MMAT5010 2021 Assignment 6

Q1. Let $a, b \in X$, $a \neq b$. Using Hahn-Banach Theorem there exists $x^* \in X^*$ such that $x^*(a) \neq x^*(b)$. Fix some element $0 \neq y \in Y$. Define $T : X \to Y$ by $T(x) = x^*(x)y$. Then T is linear because

$$T(c_1x_1 + c_2x_2) = (x^*(c_1x_1 + c_2x_2))y = c_1x^*(x_1)y + c_2x^*(x_2)y = c_1T(x_1) + c_2T(x_2).$$

Moreover, T is bounded because

$$||T(x)|| = ||x^*(x)y|| \le ||x^*|| \, ||y|| \, ||x||$$

Hence T is the required operator.

Q2. The element a is (2, -3). We have $||a||_{\infty} = 3$. It remains to verify ||f|| = 3. For $(x_1, x_2) \in \mathbb{R}^2$, we have

$$|f(x_1, x_2)| \le 2|x_1| + 3|x_2| \le 3||(x_1, x_2)||_1$$

Therefore $||f|| \leq 3$, and ||f|| = 3 because f(0, -1) = 3. (Note (0, -1) has $|| \cdot ||_1$ -norm 1)