Solution to Assignment 4

12 (p.62) We need to prove

51+52+--~+Sn_82(31—5)+(52—s)+-~~+(5n—5)_)0
n n

as n — 00. By replacing s, with s, — s, it suffices to prove the case for s = 0. Now,
given any € > (0, we note that s,, — 0 and therefore there exists N € N such that
|sn| < € for all n > N. Then we have
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Since N is fixed and 81+ -+ sy is a finite number, we can choose an integer
g
N1 > N such that lsit+sn] < €. Hence, whenever n > Nl.

S1+ 8+ -+ S,
n

< 2e.

Thus » ¢, is Cesaro summable to s.

13(a) (p.62) By letting ¢} = ¢; — s, ¢}, = ¢, for n > 2, we see that the series ) ¢,
is Abel summable to s if and only if ¢/, is Abel summable to 0. Hence it suffices to
consider s = 0. Let so =0 and s,, = ¢; + ... + ¢,, then

N N N-1 N
E cpr’t = E n— Sp_1)r" = E Spr™t =1 E sr" = (1—7) g S 4+ syrN L
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Since syt — 0 as N — oo, thus

(o]
(1—r) E Spr™.

n=1 n=1

Dqﬂg

For any e > 0, by noting that s,, — 0, we can therefore find Ny € N, such that

|sn| < € for n > Ny. Moreover, s, — 0 implies |s,| < M, we can find § > 0, such
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that (1 —r)M Ny < € whenever 1 — 0 < r < 1. Then we have

00 No 00
(1—T)anrn < (1—T)anr" +(1—r) Z |sp|r™
n=1 n=1 n=Np+1

<(1—=7)MNy+e Z r"

n=Np+1
=€+ € = 2e.

This means lim, 1 (1 —7) >0, s,7" = 0. Hence Y ¢, is Abel summable.

n=1

13(b) Let ¢, = (—1)", then > 7°(—1)" does not converge. However,

= - 1
lim Y (=1)"" = lim LN
r—1 r—1 1 +7r 2

n=1

13(c) Again, we just need to consider o = 0. Recall that o, = 2F=% from 13(a),

we obtain (using the same identity with ¢, replaced by s,,)

Z 1—T)an7“": (1—r)22n0nr”
n=1 n=1 n=1
We also further recall the identity > oo nr" = rdy 2 &0 == pd (L) = et

Now, for any € > 0, there exists /Ny such that for all n > N, |an| < €. Hence,

1—r Z no,r" 1—r <an>e<er<e.
n=Np+1
Moreover, |o,| < M for all n. We then take § = m > 0 such that whenever
n:ln

1—-d<r<l,

No NO

(L= nowr™)| < (1 =1 _n)M <
n=1 n=1

Combining this, we obtain whenever 1 — ¢ < r < 1,

) No
Z e =1(1— 7“)2(2 no,r") + (1 —r) Z no,r"| < 2e.
n=1 n=1 n=Np+1

This completes the proof.

13(d) Note that if ¢, is Cesaro summable (i.e. 0, = 2=+ — ) then

Sp no, —(n—1)o,1 n—1
— = =0, — On_1 — 0.
n
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Hence,
Cn  Sp—Sp—1  Sp n—15,4

_ R — 0.
n n n n n-—1
If ¢, = (=1)""'n, then & = (—=1)"!, which does not converge. Hence, ¢, is not
Cesaro summable. However, Y > (—1)""tnr" = W, SO
> 1
lim Y (=1)" 'nr" = -,
r—1 4
n=1

Hence, it is Abel summable.

Ex 6 (p. 89). Assume that {as} is the coefficient of some Riemann integrable
function f, i.e. f(z) ~> 2, # Consider A,(f)(0),

ANO =5 [ 1OR (o)

P,(0) is an even function on 6, and since 1—2r cos 0+r? = (1—rcos0)?+r%sin? 0 > 0
for r € [0,1), so P.(0) = P,(—0) = —="— > 0. We now have

1—2r cos O+r2

A(F)(0)] <= / " 17(0)|P.(~6)d8
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=SL91p|f(9)| < .

—T

k

On the other hand, lim,_; A,(f)(0) = lim,_; > ,~; &= = oo. Therefore, there’s no
function with {a;} as its coefficient.

Note that lim, ., Y-, % = 00 because for all M > 0, we can choose N such that
Zgﬂ% > 2M. Then we choose r so close to 1 that v > 1/2, then

-~

Ex 8a (p. 89). f(n) is the same as that of Exercise 6 in Chapter 2. Using the
Parseval’s identity:
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Ex 8b. We have computed f(n) in Exercise 4 in Chapter 2. Using the same method
as (a), we have

16 1 1 [ i
2.2, A 0)|2do = = .
2 Z kS 27 ) F)] 30
k>0,k odd
Hence, >, m = 9”—(;) follows. As
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Ex 9. (p.90) We note that
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Hence the Fourier series of fis > 7 £—

. By the Parseval’s identity,
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