
MATH 2050A - HW 8 - Solutions
Commonly missed steps/key points in Purple

Solutions

1 (P.148 Q2). Let f(x) := 1/x2. Show that

i. f is uniformly continuous on A := [1,∞)

ii. f is not uniformly continuous on B := (0,∞)

Solution. i. Let x, y ∈ A. Then x, y ≥ 1. Then we have

|f(x)− f(y)| =
∣∣x2 − y2∣∣
x2y2

= |x− y|
∣∣∣∣x+ y

x2y2

∣∣∣∣ ≤ |x− y|∣∣∣∣x+ y

xy

∣∣∣∣ = |x− y|
∣∣∣∣1y +

1

x

∣∣∣∣ ≤ 2|x− y|

in which we have used the fact that x2 ≥ x if x ≥ 1. Hence, f is Lipschitz continuous on A. It
follows that f is uniformly continuous on A.

ii. Define xn := 1/n for n ∈ N. Then (xn) is a sequence in B which is Cauchy as it is convergent
(even though the limit does not lie in B). However f(xn) = n2 for all n ∈ N. So, (f(xn)) is an
unbounded sequence and so is not a Cauchy sequence. Because a uniformly continuous function
should map Cauchy sequences into Cauchy seqeunces, we conclude that f is not uniformly
continuous on B.

2 (P.148 Q6). Let A ⊂ R and f, g be real-valued uniformly continuous functions defined on A. Show
that if f, g are bounded on A, then the product fg is uniformly continuous on A

Solution. Let M,N > 0 be an upper bounded for f, g on A respectively. Now let ε > 0, then there
exists δ1, δ2 > 0 such that

|f(x)− f(y)| < ε if |x− y| < δ1

|g(x)− g(y)| < ε if |x− y| < δ2

Take δ := min{δ1, δ2}. Suppose |x− y| < δ with x, y ∈ A. Then we have

|f(x)g(x)− f(y)g(y)| ≤ |f(x)||g(x)− g(y)|+ |g(y)||f(x)− f(y)| ≤ (M +N)ε

By definition of uniform continuity, fg is uniformly continuous on A

3 (P.148 Q7). Let f(x) := x and g(x) := sinx be defined on R. Show that

i. f, g are uniformly continuous on R

ii. the product fg is not uniformly continuous on R

Solution. i. f : Let x, y ∈ R. Then |f(x)− f(y)| = |x− y| ≤ |x− y|. Therefore, f is Lipschitz
continuous on R. In particular, it is also uniformly continuous on R.
g: Let x, y ∈ R. Then by the sum-to-product formula (learnt in high school) we have

|g(x)− g(y)| = |sinx− sin y| = 2

∣∣∣∣sin(x− y2

)
cos

(
x+ y

2

)∣∣∣∣ ≤ 2

∣∣∣∣sin(x− y2

)∣∣∣∣
Suppose |x− y| ≥ 1. Then |g(x)− g(y)| ≤ 2

∣∣sin(x−y2 )∣∣ ≤ 2 ≤ 2|x− y|.
Suppose |x− y| < 1 and WLOG take x > y (since sin(−x) = − sinx). Then 0 ≤ x−y

2 ≤ π/2.
By the fact that sinx ≤ x for x ≥ 0. We have∣∣∣∣sin(x− y2

)∣∣∣∣ = sin

(
x− y

2

)
≤ x− y

2

Therefore, |g(x)− g(y)| ≤ |x− y| if |x− y| ≤ 1. Combining both cases (|x− y| ≥ 1 and
|x− y| ≤ 1), we have that g is Lipschitz on R. Hence g is uniformly continuous on R.
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ii. Method 1: By definition of uniform continuity
Suppose fg were uniformly continuous on R. Then there exists δ > 0 such that |x− y| < δ
would imply |f(x)− f(y)| < 1. Now define 0 < δ0 := min{δ, 1}
For all n ∈ N, we define xn := 2nπ + δ0

4 and yn := 2nπ − δ0
4 . Then |xn − yn| = δ0/2 < δ by

construction, but we have

fg(xn)− fg(yn) = (2nπ + δ0) sin(2nπ + δ0)− (2nπ − δ0) sin(2nπ − δ0)

= (2nπ + δ0) sin(δ0) + (2nπ − δ0) sin(δ0)

= 4nπ sin(δ0)

Hence, 0 < |fg(xn)− fg(yn)| = 4π|sin(δ0)|n < 1 for all n ∈ N (note that sin(δ0) 6= 0 by the
choice of δ0). By considering n → ∞, it is clear that contradiction arises. Hence fg is not
uniformly continuous on R.
Method 2: Using a necessary condition for uniform continuity
We can use the following necessary condition for uniform continuity:

Proposition 0.1. Let f : A → R be uniformly continuous on some non-empty subset A ⊂ R.
Suppose (xn) and (yn) are two sequences in A such that limn xn − yn = 0. Then we have
limn f(xn)− f(yn) = 0.

The proof of the above is left as an exercise. Back to the question, we define xn := 2nπ+ 1
n and

yn := 2nπ for all n ∈ N. Then limn xn − yn = limn
1
n = 0. However, we have

lim
n
fg(xn)− fg(yn) = lim

n
(2nπ +

1

n
) sin

(
2nπ +

1

n

)
− 2nπ sin(2nπ)

= lim
n

2nπ sin

(
1

n

)
+

1

n
sin

(
1

n

)
= 2π + 0 = 2π

in which the first limit of the second row is computed by using sequential criteria on the limit
limx→0

sin x
x = 1 (learnt in high school), together with the scalar compatibility of limits, and the

second limit follows from the Squeeze Theorem.
Hence, by the contrapositive of the above necessary condition, we conclude that fg is not
uniformly continuous.

Remark. You are reminded that we have not defined the sine function rigorously so until then
you could use whatever property you learnt in high school about the sine function. Nowadays,
trigonometric dunctions are usually defined in terms of power series, combinations of exponential
functions or differential equations (as in the textbook) and so on. It is quite interesting that these
new definitions retain properties of trigonometric functions as if they were defined using ratio of
sides in a triangle.

Remark. For Q3ii, the sequences in (both) solutions is thought of by considering the graph of
fg(x) = x sinx. You could see that at those points in the solutions, the function is going faster as
n→∞ .
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