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Dual space of lp(1 < p <∞)

Dual space. Let X be a normed space. Then the set of bounded linear functionals on X
constitutes a normed space with norm defined by

‖f‖ = sup
x 6=0

|f(x)|
‖x‖

= sup
‖x‖=1

|f(x)|,

which is called the dual space of X and denoted by X∗.

An isomorphism of a normed space X onto a normed space Y is a bijective linear operator T :
X → Y which preserves the norm, that is, for all x ∈ X,

‖Tx‖Y = ‖x‖X .

Our first theorem shows that the dual space of lp is isomorphic with lq. We express this by saying
that the dual space of lp is lq.

Theorem. The dual space of lp is the space lq, where p, q are Hölder conjugates, i.e., (lp)∗ ∼=
lq, 1 < p <∞.
Proof: Step 1. (lp)∗ ⊂ lq. Construct an injective operator

T : (lp)∗ → lq s.t. ‖Tf‖lq ≤ ‖f‖.

Let f ∈ (lp)∗. For any x ∈ lp, there exists a unique sequence of real numbers xk such that

x =
∞∑
k=1

xkek, where (ek) is the Schauder basis of lp. Then,

f(x) =
∞∑
k=1

xkf(ek)

since f is continuous.

Denote f(ek) by bk and we can define an injective linear operator T by Tf = (bk) = (f(ek)). It
suffices to show that (bk) ∈ lq.
Indeed, ∀n ∈ N, we can construct a sequence xn = (xnk) as

xnk =


|bk|q

bk
, if bk 6= 0 and k ≤ n,

0, otherwise.

Then it is clear that xn ∈ lp because it has finite nonzero terms and

f(xn) =
∞∑
k=1

xnkbk =
n∑

k=1

|bk|q.
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By the boundedness of f , we have

n∑
k=1

|bk|q = |f(xn)| ≤ ‖f‖‖xn‖lp = ‖f‖

(
∞∑
k=1

|xnk |p
) 1

p

= ‖f‖

(
n∑

k=1

|bk|(q−1)p

) 1
p

= ‖f‖

(
n∑

k=1

|bk|q
) 1

p

.

Therefore, (
n∑

k=1

|bk|q
) 1

q

≤ ‖f‖.

Let n→∞ and we have (bk) ∈ lq with

‖(bk)‖lq ≤ ‖f‖.

Step 2. lq ⊂ (lp)∗. To show that T is surjective and verify ‖Tf‖lq = ‖f‖.
For an arbitrary sequence (bk) ∈ lq, it can be checked that the mapping

f(x) :=
∞∑
k=1

xkbk, ∀x = (xk) ∈ lp

is a bounded linear operator on lp.

In fact,

|f(x)| =

∣∣∣∣∣
∞∑
k=1

xkbk

∣∣∣∣∣ ≤
∞∑
k=1

|xkbk| ≤ ‖x‖lp‖(bk)‖lq ,

which implies that f ∈ (lp)∗ and ‖f‖ ≤ ‖(bk)‖lq .

Theorem. The dual space of l1 is the space l∞.

Theorem. The dual space of c and c0 are both the space l1.

The dual space of l∞ is NOT l1.

Proof. To be supplemented some time later.

Example. For x = (xn) ∈ l2, let f(x) =
∞∑
n=1

x2n

n
, then f ∈ (l2)∗.

Proof. f can be expressed as f(x) =
∞∑
k=1

bkxk with

bk = f(ek) =


1

m
, k = 2m,

0, k = 2m− 1,
m ≥ 1.

Then f ∈ (l2)∗ and

‖f‖ = ‖(bk)‖2 =

(
∞∑

m=1

1

m2

) 1
2

=
π√
6
.
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Theorem. Suppose (Ω,A, µ) is a σ-finite measure space, 1 < p < ∞. Then ∀F ∈ (Lp(Ω))∗ can
be written as

F (f) =

∫
Ω

fg dµ, f ∈ Lp(Ω)

where g ∈ Lq(Ω) is uniquely determined by F and ‖F‖ = ‖g‖Lq . In the sense of isomorphism,
(Lp(Ω))∗ = Lq(Ω).

Example.Let F (f) =

∫ 1

0

f(xa) dx, f ∈ L2[0, 1], 0 < a < 2. Then F ∈ L2[0, 1]∗.

Proof. By the substitution xa = t, we have

F (f) =

∫ 1

0

f(t) · 1

a
t
1−a
a dt.

Define g(t) =
t
1−a
a

a
. It can be checked that g ∈ L2[0, 1]. Therefore, F ∈ L2[0, 1]∗ and

‖F‖ = ‖g‖L2 =
1

a

(∫ 1

0

t
2(1−a)

a dt

) 1
2

=
1√

a(2− a)
.


