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1. Let f be a real-valued function defined on [0,∞). Prove or disprove the following statements:

i. If
∫∞
0
f(x)dx and limx→∞ f(x) both exists, then limx→∞ f(x) = 0

ii. If
∫∞
0
f(x)dx exists, then limx→∞ f(x) exists.

Solution.

i. The statement is true. Suppose not. Then limx→∞ f(x) ̸= 0. WLOG suppose limx→∞ f(x) = ϵ > 0 (since
limx→∞ f(x) exists). Then f(x) > ϵ/2 for x ≥M . Hence it follows that for all n ∈ N, we have∫ M+n

M

f(x)dx ≥
∫ M+n

M

ϵ

2
dx = n

ϵ

2

It follows we have for all n ∈ N that∫ M+n

0

f(x)dx =

∫ M

0

f(x)dx+

∫ M+n

M

f(x)dx ≥
∫ M

0

f(x)dx+ n
ϵ

2

This implies that limn

∫M+n

0
f(x)dx = ∞ as limnϵ/2 = ∞. It follows from the sequential criteria that∫∞

0
f(x)dx = ∞, which is a contradiction.

ii. The statement is false. Consider f(x) = 1/(x + 1)2 for x ≥ 0. Note that f is continuous on [0, b] for all

b ∈ (0,∞). It follows from FTC that
∫ b

0
f(x)dx = −1/(x + 1)]b0 = 1 − 1/b. By taking limits, we have∫∞

0
f(x)dx = limb→∞

∫ b

0
f(x)dx = 1.

Now we consider another function g such that g(x) = f(x) for all x ≥ 0 and x /∈ N and g(n) = 1 for n ∈ N.
Note that for all b > 0, g = f except for finitely many points on [0, b]. Hence, we have

∫ b

0
g =

∫ b

0
f . It follows

by taking limits that
∫∞
0
g = limb→∞

∫ b

0
f =

∫∞
0
f = 1, that is,

∫∞
0
g(x)dx exists. However limx→∞ f(x)

does not exists since g(xn) → 1 where xn := n but g(xn + 1/2) = f(xn + 1/2) = 1/(n+ 1/2)2 → 0.

Remark.

• All of you correctly identified the truth of the statements. Well done!

• Many of you considered f in part (ii) to be the zero function, which is clearly Okay and simpler than
the above solution. Meanwhile, a number of you considered functions with ”hats” of diminishing
width, which is also OK.

• Some of you confused the definition of improper integrals with the ordinary integral: ordinary integrals
could be verified by an ϵ argument concerning upper and lower sum of partitions. However the case for
improper integrals is not (as we may not be able to define upper/lower sums if functions or domains
are unbounded). The latter is defined as the limit of ordinary integrals on compact intervals. In
particular, theorems that are true for the ordinary integral may not be valid for improper integrals;
one has to give some verification before using similar theorems, like the Lebesgue criteria.
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2. Let f : R → R be a bounded function. Write M := supx∈R |f(x)|. For all λ > 0, we define

ψλ(x) := inf{g(x) : g is a λ-Lipschitz function on R and g ≥ f on R}

for all x ∈ R. Write ψ0(x) :=M for all x ∈ R.
Suppose for all t > 0, there exists λ > 0 such that ψλ(x) − f(x) < t for all x ∈ R. With the assumption, we
define for all t > 0 that

τ(t) := inf{λ > 0 : ψλ(x)− f(x) < t for all x ∈ R}

We also define

ϕ(x) :=

∫ 1

0

ψτ(t)(x)dt (1)

for all x ∈ R

i. Show that for all λ > 0 that ψλ is a λ−Lipschitz function on R.

ii. Show that the impropert integral in Eq(1) exists for all x ∈ R, that is, the function t ∈ [c, 1] 7→ ψτ(t)(x)

is Riemann integrable for all c ∈ (0, 1] and limc→0+
∫ 1

c
ψτ(t)(x)dt exists.

iii. Show that the function ϕ is bounded and uniformly continuous on R.

Solution.

i. Fix λ > 0. Fix we show that ψλ(x) is well-defined for all x ∈ R. Set g(x) := M for all x ∈ R. Then it is
clear that g is λ− Lipschitz for all λ > 0 since it is a constant function. It is also clear that g ≥ f on R.
Therefore, ψλ(x) is finite for all x ∈ R.
Next, we show that ψλ is λ−Lipschitz. Let x, y ∈ R. Let ϵ > 0. Then there exists g, h λ- Lipschitz
functions such that ψλ(x) + ϵ > g(x) and ψλ(y) + ϵ > h(y) by the definition of ψλ. Hence, we have

ψλ(y)− ψλ(x)− ϵ ≤ ψλ(y)− g(x) ≤ g(x)− g(y) ≤ λ|x− y|
ψλ(x)− ψλ(y)− ϵ ≤ ψλ(x)− h(y) ≤ h(x)− h(y) ≤ λ|x− y|

Combining the two, we have |ψλ(x)− ψλ(y)| − ϵ ≤ λ|x− y|. The result follows as ϵ→ 0.

ii. Fix x ∈ R. Write αx(t) := ψτ(t)(x) for t > 0.

Claim. We have αx(t) is increasing for t > 0

Proof of claim. To begin with, we show that τ is decreasing on (0,∞). Suppose t1 ≤ t2 ∈ (0, 1). Then we
have

{λ > 0 : ψλ(x)− f(x) < t1 for all x ∈ R} ⊂ {λ > 0 : ψλ(x)− f(x) < t2 for all x ∈ R}

It follows clearly that τ(t2) ≤ τ(t1) by taking infimums. Next, we show that ψλ(x) is decreasing for λ ≥ 0.
This is because if 0 < λ1 ≤ λ2 then we have

{g(x) : g is a λ1-Lipschitz function on R and g ≥ f on R}
⊂{g(x) : g is a λ2-Lipschitz function on R and g ≥ f on R}

By taking infimums, we have ψλ2(x) ≤ ψλ1(x). The case where λ1 = 0 is obvious using the definition of
ψ0. Combining the two, we have that αx(t) := ψτ(t)(x) is increasing for t > 0.

By the claim, αx is increasing on (0, 1]. In particular, it is increasing on [c, 1] for all c ∈ (0, 1). Hence
αx ∈ R([c, 1]) as monotone functions over compact intervals are Riemann integrable.
Next, we give a bound for α:

Claim. We have |αx(t)| ≤M for all t > 0.

Proof of claim. Fix λ ≥ 0. Note that ψλ(x) ≥ f(x) ≥ −M by the definition of ψλ. In addition, we have
shown in the proof of the preivous claim that ψλ(x) ≤ ψ0(x) =M (since the constant function g ≡M on
R is λ-Lipschitz for all λ > 0 with g ≥ f on R). It follows that |ψλ(x)| ≤ M for all λ ≥ 0. Hence, we
clearly have |αx(t)| ≤M on t > 0

To show that limc→0+
∫ 1

c
αx(t)dt exists. We consider αx(t) := αx(t) +M ≥ 0 for all t > 0. Note that

αx(t) is non-negative and increasing on (0, 1]. Define Fx(c) :=
∫ 1

c
αx(t)dt for all c > 0. It follows that Fx

is decreasing for c ∈ (0, 1] by splitting the domain of integration. Furthermore, 0 ≤ Fx(c) ≤
∫ 1

c
|αx(t)|dt ≤

2M for all c ∈ (0, 1]. It follows from the bounded monotone theorem that limc→0+ Fx(c) exists. In

particular, by linearity of integrals and limits, limc→0+
∫ 1

c
αx(t)dt exists.

2



MATH 2068 HT 2 - Solutions Posted on 26 April 2022

iii. First we show that ϕ is bounded. Fix x ∈ R. Using the notations in part (ii), we have ϕ(x) = limc→0+ Fx(c).
As 0 ≤ Fx(c) ≤ 2M for all c ∈ (0, 1], we have 0 ≤ ϕ(x) ≤ 2M . The result follows as x is arbitrary.
Next we show the uniform continuity. Let ϵ > 0. Let x, y ∈ R. Pick c ∈ (0, ϵ) such that

|ϕ(x)− Fc(x)|, |ϕ(y)− Fc(y)| ≤ ϵ

Then, note that

|Fc(x)− Fc(y)| =
∣∣∣∣∫ 1

c

ψτ(t)(x)− ψτ(t)(y)dt

∣∣∣∣ ≤ ∫ 1

c

∣∣ψτ(t)(x)− ψτ(t)(y)
∣∣dt

=

∫ ϵ

c

∣∣ψτ(t)(x)− ψτ(t)(y)
∣∣dt+ ∫ 1

ϵ

∣∣ψτ(t)(x)− ψτ(t)(y)
∣∣dt

≤
∫ ϵ

c

|αx|(t) + |αy|(t)dt+
∫ 1

ϵ

τ(t)|x− y|dt

≤ 2Mϵ+

∫ 1

ϵ

τ(ϵ)dt|x− y|

≤ 2Mϵ+ τ(ϵ)|x− y|

Choose δ := min{1, ϵ/τ(ϵ)} (we set ϵ/0 := ∞ if necessary). Then it follows that |Fc(x)− Fc(y)| ≤ (2M+1)ϵ
as |x− y| ≤ δ. By triangle inequalities, we further have |ϕ(x)− ϕ(y)| ≤ (2M + 3)ϵ when |x− y| ≤ ϵ. It
follows that ϕ is uniform continuous on R.
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