(x)|

<
ε

2M
M +

ε

2M
M = ε

This proves the claim. Remark: A sequence (fn) of functions converges uniformly
to f on the set A, is equivalent to say that lim

n→∞
sup
x∈A
|fn(x)− f(x)| = 0.


