
Solution to Assignment 4

12 (p.62) We need to prove

s1 + s2 + · · ·+ sn
n

− s =
(s1 − s) + (s2 − s) + · · ·+ (sn − s)

n
→ 0

as n→∞. By replacing sn with sn− s, it suffices to prove the case for s = 0. Now,

given any ε > 0, we note that sn → 0 and therefore there exists N ∈ N such that

|sn| < ε for all n > N . Then we have∣∣∣∣s1 + s2 + · · ·+ sn
n

∣∣∣∣ =

∣∣∣∣s1 + · · ·+ sN + sN+1 + · · ·+ sn
n

∣∣∣∣
≤|s1 + · · ·+ sN |

n
+

1

n
(|sN+1|+ · · ·+ |sn|)

≤|s1 + · · ·+ sN |
n

+ (
n−N
n

)ε

<
|s1 + · · ·+ sN |

n
+ ε.

Since N is fixed and |s1 + · · · + sN | is a finite number, we can choose an integer

N1 > N such that |s1+···+sN |
n

< ε. Hence, whenever n > N1.∣∣∣∣s1 + s2 + · · ·+ sn
n

∣∣∣∣ < 2ε.

Thus
∑
cn is Cesàro summable to s.

13(a) (p.62) By letting c′1 = c1 − s, c′n = cn for n ≥ 2, we see that the series
∑
cn

is Abel summable to s if and only if c′n is Abel summable to 0. Hence it suffices to

consider s = 0. Let s0 = 0 and sn = c1 + ...+ cn, then

N∑
n=1

cnr
n =

N∑
n=1

(sn − sn−1)r
n =

N∑
n=1

snr
n − r

N−1∑
n=1

snr
n = (1− r)

N∑
n=1

snr
n + sNr

N+1.

Since sNr
N+1 → 0 as N →∞, thus

∞∑
n=1

cnr
n = (1− r)

∞∑
n=1

snr
n.

For any ε > 0, by noting that sn → 0, we can therefore find N0 ∈ N, such that

|sn| < ε for n > N0. Moreover, sn → 0 implies |sn| ≤ M , we can find δ > 0, such
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that (1− r)MN0 < ε whenever 1− δ < r < 1. Then we have∣∣∣∣∣(1− r)
∞∑
n=1

snr
n

∣∣∣∣∣ ≤
∣∣∣∣∣(1− r)

N0∑
n=1

snr
n

∣∣∣∣∣+ (1− r)
∞∑

n=N0+1

|sn|rn

≤(1− r)MN0 + ε

∞∑
n=N0+1

rn

=ε+ ε = 2ε.

This means limr→1(1− r)
∑∞

n=1 snr
n = 0. Hence

∑
cn is Abel summable.

13(b) Let cn = (−1)n, then
∑∞

1 (−1)n does not converge. However,

lim
r→1

∞∑
n=1

(−1)nr = lim
r→1

−r
1 + r

= −1

2
.

13(c) Again, we just need to consider σ = 0. Recall that σn = s1+...+sn

n
, from 13(a),

we obtain (using the same identity with cn replaced by sn)

∞∑
n=1

cnr
n = (1− r)

∞∑
n=1

snr
n = (1− r)2

∞∑
n=1

nσnr
n.

We also further recall the identity
∑∞

n=1 nr
n = r

∑∞
n=1

drn

dr
== r d

dr
( r

1−r ) = r
(1−r)2 .

Now, for any ε > 0, there exists N0 such that for all n ≥ N0, |σn| < ε. Hence,

(1− r)2

∣∣∣∣∣
∞∑

n=N0+1

nσnr
n

∣∣∣∣∣ ≤ (1− r)2

(
∞∑
n=1

nrn

)
ε < εr < ε.

Moreover, |σn| ≤M for all n. We then take δ =
√

ε

(
∑N0

n=1 n)M
> 0 such that whenever

1− δ < r < 1, ∣∣∣∣∣(1− r)2(

N0∑
n=1

nσnr
n)

∣∣∣∣∣ ≤ (1− r)2(

N0∑
n=1

n)M < ε.

Combining this, we obtain whenever 1− δ < r < 1,∣∣∣∣∣
∞∑
n=1

cnr
n

∣∣∣∣∣ =

∣∣∣∣∣(1− r)2(

N0∑
n=1

nσnr
n) + (1− r)2

∞∑
n=N0+1

nσnr
n

∣∣∣∣∣ < 2ε.

This completes the proof.

13(d) Note that if cn is Cesàro summable (i.e. σn = s1+..+sn

n
→ σ), then

sn
n

=
nσn − (n− 1)σn−1

n
= σn −

n− 1

n
σn−1 −→ 0.

2

n



Hence,
cn
n

=
sn − sn−1

n
=
sn
n
− n− 1

n

sn−1

n− 1
−→ 0.

If cn = (−1)n−1n, then cn
n

= (−1)n−1, which does not converge. Hence, cn is not

Cesàro summable. However,
∑∞

n=1(−1)n−1nrn = r
(1+r)2

, so

lim
r→1

∞∑
n=1

(−1)n−1nrn =
1

4
.

Hence, it is Abel summable.

Ex 6 (p. 89). Assume that {ak} is the coefficient of some Riemann integrable

function f , i.e. f(x) ∼
∑∞

k=1
eikx

k
. Consider Ar(f)(0),

Ar(f)(0) =
1

2π

∫ π

−π
f(θ)Pr(−θ)dθ.

Pr(θ) is an even function on θ, and since 1−2r cos θ+r2 = (1−r cos θ)2+r2 sin2 θ > 0

for r ∈ [0, 1), so Pr(θ) = Pr(−θ) = 1−r2
1−2r cos θ+r2

> 0. We now have

|Ar(f)(0)| ≤ 1

2π

∫ π

−π
|f(θ)|Pr(−θ)dθ

≤ 1

2π
sup
θ
|f(θ)|

∫ π

−π
Pr(−θ)dθ

= sup
θ
|f(θ)| <∞.

On the other hand, limr→1Ar(f)(0) = limr→1

∑∞
k=1

rk

k
= ∞. Therefore, there’s no

function with {ak} as its coefficient.

Note that limr→1

∑∞
k=1

rk

k
= ∞ because for all M > 0, we can choose N such that∑N

k=1
1
k
> 2M . Then we choose r so close to 1 that rN ≥ 1/2, then

∞∑
k=1

rk

k
≥

N∑
k=1

rk

k
≥ 1

2

N∑
k=1

1

k
≥M.

Ex 8a (p. 89). f̂(n) is the same as that of Exercise 6 in Chapter 2. Using the

Parseval’s identity:

(
1

2π
)2 + 2

∞∑
n=0

(
−2

(2n+ 1)2π

)2

=
1

2π

∫ π

−π
|f(θ)|2dθ =

π2

3
.

This implies
∞∑
n=0

1

(2n+ 1)4
=
π4

96
.

Also,
∑∞

n=1
1
n4 =

∑∞
n=0

1
(2n+1)4

+ 1
24

∑∞
n=1

1
n4 . Hence,

∞∑
n=1

1

n4
=
π4

90
.



Ex 8b. We have computed f̂(n) in Exercise 4 in Chapter 2. Using the same method

as (a), we have

2 · 16

π2
·

∑
k>0,k odd

1

k6
=

1

2π

∫ π

−π
|f(θ)|2dθ =

π4

30
.

Hence,
∑∞

n=0
1

(2n+1)6
= π6

960
follows. As

∞∑
n=1

1

n6
=
∞∑
n=0

1

(2n+ 1)6
+

1

26

∞∑
n=1

1

n6
,

we have
∑∞

n=1
1
n6 = π6

945
.

Ex 9. (p.90) We note that

f̂(n) =
1

2π

∫ 2π

0

π

sin πα
ei(π−x)αe−inxdx

=
1

2 sinπα

∫ 2π

0

eiπαe−i(n+α)xdx

=
eiπα

2 sinπα

(
− 1

i(n+ α)
e−i(n+α)x|2π0

)
=

1

n+ α
.

Hence the Fourier series of f is
∑∞
−∞

einx

n+α
. By the Parseval’s identity,

∞∑
−∞

1

(n+ α)2
=

1

2π

∫ 2π

0

π

sin πα
ei(π−x)αdx =

π2

sin2 πα
.
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