TA's solution to 2060B homework 2

p.179 Q13. (3 marks)

Let $a < b$ be two points in *I*. Since *f* is differentiable on *I*, *f* is continuous on $[a, b]$ and differentiable on (a, b) . Therefore, by Mean Value Theorem, $∃ ? ∈ (a, b)$ such that

$$
f(b) - f(a) = f'(?) (b - a).
$$

By assumption *f'* is positive on *I*, so the above gives $f(b) - f(a) > 0$. As $a < b$ are arbitrary points in *I*, we conclude that f is strictly increasing on *I*.

p.179 Q15. (3 marks)

By assumption, $\exists M > 0$ such that $|f'(x)| \leq M$ for all $x \in I$.

Now let $a < b$ be in *I*. Since *f* is differentiable on *I*, *f* is continuous on $[a, b]$ and differentiable on (a, b) . Therefore, by Mean Value Theorem, *∃* ? *∈* (*a, b*) such that

$$
f(b) - f(a) = f'(?) (b - a).
$$

As $? \in (a, b) \subseteq I$, it follows that

$$
|f(b) - f(a)| = |f'(?)| |b - a| \le M |b - a|.
$$

On the other hand, when $a = b$ the above holds plainly. Therefore f satisfies a Lipschitz condition on *I*.

p.187 Q5.
$$
(4 \text{ marks})
$$

Note that

$$
\frac{f(x)}{g(x)} = \frac{x^2 \sin(\frac{1}{x})}{\sin x} = \frac{x}{\sin x} \cdot x \sin(\frac{1}{x})
$$

and that
$$
\lim_{x \to 0} \frac{x}{\sin x} = 1, \lim_{x \to 0} x \sin(\frac{1}{x}) = 0, \text{ so we have*}
$$

$$
\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \left[\frac{x}{\sin x} \right] \cdot \lim_{x \to 0} \left[x \sin(\frac{1}{x}) \right]
$$

$$
= 0.
$$

[∗]This is textbook 4.2.4 Theorem. In view of the "if-then" logic flow, an important point is that we have to ensure $\lim \frac{x}{\sin x}$ and $\lim x \sin(\frac{1}{x})$ exist first before writing $\lim \frac{f(x)}{g(x)}$ $\lim \left[\frac{x}{\sin x} \right] \cdot \lim \left[x \sin \left(\frac{1}{x} \right) \right]$.

On the other hand, we have $\frac{1}{2n\pi} \to 0$, $\frac{1}{(2n+1)\pi} \to 0$ as $n \to \infty$, and

$$
\lim_{n \to \infty} \frac{f'(\frac{1}{2n\pi})}{g'(\frac{1}{2n\pi})} = \lim_{n \to \infty} \left[\frac{2x \sin(\frac{1}{x}) - \cos(\frac{1}{x})}{\cos x} \right] \Big|_{x=1/2n\pi}
$$

$$
= \lim_{n \to \infty} \frac{0 - 1}{\cos(\frac{1}{2n\pi})}
$$

$$
= -1,
$$

while

$$
\lim_{n \to \infty} \frac{f'(\frac{1}{(2n+1)\pi})}{g'(\frac{1}{(2n+1)\pi})} = \lim_{n \to \infty} \frac{0 - (-1)}{\cos(\frac{1}{(2n+1)\pi})} = 1.
$$

This shows that $\lim_{x\to 0} \frac{f'(x)}{g'(x)}$ $g'(x)$ does not exist.

Remark:

The following argument is an inappropriate use of textbook 4.2.4 Theorem. The reason has been given in the footnote.

"Suppose $\lim_{x\to 0} \frac{f'(x)}{g'(x)}$ $\frac{f'(x)}{g'(x)}$ exists. Then

$$
\lim_{x \to 0} \frac{2x \sin(\frac{1}{x}) - \cos(\frac{1}{x})}{\cos x} = \lim_{x \to 0} \frac{2x \sin(\frac{1}{x})}{\cos x} - \lim_{x \to 0} \frac{\cos(\frac{1}{x})}{\cos x} \n= 0 - \frac{\lim_{x \to 0} \cos(\frac{1}{x})}{\lim_{x \to 0} \cos x} \n= -\lim_{x \to 0} \cos(\frac{1}{x}).
$$

So $\lim_{x\to 0} \cos(\frac{1}{x})$ exists. But then ..., which is a contradiction."