Real Analysis20-09-11.Chapter 1. Integration on Measure spaces.\$1.1Measurable Spaces and Measurable functions.Let
$$X \neq \emptyset$$
. Let P_X be the power set of X, i.e. $P_X = \{Y : Y \in X\}.$ Def. (s-algebra) $M \subseteq P_X$ is called a s-algebra on X if(i) $X \in M$;(ii) If $A \in M$, then $A^C \in M$ ($A := X \setminus A$)(iii) If $A_R \in M$, $R \ge 1$, then $\bigcup_{R=1}^{\infty} A_R \in M$.Remarks: (i)-(iii) imply that• $\emptyset \in M$.• If $A_R \in M$, $R \ge 1$, then $\bigcup_{R=1}^{\infty} A_R \in M$.Hena a s-algebra is closed under countable union, intersection and complement.

Example:
$$P_X$$

 $\{\emptyset, X\}$
Example: Let $S = P_X$.
Define
 $M(S) = \bigcap$ all σ -algebras on X containing S .
We call $M(S)$ the smallest σ -algebra containing S .
(or the σ -algebra generated by S).
Example: Let X be a topological space.
Let \mathcal{G}_X be the σ -algebra on X generated by
the class of open sets in X .
We call \mathcal{G}_X the Borel σ -algebra on X .
Def. A pair (X, M) is said to be a measurable space
if M is a σ -algebra on X .
($\overline{\sigma} \Rightarrow R_J \notin i \phi$)
Def: A function $f \colon X \Rightarrow R$ is said to be measurable
if $f'(G) \in M$, \forall open $G \in R$.

Remark: Equivalently,
$$f$$
 is measurable if
 $p^{-1}(a, b) \in M$, $\forall a, b \in R$, $a < b$.
(Using the fact that every open set in R is
the countable union of finite open intervals)
Prop 1.1. $f: X \rightarrow R$ is measurable iff one of following
properties Rolds:
 $f^{-1}(a, b) \in M$, $\forall a, b \in R$, $a < b$.
 $f^{-1}(a, \infty) \in M$, $\forall a \in R$.
 $f^{-1}(a, \infty) \in M$, $\forall a \in R$.
 $f^{-1}(a, \infty) \in M$, $\forall a \in R$.
 $f^{-1}(-\infty, a) \in M$, $\forall a \in R$.
 $f^{-1}(-\infty, a) \in M$, $\forall a \in R$.
 $f^{-1}(-\infty, a] \in M$, $\forall a \in R$.
Pf. WLOG, we prove
 f is measurable \Leftrightarrow 2 Rolds.
Clearly, \Rightarrow Rolds.
We want to prove f Rolds.

Notice that

$$f^{T}[a,\infty) = \bigcap_{n=1}^{\infty} f^{T}(a-f,\infty) \in \mathcal{M}.$$
So

$$f^{T}(a,b) = f^{T}(a,\infty) \setminus f^{T}[b,\infty) \in \mathcal{M}.$$
Prop 2. Let $\Phi: (R \to R)$ be continuous.
Let $f: X \to R$ be measurable.
Then $\Phi \circ f: X \to (R)$ is measurable.
Pf. \forall open G in R, by continuity,

$$\Phi^{T}(G) \text{ is open in } R,$$
So $(\Phi \circ f)^{T}(G) = f^{T}(\Phi^{T}(G)) \in \mathcal{M}.$
Remark: The assumption $\Phi: (R \to R)$ can be relaxed to
 $\Phi: V \to (R)$ where V is open and $V \supset range(f).$

Prop 1.3 (i) All measurable functions on X
form a vector space.
(ii) If f is measurable, then so are

$$f^{2}$$
, Ifl, f^{\dagger} , f^{-} .
($f^{\circ}_{0} = \begin{cases} f(x) & \text{if } f(x) < 0 \\ 0 & \text{otherwise} \end{cases}$
 $f(x) = \begin{cases} -f(x) & \text{if } f(x) < 0 \\ 0 & \text{otherwise} \end{cases}$
(iii) If f, g are measurable then f.g is measurable.
(iv) If f, g are measurable and $g \neq 0$ then
 f/g is measurable.
Pf. (i) It suffices to prove that if f, g are measurable.
($f^{+}g)^{-1}(\alpha, \infty) = \bigcup_{s,t \in Q_{1}} (f^{-1}(s, \infty) \cap g^{-1}(t, \infty))$
 $stt > \alpha$
(ii). Let $\Phi(x) = x^{2}$. By Prop 1.2, $\Phi \circ f$ is measurable.
But $\Phi \circ f = f^{2}$, and we are done.

Topological structure of
$$\overline{R}$$
:
 $E \subset \overline{R}$ is open iff $\phi'(E)$ is open in $[E\overline{2}, \underline{E}]$
By the above def, $E \subset \overline{R}$ is open iff E is
the countable union of intervals of the form
 $[-\infty, \alpha]$, (α, b) , $(\alpha, \pm \infty)$.
Def: A function $f: X \rightarrow \overline{R}$ is said to be measurable
if $f'(G) \in M$ for any open G in \overline{R} .
Facts: $f: X \rightarrow \overline{R}$ is measurable
iff $f^{-1}(\alpha, b)$, $f^{-1}(f \circ \phi)$, $f^{-1}(f \circ \phi) \in M$.
Prop 1.3, Prop 1.4 also hold for \overline{R} -valued functions.

\$13 Measure spaces.
Let
$$(X, M)$$
 be a measurable space.
Def. A measure μ on (X, M) is a function
from M to $[o, + \infty]$ such that
(i) $\mu(\emptyset) = o$
(ii) (countable additivity)
 $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$, provided
An $\in M$ are disjont.
Simple facts.
• (finite additivity)
 $\mu(\bigcup_{n=1}^{\beta} A_n) = \sum_{n=1}^{k} \mu(A_n)$ if $A_n \in M$ are disjon?
• If $A \subset B$, then $\mu(B) = \mu(A) + \mu(B \setminus A)$.
($B = A \cup (B \setminus A)$)
Hence $\mu(A) \leq \mu(B)$.

• (Countable sub-additivity)
Let
$$A_n \in M$$
, $n \ge 1$, then
 $\mu(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=j}^{\infty} \mu(A_n)$.
Justification: Let $B_1 = A_1$,
 $B_2 = A_2 \setminus A_1$
 $B_n = A_n \setminus (A_1 \cup \cdots \cup A_{n-1})$
Then B_1, B_2, \cdots are mutually disjoint, $B_n \in M$
 $B_n \subset A_n$, moreover
 $\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n$.
Hence $\mu(\bigcup_{n=1}^{\infty} A_n) = \mu(\bigcup_{n=1}^{\infty} B_n)$
 $= \sum_{n=1}^{\infty} \mu(B_n)$
 $\le \sum_{n=1}^{\infty} \mu(A_n)$.

Def. The triple
$$(X, M, \mu)$$
 is called a measure space
Prop 1.5. Let (X, M, μ) be a measure space.
(i) If $A_{R} \in M, R \ge 1$, is increasing in the sense
 $A_{1} \subset A_{2} \subset \cdots$
than $\mu(\bigcup_{R=1}^{\infty} A_{R}) = \lim_{R \ge 0} \mu(A_{R})$.
(ii) If $A_{R} \in M, R \ge 1$, is obscreasing in the sense
 $A_{1} \supset A_{2} \supset \cdots \supset A_{R} \supset \cdots$
and assume $\mu(A_{1}) < \infty$, then
 $\mu(\bigcap_{R=1}^{\infty} A_{R}) = \lim_{R \ge 0} \mu(A_{R})$.
Pf. Let us first prove (i).
Write $B_{1} = A_{1}$
 $B_{n} = A_{n} \setminus (A_{1} \cup \cdots \cup A_{n-1})$

Then
$$B_{1}, B_{2}, \dots$$
, are mutually disjoint,
Moreover
 $\bigcup_{n=1}^{\infty} B_{n} = \bigcup_{n=1}^{\infty} A_{n}$
 $\bigcup_{n=1}^{k} B_{n} = \bigcup_{n=1}^{k} A_{n}$ (check it).
Hence
 $\mu(\bigcup_{n=1}^{\infty} A_{n}) = \mu(\bigcup_{n=1}^{\infty} B_{n})$
 $= \sum_{n=1}^{\infty} \mu(B_{n})$
 $= \lim_{k \to \infty} \sum_{n=1}^{k} \mu(B_{n})$
 $= \lim_{k \to \infty} \mu(\bigcup_{n=1}^{k} B_{n})$
 $= \lim_{k \to \infty} \mu(\bigcup_{n=1}^{k} B_{n})$
 $= \lim_{k \to \infty} \mu(A_{k}) (\lim_{i \le i \le i \le k \le k \le k} A_{k})$

Now we prove (2).
Notice that

$$A_1 \supset A_2 \supset \cdots$$

So
 $A_1 \setminus A_1 \subset A_1 \setminus A_2 \subset \cdots \subset A_1 \setminus A_n \subset \cdots$
Hence by (1)
 $\mu\left(\bigcup_{n=1}^{\infty} (A_n \setminus A_n)\right) = \lim_{n \to \infty} \mu(A_1 \setminus A_n)$
 So
 $\mu\left(A_1 \setminus \left(\bigcap_{n=1}^{\infty} A_n\right)\right) = \lim_{n \to \infty} \mu(A_1 \setminus A_n)$
 \bigotimes
Since $\mu(A_1) < \infty$,
So $\mu(A_1) = \mu(A_1 \setminus \left(\bigcap_{n=1}^{\infty} A_n\right)) + \mu(\bigcap_{n=1}^{\infty} A_n)$
Hence $\mu\left(\bigcap_{n=1}^{\infty} A_n\right) = \mu(A_1) - \mu\left(A_1 \setminus \left(\bigcap_{n=1}^{\infty} A_n\right)\right)$

Similarly $\mu(A_n) = \mu(A_i) - \mu(A_i \setminus A_n)$ Plugging the above two equations into (*), we obtain the desired identity, Remark: The assumption M(A1) < 00 can not be dropped in Prop 1.5. Here is a counterexample: Let $\mu = \lambda^2$ on \mathbb{R} . Let $A_n = (n, \pm \infty), \quad n = 1, 2, \cdots$ Then $A_n \bigvee_{\substack{\infty \\ n=1}}^{\infty} A_n = \varphi$

It has a standard form

$$S(x) = \sum_{j=1}^{N} a_j \mathcal{X}_{E_j}(x),$$
where $a_1 < a_1 < \cdots < d_N$ and
 $E_j = \{x : S(x) = a_j\} \in \mathcal{M},$
 $\mathcal{X}_{E}(x) := \{1 \text{ if } x \in E \\ 0 \text{ otherwise}.$
Remark: In general, any function

$$S(x) = \sum_{j=1}^{N} \partial_j \mathcal{X}_{E_j}(x),$$

$$(\text{ where } E_j \in \mathcal{M})$$
is a simple function.

Thm 1.6. Let
$$f: X \rightarrow i\overline{R}$$
 be a non-negative
 $i\overline{R}$ -Valued measurable function. Then
 $\exists a$ Sequence $(S_n)_{n=1}^{\infty}$ of non-negative
Simple functions such that
(1) $S_n \leq S_{n+1}$, $\forall n \geq 1$,
(2) $f = \lim_{n \to \infty} S_n$.
Pf. Let us construct a sequence of functions
 P_R , $k \geq 1$, from $[o, \infty] \rightarrow [o, \infty)$ by
 $P_R(x) = \begin{cases} \frac{j}{2^k} & \text{if } x \in [\frac{j}{2^k}, \frac{j+1}{2^k}] \\ & \text{for } j = 0, 1, \dots, 2^k \cdot k^{-1} \end{cases}$
 $k \text{ otherwise}$

Then $\varphi_{R}(x) \uparrow x$, for any $x \ge 0$. Take $S_{k}^{(x)} = \mathcal{P}_{k}(f^{(x)}), \quad k = 1, 2, \cdots$ It is readily checked that SK are simple. and Sk(x) / f(x).