
MATH 2050A - Home Test 2 - Solutions

Suggested Solutions(It does not reflect the marking scheme)

1. (a) Use the ε-δ notation to show that the function f(x) = x3+1
x2+1 is continuous on [0, 1].

(b) Let m,n be positive integers. Find

lim
x→0

(1 +mx)n − (1 + nx)m

x2
.

Use the ε-δ notion to justify your answer.

(c) Let [x] be the integral part of x, i.e. [x] := max{m ∈ Z : m ≤ x}.
Use the ε-δ notion to determine whether lim

x→0
x[x−1] exists or not.

Solution.

(a) Notice that for any x, u ∈ [0, 1], we have

f(x)− f(u) =
x3 + 1

x2 + 1
− u3 + 1

u2 + 1
=

(x− u)(x2u2 + x2 + xu+ u2 − x− u)

(x2 + 1)(u2 + 1)
.

Also, whenever x, u ∈ [0, 1], we have x2 + 1 ≥ 1, u2 + 1 ≥ 1, and

|x2u2 + x2 + xu+ u2 − x− u| ≤ |x|2|u|2 + |x||u|+ |x|2 + |u|2 + |x|+ |u| ≤ 6.

In this case,

|f(x)− f(u)| = |x
2u2 + x2 + xu+ u2 − x− u|

(x2 + 1)(u2 + 1)
· |x− u| ≤ 6|x− u|.

Let x ∈ [0, 1] and ε > 0. Take δ = ε/6. Then whenever u ∈ [0, 1] and |x− u| < δ,

|f(x)− f(u)| ≤ 6|x− u| < 6δ = ε.

It follows by definition that f is continuous on [0, 1].

(b) The limit is given by

lim
x→0

(1 +mx)n − (1 + nx)m

x2
=

1

2
mn(n−m).

To see this, let k = max{m,n, 3}. Notice that by the Binomial Theorem, we have

(1 +mx)n =

k∑
i=0

aix
i and (1 + nx)m =

k∑
i=0

bix
i,

where ai and bi are constants given by

ai =

(
n

i

)
mi and bi =

(
m

i

)
ni.

Here, we adopt the convention(
n

r

)
=

n!

r!(n− r)!
, if 0 ≤ r ≤ n and

(
n

r

)
= 0 otherwise.

By direct computations, we always have a0 = b0 and a1 = b1. Hence

(1 +mx)n − (1 + nx)m

x2
= c2 + c3x+ · · ·+ ckx

k−2, ∀x ∈ R \ {0}.

Here, ci = ai − bi for i = 0, 1, ..., k. Moreover, notice that if |x| ≤ 1, we have |x|i ≤ |x| for all i ∈ N. In this case,
we can estimate ∣∣∣∣ (1 +mx)n − (1 + nx)m

x2
− c2

∣∣∣∣ ≤ |c3||x|+ · · ·+ |ck||x|k−2 ≤ C|x|, (1)

where C = |c3| + · · · + |ck| ≥ 0. With these preparations, we proceed to prove the result. Consider the following
two cases:
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• C = 0. Let ε > 0 and take δ = 1. Then by (1), we have∣∣∣∣ (1 +mx)n − (1 + nx)m

x2
− c2

∣∣∣∣ = 0 < ε, whenever 0 < |x| < δ.

• C > 0. Let ε > 0 and take δ = min{1, ε/C}. Then by (1), we have∣∣∣∣ (1 +mx)n − (1 + nx)m

x2
− c2

∣∣∣∣ ≤ C|x| < Cδ ≤ ε, whenever 0 < |x| < δ.

In any cases, it follows by definition that the limit is given by

c2 = a2 − b2 =
1

2
mn(n−m).

Remark. The case C = 0 occurs when m ≤ 2 and n ≤ 2 since the coefficients ai and bi are all zero for i = 3, ..., k.
We also need to consider these special cases when we calculate c2. It just appears that they enjoy the same formula
with the general case.

(c) The limit exists and is given by
lim
x→0

x[x−1] = 1.

Consider the fractional part of x, defined by {x} = x− [x]. We first claim that

0 ≤ {x} < 1, ∀x ∈ R.

To see this, we have [x] ≤ x by the definition of [x]. Hence {x} = x − [x] ≥ 0. On the other hand, suppose on a
contrary that {x} = x− [x] ≥ 1. This implies x ≥ 1 + [x] and hence [x] ≥ 1 + [x] by the definition of [x], which is
absurd. The claim follows.
We proceed to prove the result. Notice that

x[x−1]− 1 = x([x−1]− x−1) = −x · {x−1}, ∀x ∈ R \ {0}.

Let ε > 0 and take δ = ε. Then whenever 0 < |x| < δ,∣∣∣x[x−1]− 1
∣∣∣ =

∣∣∣x{x−1}∣∣∣ = |x| ·
∣∣∣{x−1}∣∣∣ < |x| · 1 < δ = ε.

It follows by definition that the limit is given by 1.
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2. Let P (x) a real polynomials function of degree n, denoted its degree by deg(P ) = n, defined on R, i.e., P (x) =
anx

n + an−1x
n−1 + · · ·+ a1x+ a0, where ak ∈ R and an 6= 0.

(a) By using the definition of limits of functions, show that lim
x→∞

|P (x)| =∞ if P is a non-constant polynomial.

(b) Is P (x) uniformly continuous on R?

(c) Let Q(x) be a polynomial function. Suppose that Q(x) 6= 0 for all x ∈ R. Let R(x) =
P (x)

Q(x)
. Describe whether

the rational function R(x) is uniformly continuous on R in the following three cases: (i) : deg(P ) > deg(Q);
(ii) : deg(P ) = deg(Q) and (iii) : deg(P ) < deg(Q). Explain you answer.

Solution.

(a) Let P (x) be a non-constant polynomial. We write P (x) =
∑n
i=0 aix

i where n ≥ 1 and an 6= 0. We first show that

lim
x→∞

∑n−1
i=0 aix

i

anxn
= 0

This is because we have for all x 6= 0∑n−1
i=0 aix

i

anxn
=

n−1∑
i=0

ai
an

1

xn−i
=
a0
an

1

xn
+ · · ·+ an−1

an

1

x

(Note that the fact n ≥ 1 has been used to ensure there are x terms with negative orders.) The results follow by
applying the sum, product and scalar law of limits on limx→∞

1
x = 0.

By the limits proved above, there exists A > 0 such that∣∣∣∣∣
∑n−1
i=0 aix

i

anxn

∣∣∣∣∣ ≤ 1

2
⇐⇒

∣∣∣∣∣
n−1∑
i=0

aix
i

∣∣∣∣∣ ≤ |anxn|2

if x > A.
Now let M > 0. We then take R := max{( 2M

|an| )
1/n, A} > 0. Then we have by the triangle inequality and the above

approximations that

|P (x)| =

∣∣∣∣∣
n∑
i=0

aix
i

∣∣∣∣∣
≥ |anxn| −

∣∣∣∣∣
n−1∑
i=0

aixi

∣∣∣∣∣ ≥ |anxn| − |anxn|2
=

1

2
|an||x|n ≥

1

2
|an|

2M

|an|
= M

when x > R Hence by definition of limits, we have limx→∞ |P (x)| =∞.

(b) We claim that P (x) is uniformly continuous on R if and only if n := deg(P (x)) = 0 or 1.
(n = 0:) In this case P (x) is a constant polynomial. The result is clear.
(n = 1:) We write P (x) = a1x+ a0 where a1 6= 0. Then for all x, y ∈ R, we have

|P (x)− P (y)| = |a1(x− y)| = |a1||x− y|

By definition, x 7→ P (x) is a Lipschitz function on R. Therefore P (x) is uniformly continuous on R
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(n ≥ 2:). We write P (x) =
∑n
i=0 aix

i where an 6= 0. We proceed to show that x 7→ P (x) is not uniformly continuous
by definition. Take ε := 1. Let δ > 0 be arbitrary. We define a polynomial by Qδ(x) := P (x + δ/2) − P (x). By

using the algebraic identity ak − bk = (a− b)
∑k−1
i=0 a

k−1−ibi where a, b ∈ R and k ∈ N, we have

Qδ(x) = P (x+ δ/2)− P (x)

=

n∑
k=1

ak

[
(x+

δ

2
)k − xk

]

=

n∑
k=1

ak
δ

2

[
(x+

δ

2
)k−1 + (x+

δ

2
)k−2x1 + · · ·+ xk−1

]
We could see that Qδ has a non-constant term an

δ
2nx

n−1 (as n ≥ 2). Hence Qδ is a non-constant polynomial. By
the result of part (a), we have limx→∞ |Qδ(x)| = ∞. By the definition of the limit, there exists R > 0 such that
when x > R we have |Qδ(x)| ≥ ε := 1.
Now we take xδ := R+ 1 and yδ := R+ 1 + δ

2 . Then |xδ − yδ| < δ. However,

|P (xδ)− P (yδ)| =
∣∣∣∣P (R+ 1)− P (R+ 1 +

δ

2
)

∣∣∣∣ = |Qδ(R+ 1)| ≥ 1

The result follows by the definition of uniform continuity.

Remark. The construction of Qδ for n ≥ 2 is motivated by considering derivatives of polynomials. (Although
we probably won’t allow you to use differentiation techniques, you can always draw intuitions from them. Such
thoughts help in later questions as well).

(c) We proceed to do the question in reverse order and we would be using the following facts:

Proposition 0.1 (Tutorial 10 - Example 4). (Can be used without proof).
Let f : R→ R be a continuous function. Suppose

lim
x→∞

f(x) = lim
x→−∞

f(x) = 0

Then f is uniformly continuous on R.

Proposition 0.2 (Division Algorithm for Polynomials). (Can be used without proof).
Let f(x), g(x) be real polynomials where g(x) 6= 0. Then there exist real polynomials q(x) and r(x) (called quotient
and remainder respectively) where degR(x) < deg g(x) or r(x) = 0 such that f(x) = g(x)q(x) + r(x).

Remark. The proofs of these Propositions are left as Exercise. In fact in Proposition 0.1, the assumption could be
weakened to the existence instead of the equality of the limits. Note that the field axioms of R plays a crucial role
in the proof of Division Algorithm.

(iii). (deg(P ) < deg(Q)). Yes they are uniformly continuous. Since polynomials are continuous and Q(x) 6= 0 for
all x ∈ R. By the quotient law for continuity, R(x) := P (x)/Q(x) is continuous on R. It remains to show that
limx→∞R(x) = limx→−∞R(x) = 0 and apply Proposition 0.1 above.
Now we write P (x) =

∑n
i=0 aix

i and Q(x) =
∑m
i=0 bix

i where m > n ≥ 0, bi ∈ R for i = 0, · · · ,m with bm 6= 0
and aj ∈ R for j = 0, · · · , n with an 6= 0. We observe that for x 6= 0, we have

P (x)

Q(x)
=

∑n
i=0 aix

i∑m
i=0 bix

i
=
x−m

∑n
i=0 aix

i

x−m
∑m
i=0 bix

i
=

∑n
i=0 aix

i−m∑m
i=0 bix

i−m

=

a0
xm

+ · · ·+ an
xm−n

b0
xm

+ · · ·+ bm−1
x

+ bm

By applying the algebraic limits laws on limx→∞
1
x = 0 and limx→−∞

1
x = 0, it follows that limx→∞

P (x)
Q(x) =

0 = limx→−∞
P (x)
Q(x) .

Therefore, the condition for the Proposition 0.1 is fulfilled and we conclude that R(x) is uniformly continuous
on R.
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(ii). (deg(P ) = deg(Q)). Yes, they are uniformly continuous. By the division algorithm of real polynomials, we
write P (x) = f(x)Q(x) + r(x) where f(x), r(x) are real polynomials where deg r(x) < degQ(x). Furthermore
deg(f) = 0 (that is f is a constant polynomial) by comparing degrees of the expression. Therefore we have

R(x) =
P (x)

Q(x)
= f(x) +

r(x)

Q(x)

By results of previous parts, f(x) and r(x)
R(x) are uniformly continuous on R. Therefore R(x) is uniformly

continuous on R as the sum of uniformly continuous functions is again uniformly continuous.

(i). (deg(P ) > deg(Q)) We claim that R(x) is uniformly continuous on R if and only if deg(P ) = deg(Q) + 1.
(If readers understand the argument in part (ii), they should see that this fact follows immediately from similar
arguments. Below is the full argument).
(deg(P ) = deg(Q) + 1): By the division algorithm of real polynomials, we write P (x) = f(x)Q(x) + r(x)
where f(x), r(x) are real polynomials where deg r(x) < Q(x). Furthermore deg(f) = 1 (that is f is a linear
polynomial) by comparing degrees of the expression. Since linear polynomials are uniformly continuous by part
(b), the result follows as R(x) is sum of uniformly continuous functions.
(deg(P ) ≥ deg(Q) + 2): By the division algorithm of real polynomials, we write P (x) = f(x)Q(x) + r(x) where
f(x), r(x) are real polynomials where deg r(x) < degQ(x). Furthermore deg(f) ≥ 2 by comparing degrees of

the expression. Therefore we have R(x) = P (x)
Q(x) = f(x) + r(x)

Q(x) .

Suppose R(x) were uniformly continuous on R. Then f(x) is uniformly continuous on R as we can write that

f(x) = r(x)
Q(x) − R(x). However, f(x) has degree ≥ 2. By part (b), contradiction arises. It follows then R(x) is

not uniformly continuous on R.
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3. Let f be a real-valued function defined on a non-empty subset A of R. f is said to be locally bounded at a point z ∈ R
(x is not necessary in A) if there is r > 0 such that f is bounded on (z− r, z+ r)∩A. Furthermore, if z is a limit point
of A, then we put

L(z) := inf
r>0

sup{f(x) : 0 < |x− z| < r} and l(z) := sup
r>0

inf{f(x) : 0 < |x− z| < r}.

(a) Assume that f is locally bounded at a limit point z of A. Prove or disprove the following statement: “f has the
limit at z if and only if L(z) = l(z)”.

(b) Show that if A is compact and f is locally bounded at every point in A, then f is bounded. Give a counter-example
of f to show that the assumption of compactness of A cannot be removed.

(c) Give an example of a continuous function f defined on (0, 1) which is not locally bounded at 0 but lim
x→0
|f(x)| 6=∞.

Solution.

(a) The statement is correct. To simplify notations, define for each r > 0,

Er =
{
f(x) : 0 < |x− z| < r and x ∈ A

}
.

With this notation, we have
`(z) = sup

r>0
inf Er and L(z) = inf

r>0
supEr.

We first claim that `(z) ≤ L(z) in any cases. Let ε > 0. Then by definition of `(z) and L(z), there exist r, s > 0
such that

inf Er ≥ `(z)−
ε

2
and supEs ≥ L(z) +

ε

2
. (2)

• If r ≤ s, we have Er ⊆ Es, which implies that inf Er ≤ supEr ≤ supEs.

• If s ≤ r, we have Es ⊆ Er, which implies that inf Er ≤ inf Es ≤ supEs.

In any cases, `(z) ≤ L(z) + ε. Since ε > 0 is arbitrary, the claim follows. (⇒) Suppose lim
x→z

f(x) = y. Let

ε > 0. By definition of limits, there exists r > 0 such that whenever x ∈ A and |x − z| < r, |f(x) − y| < ε. i.e.,
Er ⊆ (y − ε, y + ε). Hence

y − ε ≤ inf Er ≤ `(z) ≤ L(z) ≤ supEr ≤ y + ε.

Since ε > 0 is arbitrary, we have `(z) = L(z) = y. (⇐) Suppose `(z) = L(z) = y. Let ε > 0. By definitions of `(z)
and L(z), there exist r, s > 0 that satisfy (2). Take δ = min{r, s}. Then Eδ ⊆ Er and Eδ ⊆ Es. Then whenever
x ∈ A and |x− z| < δ,

y − ε ≤ inf Er ≤ inf Eδ ≤ f(x) ≤ supEδ ≤ supEs ≤ y + ε.

It follows by definition that lim
x→z

f(x) = y.

Remark. The locally boundedness of f at z guarantees the existence of `(z) and L(z).

(b) Since f is locally bounded at each point in A, for each a ∈ A, there exists ra > 0 such that f is bounded on
(a− ra, a+ ra) ∩A. i.e., there exists Ma > 0 such that

|f(x)| ≤Ma, ∀x ∈ (a− ra, a+ ra) ∩A.

Notice that A is compact and {(a− ra, a+ ra)}a∈A is an open intervals cover of A. The Heine-Borel Property
yields a1, a2, ..., an ∈ A such that

A ⊆
n⋃
i=1

(ai − rai , ai + rai).

We proceed to claim that f is bounded on A by M = max{Ma1 ,Ma2 , ...,Man}. For each x ∈ A, there exists i such
that x ∈ (ai − rai , ai + rai). Therefore x ∈ (ai − rai , ai + rai) ∩A and hence |f(x)| ≤Mai ≤M .
For a counter-example to show that the assumption of compactness of A cannot be removed, consider f : (0, 1)→ R
defined by f(x) = 1/x. Notice that (0, 1) is not compact and f is unbounded on (0, 1). However, f is locally
bounded at every point in (0, 1). To see that f is locally bounded at a ∈ (0, 1), take r = a/2 > 0. Then whenever
x ∈ (a− r, a+ r) ∩ (0, 1), we have 0 < a/2 < x < 3a/2 and hence

2

3a
< f(x) =

1

x
<

2

a
.
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(c) Consider the continuous function f : (0, 1)→ R defined by

f(x) =
1

x
sin(1/x).

We first claim that this function is not locally bounded at 0. It suffices to find a sequence (xn) in (0, 1) such that
xn → 0 and f(xn) is unbounded. This can be done by defining xn = (π/2 + 2nπ)−1. Notice that xn → 0 as n→∞
and

f(xn) =
1

(π/2 + 2nπ)−1
sin(π/2 + 2nπ) =

π

2
+ 2nπ.

We then define yn = (2nπ)−1 for each n ∈ N. Notice that yn → 0 as n→∞ and

|f(yn)| = 1

(2nπ)−1
| sin(2nπ)| = 0, ∀n ∈ N.

Hence lim
x→0
|f(x)| either equals zero or does not exists. In both cases, lim

x→0
|f(x)| 6=∞.
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