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Suggested Solution of Homework 2: p.61: 5(a), (c), 11; p.70: 9

5. Use the definition of the limit of a sequence to establish the following limits.

(3 marks each)
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Solution:
(a) Notice that
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Let € > 0. By Archimedean property, there is some N € N such that N < e. For

any n > N, we have
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By the definition of the limit of a sequence, we have lim n =0
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(c) Notice that
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Solution:
Notice that
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Let € > 0. By Archimedean property, there is some N € N such that N < e. For

any n > N, we have
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This shows that lim (l — 1 ) =0
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. Let y, := v/n+1—+/n for n € N. Show that (y/ny,) converges. Find the limit.

(4 marks)
Solution:
Notice that
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By 3.2.3 Theorem (a), 3.2.10 Theorem and the result lim — = 0, we obtain
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lim b, = 3 By squeeze theorem, we conclude that (1/ny,) converges to 7
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