TA's solution to 2060B homework 9, 10

p.252 Q1. (2 marks)

The limit function is

$$\lim_{n \to \infty} \frac{x^n}{1 + x^n} = \begin{cases} 0 & \text{if } 0 \le x < 1\\ \frac{1}{2} & \text{if } x = 1\\ 1 & \text{if } 1 < x \le 2, \end{cases}$$

which is not continuous at x = 1. Since $\left(\frac{x^n}{1+x^n}\right)$ is a sequence of continuous functions on [0, 2], it cannot convergent uniformly on [0, 2].

p.252 Q5. (4 marks)

Let $\varepsilon > 0$. Since f is uniformly continuous on \mathbb{R} , $\exists \delta > 0$ s.t. for all $x, y \in \mathbb{R}$ with $|x - y| < \delta$, we have $|f(x) - f(y)| < \varepsilon$. Let $N \in \mathbb{N}$ be such that $\frac{1}{N} < \delta$. Then $\forall n \ge N$, $\forall x \in \mathbb{R}$, we have $\left| (x + \frac{1}{n}) - x \right| \le \frac{1}{N} < \delta$, so $|f_n(x) - f(x)| = \left| f(x + \frac{1}{n}) - f(x) \right| < \varepsilon$.

This means f_n converges uniformly on \mathbb{R} to f.

p.252 Q14. (4 marks)

The limit function f is given by

$$f(x) = \begin{cases} 0 & \text{if } x = 0\\ 1 & \text{if } 0 < x \le 1 \end{cases}$$

Since $\left|f_n(\frac{1}{n}) - f(\frac{1}{n})\right| = \frac{1}{2}$ for all n, we see that the convergence is not uniform.

Since f_n is continuous, it is in $\mathcal{R}[0, 1]$. So is f, because it equals the constant function 1 on [0, 1] except for a finite no. of points. It also follows that $\int_0^1 f = 1$. Finally, we have

$$\int_0^1 f_n = \int_0^1 \left(1 - \frac{1}{1 + nx}\right) dx = 1 - \frac{\ln(1 + n)}{n}.$$

By using L'Hospital's rule, or by noting that exponential growth is much faster than linear growth, the above is $\rightarrow 1$ when $n \rightarrow \infty$. The result follows.

- p.280 Q1(c). The series is not convergent because $\lim_{n\to\infty} \frac{(-1)^{n+1}n}{n+2} \neq 0$. A fortiori, the series is not absolutely convergent.
- p.280 Q1(d). We have the following well-written solution by previous work of this course (2012-13):

P.280, Q1(d)
Let
$$a_n := (-1)^{n+1} \frac{\ln n}{n}$$
.
Let $f(x) = \frac{\ln x}{x}$. Then $f'(x) = \frac{1 - \ln x}{x^2} < 0$ for $x \ge 3$.
Hence the sequence $\left\{\frac{\ln n}{n}\right\}$ is decreasing for $n \ge 3$.
Since $\lim_{n \to \infty} \frac{\ln n}{n} = 0$, by alternating test $\sum a_n$ is convergent.
And we have $|a_n| = \frac{\ln n}{n} > \frac{1}{n}$ for $n \ge 3$.
Since $\sum \frac{1}{n}$ is divergent, by comparison test $\sum |a_n|$ is divergent.
i.e. $\sum a_n$ is not absolutely convergent.

p.286 Q1(e). The following well-written solution is by previous work of this course (2012-13):

P.286, Q1(e) It is clear that $f := \lim_{n} f_{n} = \begin{cases} 0 & \text{if } x < 1\\ 1/2 & \text{if } x = 1\\ 1 & \text{if } x > 1 \end{cases}$ •Hence $\sum f_{n}$ is clearly divergent for $x \ge 1$. If x < 1, then $|f_{n}(x)| \le x^{n}$. Since $\sum x^{n}$ is convergent on [0, 1), by comparison test $\sum f_{n}$ is convergent on [0, 1). Take $\epsilon := 1/4$. For any m, n, take $x := (0.5)^{1/(n+1)}$. Then we have $|f_{n+1}(x) + f_{n+2}(x) + \dots + f_{m}(x)| \ge f_{n+1}(x)$ $= \frac{1}{3}$ $> \epsilon$

So the convergence is not uniform on [0, 1). On the other hand, for any M < 1, we have $|f_n(x)| \le x^n \le M^n$ for $x \in [0, M]$. Since $\sum M^n$ is convergent, by M-test the convergence is uniform on [0, M].

An explanation for the highlighted line is as follows. For any $x_0 \ge 1$, $\exists N \in \mathbb{N} \text{ s.t. } f_n(x_0) > \frac{1}{3} \text{ for all } n \ge N$. Therefore,

$$\sum_{1}^{\infty} f_n(x_0) \ge \sum_{N}^{\infty} f_n(x_0) \ge \sum_{N}^{\infty} \frac{1}{3} = \infty.$$

p.286 Q1(f). The following well-written solution is by previous work of this course (2012-13):

P.286, Q1(f) Let any $\epsilon > 0$ be given. Take $N_1 \in \mathbb{N}$ s.t. $\forall x \ge 0, n \ge N_1$,

$$|f_n(x)| = \frac{1}{n} < \frac{\epsilon}{2}$$

For any $x \ge 0$, $n \in \mathbb{N}$, we have

$$|f_n(x) + f_{n+1}(x)| = \left| (-1)^n \cdot \left(\frac{1}{n+x} - \frac{1}{n+1+x} \right) \right| \\ = \left| \frac{1}{(n+x)(n+1+x)} \right| \\ < \frac{1}{n^2}$$

It is well known that $\sum \frac{1}{n^2}$ converges. Take $N_2 \in \mathbb{N}$ s.t. $\forall m, n \ge N_2$,

$$\left|\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{m^2}\right| < \frac{\epsilon}{2}$$

Take $N := \max\{N_1, N_2\}.$

Then $\forall x \ge 0$ and $m, n \ge N$, in worst case if there are odd number of terms below,

$$\begin{aligned} |f_{n+1}(x) + f_{n+2}(x) + \dots + f_m(x)| &\leq |f_{n+1}(x) + f_{n+2}(x)| + |f_{n+3}(x) + f_{n+4}(x)| \\ &+ \dots + |f_{m-2}(x) + f_{m-1}(x)| + |f_m(x)| \\ &< \left| \frac{1}{(n+1)^2} + \frac{1}{(n+3)^2} + \dots + \frac{1}{(m-2)^2} \right| + \frac{\epsilon}{2} \\ &< \epsilon \end{aligned}$$

So $\sum f_n$ converges uniformly (and hence also pointwisely) for $x \ge 0$.

We only note that it should be " \leq " at the highlight point.

p.286 Q6(b). Since $t \mapsto t^{\alpha}$ is a continuous function and $\lim_{n\to\infty} \frac{n}{n+1} = 1$, we have

$$\lim_{n \to \infty} \left(\frac{n}{n+1} \right)^{\alpha} = 1.$$

Therefore, by formula, the answer is

$$\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} (n+1) \left(\frac{n}{n+1} \right)^{\alpha} = \infty.$$

Note:

To check the answer imprecisely, observe that

$$\frac{n^{\alpha}}{n!} \lesssim \frac{n^{\alpha}}{\left(\frac{n}{2}\right)^{n/2} \cdot \left(\frac{n}{2}\right)!} \lesssim \frac{1}{\left(\frac{n}{2}\right)!},$$

therefore

$$\sum_{n} \frac{n^{\alpha}}{n!} |x|^{n} \lesssim 2 \sum_{k} \frac{1}{k!} |x^{2}|^{k} < \infty.$$

p.286 Q6(d). It follows from the formula $\lim_{n\to\infty} \left|\frac{a_n}{a_{n+1}}\right|$ and L'Hospital's rule that the answer is 1.

Note:

To check the answer imprecisely, observe that when x = 1,

$$\sum \frac{1}{\ln n} \ge \sum \frac{1}{n} = \infty,$$

while when $x \in (0, 1)$,

$$\sum \frac{x^n}{\ln n} \lesssim \sum x^n < \infty.$$

p.253 Q9. Since $||f_n||_{[0,1]} = \frac{1}{n} \to 0$, f is the zero function and the convergence is uniform.

For $x \in [0, 1]$, when n tends to infinity, we have

$$f'_n(x) = x^{n-1} \to \begin{cases} 0 & \text{if } x \in [0,1) \\ 1 & \text{if } x = 1. \end{cases}$$

The R.H.S. is the function g. Hence $g(1) = 1 \neq 0 = f'(1)$.