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1 (P. 196 Q4). Show that if x > 0, then we have

1 +
1

2
x− 1

8
x2 ≤

√
1 + x ≤ 1 +

1

2
x (1)

Solution. Define f(x) :=
√
1 + x for all x > −1. Then f is smooth on (−1,∞). Let x > 0. Then by Taylor’s

theorem, we have

f(x)− f(0) = f ′(0)x+
1

2
f ′′(ξ)x2

for some ξ ∈ (0, x). Note that f ′(t) = 1
2 (1 + t)−1/2 and f ′′(t) = −1

4 (1 + t)−3/2 for all t > −1. It follows that

we have f ′(0) = 1
2 and f ′′(ξ) = −1

4 (1 + ξ)−3/2 ∈ [−1
4 , 0] as (1 + ξ)−3/2 ∈ [0, 1] since ξ > 0. Hence, we have

−1

8
x2 ≤ f(x)− f(0)− f ′(0)x =

1

2
f ′′(ξ)x2 ≤ 0

The result follows by re-arranging the terms.

Remark. Parts of the can be obtained by considering the first and third derivatives as well.

2. Let f(x) := ex for all x ∈ R. Show that the remainder term in Taylor’s Theorem converges to 0 as n → ∞
for all fixed x0, x ∈ R.

Solution. Consider x0 < x without loss of generality. Denote Rn(x) the nth-order remainder term in Taylor’s
theorem with respect to x0 for all x ∈ R and n ∈ N≥1, that is,

f(x) =

n−1∑
i=0

f (i)(x0)

i!
(x− x0)

i +Rn(x)

It follows that Rn(x) = f(n)(ξn)
n! (x − x0)

n for some ξn ∈ (x0, x) for all n ∈ N. We proceed to show that
limn Rn(x) = 0.
Method 1: Using ϵ−N definition. Note that f (n)(x) = f(x) for all n ∈ N and x ∈ R. In addition f is
increasing. It follows that

0 ≤ Rn(x) =
f (n)(ξn)

n!
(x− x0)

n =
eξn

n!
(x− x0)

n ≤ ex

n!
(x− x0)

n

Write a := x − x0 > 0. We claim that limn
an

n! = 0. Let ϵ > 0. Choose N ∈ N such that N > a. Suppose
n ≥ N and n > aN+1/ϵN !. Then we have∣∣∣∣ann!

∣∣∣∣ = an

n!
=

a

n
· · · a

N + 1
· a

N

N !
≤ a

n

aN

N !
< ϵ

It follows from definition that limn
an

n! = 0. Hence, by sandwich theorem we have limn Rn(x) = 0.

Method 2: Ratio Test. Note again that f (n)(x) = f(x) for all n ∈ N and x ∈ R. Hence, we have

Rn+1(x)

Rn(x)
=

eξn+1

eξn
(x− x0)

n+1

(x− x0)n
n!

(n+ 1)!
=

x− x0

n+ 1
eξn+1−ξn ≤ x− x0

n+ 1
ex−x0

As x− x0 is independent of n it follows that limn Rn+1(x)/Rn(x) = 0 < 1. This implies that limn Rn(x) = 0
(we can in fact deduce that (Rn(x)) is summable).

Common Mistake. It is important to note that the ξ obtained in Taylor’s Theorem depends on x, x0, n.
Therefore to show that limn Rn(x) = 0, one has to give a bound for eξn , or eξn+1−ξn if the ratio test is used,
so that the term is independent of n. Otherwise, you cannot take n → ∞ with ξ = ξn in hand. Many of you
made this mistake.
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3. Define h(x) :=

{
e−1/x2

x ̸= 0

0 x = 0
.

i. Show that h(n)(0) = 0 for all n ∈ N.

ii. Show that the remainder term in Taylor’s Theorem for x0 = 0 does not converge to 0 for all x ̸= 0 as
n → ∞

Solution.

i. We first show that limx→0
h(x)
xk = 0 for all k ≥ 1. We proceed using induction. Write f(x) := 1/x and

g(x) := e1/x
2

. Note that g′(x) ̸= 0 for all x ̸= 0 and limx→0 g(x) = ∞. Furthermore limx→0
f ′(x)
g′(x) =

limx→0
−x−2

−2x−3g(x) = limx→0
x

2e1/x2 = 0. By considering both 1-sided limits, it follows that the L’Hospital

rule applies. Hence, limx→0
f(x)
g(x) = limx→0

h(x)
x = 0. Now suppose limx→0

h(x)
xn for all n < k . Write

f(x) := 1/xk and g(x) := e1/x
2

. Then limx→0
f ′(x)
g′(x) = limx→0

−kx−k−1

−2x−3g(x) = limx→0
k
2

h(x)
xk−2 = 0 by induction

hypothesis. Similarly a condition for L’Hospital Rule applies. Therefore limx→0
f(x)
g(x) = limx→0

h(x)
xk = 0.

We now show that limx→0
h(n)(x)

xk = 0 for all n, k ∈ N. By the above limx→0
h(x)
xK = 0 for all k ∈ N. Now fix

n ≥ 1. Suppose limx→0
h(j)(x)

xk for all j < n and k ∈ N. Note that as n ≥ 1, we have h(n)(x) = (h′)(n−1)(x)
for all x ̸= 0 while h′(x) = −2x−3h(x). It follows from the product rule (Leibniz’s Rule) that for x ̸= 0

h(n)(x) = (h′)(n−1)(x) = (−2x−3h(x))(n−1) =

n−1∑
i=0

(
n− 1

i

)
(−2x−3)(i)h(n−1−i)(x)

By linearity and induction hypothesis, it follows that limx→0 h
(n)(x)/xk = 0. Hence limx→0

h(n)(x)
xk = 0

for all n, k ∈ N.

To the end, we conclude that h(n)(0) = 0 by an induction argument: the case for n = 0 is clear. Let n ≥ 1.
Suppose h(k)(0) = 0 for all k < n. Then we have by the induction hypothesis as well as previously proved
results that

h(n)(0) := lim
x→0

h(n−1)(x)− h(n−1)(0)

x− 0
= lim

x→0

h(n−1)(x)

x
= 0

ii. Note that h is smooth on R by (i); we can apply Taylor’s Theorem. Let Rn(x) be the nth order remainder

term for x0 = 0 with x ̸= 0. Then h(x) =
∑n−1

i=1
h(i)(0)

i! xi+Rn(x). It follows from part (i) that h(x) = Rn(x)
for all n ∈ N and x ̸= 0. It is then clear that limn Rn(x) = h(x) ̸= 0 for all x ̸= 0.

Common Mistake.

a). It is completely wrong to use limx→0
h(x)
xk = 0 to deduce that limx→0

h(k)(x)
x = 0 by the L’Hospital Rule.

The aim of the L’Hospital Rule is to use derivatives to compute limits and require in advance that the
limit of the derivative exists. Please revise the L’Hospital Rule.

b). Note that you cannot transform limx→0 e
−1/x2

x−1 into limy→∞ e−y2

y as this is true for only x → 0+.

Remark.

i. This example is the standard example of a smooth function that does not admit Taylor’s expansion at
some points, that is, a smooth function that is not analytic. Similar behaviors do not occur in complex
variables in which analyticity and complex differentiability (holomorphy) coincide.

ii. Some of you used the Taylor’s theorem on e−1/x2

to conclude that e−1/x2 ≤ n!x2n for x ̸= 0 and for n ∈ N.
This is a good way to simplify the above proof.
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