
2022 Fall Real Analysis I 1

Suggested Solution to midterm exam

1. Let (X,M, λ) be a measure space.

(a) Let Ak ∈M, k ≥ 1. Show that the set E = {x ∈ X : x belongs to exactly 2022 many

Ak} is measurable.

(b) Assume that
∑

k λ (Ak) <∞. Show that the set F = {x ∈ X : x belongs to infinitely

many Ak}, is a null set. You may assume F to be measurable.

Solution.

(a) S : X → R defined by S(x) :=
∑∞

k=1 χAk
(x) is a measurable function, whence

E = S−1({2022}) is measurable.

Alternatively, since

E =
⋃

i1<···<i2022

Ai1 ∩ · · · ∩Ai2022 ∩
⋂

k/∈{i1,...,i2022}

Ac
k


and

{
(i1, . . . , i2022) ∈ N2022 : i1 < · · · < i2022

}
is a subset of the countable set N2022,

we see that E is measurable.

(b) (You may also refer to HW1 Q7)

Note that

F =
∞⋂
n=1

⋃
k≥n

Ak.

Since
∞∑
k=1

λ(Ak) <∞, we have
∞∑
k=n

λ(Ak)→ 0 as n→∞. For any n∈ N , we have

F ⊂
⋃
k≥n

Ak

and so

λ(F ) ≤
∞∑
k=n

λ(Ak) .

Taking n→∞, we have λ(A) = 0.
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2. Let (X,M, µ) be a measure space.

(a) Assume that µ(X) > 0. Suppose that f is a measurable function in X which is

positive almost everywhere. Show that the set {x ∈ X : f(x) > ρ} has positive

measure for some ρ > 0.

(b) Let f ≥ 0 be integrable and
∫
fdµ = c ∈ (0,∞). Prove that

lim
n→∞

∫
n log

(
1 +

f

n

)
dµ = c.

Solution.

(a) Let En={x ∈ X : f(x) > 1/n} and E={x ∈ X : f(x) > 0}, which are measurable

since f is a measurable function.

Note that

E =
∞⋃
n=1

En = lim
n→∞

En

Moreover, En is an ascending sequence of measurable sets, we have

µ(E) = lim
n→∞

µ(En)

Because f is positive almost everywhere, µ(E) = µ(X) > 0

Then there exists k s.t. µ(Ek) ≥ 1
2µ(X) > 0

Take ρ = 1
k , we have µ{x ∈ X : f(x) > ρ} > 0

(b) (You may also refer to HW2 Q6)

Let gn(x) = n log

(
1 +

f(x)

n

)
. Since

∫
f dµ = c ∈ (0,∞), we know that µ({x :

f(x) =∞}) = 0 and µ({x : f(x) > 0}) > 0.

Observe that

lim
n→∞

gn(x) = f(x)a.e.

Moreover

gn = n log

(
1 +

f

n

)
≤ n · f

n
= f ∈ L1(µ).

By Lebesgue dominated convergence theorem,

lim
n→∞

∫
gn dµ =

∫
lim
n→∞

gn dµ =

∫
f dµ = c.
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3. Let m be a Borel measure and µΛ a Riesz measure on Rn.

(a) Show that µΛ satisfies: For each measurable set E and ε > 0, there exist a closed set

A and an open set B,A ⊂ E ⊂ B, such that µΛ(B\A) < ε.

(b) Suppose that m is equal to µΛ on all open sets. Show that they coincide on all Borel

sets.

(c) Suppose that m is finite on all compact sets. Show that it is the restriction of some

Riesz measure on B, where B is the Borel σ-algebra on Rn.

Solution. (You may also refer to Lecture Notes Chap 2 and HW5)

(a) It’s clear that any Riesz measure µΛ on Rn is σ-finite by Riesz Representation The-

orem. Let E be measurable and Ej = E ∩ Xj where Rn =
⋃

j Xj is a σ-finite

decomposition of Rn. By outer regularity of the Riesz measure, for each ε > 0, there

exists an open set Bj containing Ej such that µΛ (Bj\Ej) = µΛ (Bj)−µΛ (Ej) ≤ ε/2j

for all j ≥ 1. It follows that µΛ(B\E) ≤
∑

j µΛ (Bj\Ej) ≤ ε where B =
⋃

j Bj is open

after using B\E =
(⋃

j Bj

)
\ (
⋃

k Ek) =
⋃

j (Bj\
⋃

k Ek) ⊂
⋃

j (Bj\Ej). Next, we ap-

ply this result to the complement of E,Ec, to get an open B0 such that Ec ⊂ B0

and µ (B0\Ec) < ε. Then the closed set A = Bc
0 is contained in E and satisfies

µΛ(E\A) = µΛ (B0\Ec) < ε.

(b) Let E ∈ B. For ε > 0, by (a), there exists an open set A and a closed set B with

A ⊂ E ⊂ B such that µΛ(B \A) < ε. Since B and B \A are open, m and µΛ coincide

on them, and one has

µΛ(E) = µΛ(B)− µΛ(B \ E) ≥ µΛ(B)− µΛ(B \A) = m(B)−m(B \A)

≥ m(E)− ε.

By changing the position of m and µΛ, one has

m(E)− ε ≤ µΛ(E) ≤ m(E) + ε.

Since this holds for any ε > 0, one has µΛ(E) = m(E).

(c) It suffices to show both measures coincide on open sets because then we can apply

(b).
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For f ∈ Cc, define the linear functional by

Λf =

∫
fdm .

As m is finite on compact sets, this is a well-defined and obviously a positive func-

tional. By the representation theorem there is a Riesz measure µΛ such that

∫
fdm =

∫
fµΛ , ∀f ∈ Cc(Rn) .

For any open set G, we can find an ascending sequence of compact sets {Kn} such

that G =
⋃

nKn. Let fn satisfy Kn < fn < G so that fn increases to χG pointwisely.

By Lebesgue monotone convergence we get

m(G) = lim
n→∞

∫
G
fndm = lim

n→∞

∫
G
fndµΛ = µΛ(G) .

4. Let L denote the Lebesgue outer measure on R.

(a) Suppose that B ⊂ R is not Lebesgue measurable. Show that there exists ε > 0 such

that for every Lebesgue measurable A ⊂ B,L(B\A) > ε.

(b) Suppose that g : R → R is continuously differentiable. Show that g(E) is Lebesgue

measurable if E ⊂ R is Lebesgue measurable.

Solution.

(a) Prove by contradiction.

Suppose not, than there exist a squence of measurable setsAn’s s.t. An ⊂ B,L(B\An) ≤
1
n . Let A =

⋃∞
n=1An, then A ⊂ B and L(B\A) = 0. Since the Lebesgue outer

measure L is complete, we have B\A is Lebesgue measurable, which implies B =

(B\A)
⋃
A is also measurable. Contradicton arises.

(b) Assume that E is compact first. As the image of a compact set under a continuous

map is again compact and so is Borel, we see that g(E) is also compact, hence

measurable. Next, let E be a bounded measurable set. By inner regularity we can

find a set F ⊂ E which is the countable union of compact sets satisfying Ln(E\F ) = 0.

Hence the set N = E \ F is null and g(E) = g(F ) ∪ g(N). We have g(F ) =
⋃

j g(Kj)

where Kj are compact, so g(F ) is Borel (hence measurable). Finally, we can write a

measurable set as the countable union of bounded, measurable sets. Therefore, things
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boil down to show that the image of a null set under a continuously differentiable

map is a null set. It’s true because a C1 function is also locally Lipschitz. By letting

the radius of the covering sets be sufficiently small, one can then follow the argument

in HW5 Q2.

(You may also follow the proof of Lemma 7.25 by Rudin, Real and Complex Analysis,

for a more general case.)

5. Prove or disprove that if (fn)∞n=1 is a sequence of Lebesgue integrable functions

fn : [0, 1]→ R

such that limn→∞
∫

[0,1] |fn| dL = 0, then for at least one value x ∈ [0, 1], we have

lim
n→∞

fn(x) = 0.

Solution. The statement is false. For a specific counter example, one can follow the con-

struction in HW3 Q2(a). Let f1 = χ[0,1/2], f2 = χ[1/2,1], f3 = χ[0,1/22], f4 = χ[1/22,1/2], f5 =

χ[1/2,3/22], f6 = χ[3/22,1], · · · .

It’s clear that

lim
n→∞

∫
[0,1]
|fn| dL = lim

k→∞

1

2k
= 0

But for any point x ∈ [0, 1], fn(x) doesn’t converge.


