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16. Show by integrating the series for 1/(1 + x) that if || < 1, then

In(1+x) = f:

n=1

_1n+1
(o,

n

(3 marks)

Solution. For each a € (0, 1), notice that the series Z(—l)”x” converges uniformly
n=0
to 1/(1 + ) on [—a,a]. Therefore, for any x € [—a, a|, we have

In(1 + ) — In(1 + 0) = /xi(—l)”t” dt
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The first line is due to the fundamental theorem of calculus (first form) (7.3.1).
Since this holds for any a € (0,1) and = € [—a, al, it also holds for any z € (—1,1).
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17. Show that if |z| < 1, then Arctanz = Z 2( +)1332"+1. (4 marks)
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Solution. This is similar to Q16. Observe that L Arctanz = 1/(1 + 2?) for every

x € R. Moreover, for each a € (0, 1), the series Z(—l)"x% converges to 1/(1+ z?)

n=0



uniformly on [—a, a]. Therefore, for any = € [—a, a], we have

Arctanz — Arctan(0 = / Z(—l)"t% dt
0

Arctanz = E (—J:Q"H
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Since it holds for every a € (0, 1), the formula also holds for every x € (—1,1).

19. Find a series expansion for / e dt for x € R. (3 marks)
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Solution. For every M > 0, the series Z converges to e~

n=0

[—M, M]. Hence, for any = € [—M, M], we obtain the series expansion
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Since M > 0 is arbitrary, the formula holds for any x € R.



