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Suggested Solution 6

(1) In the proof of Lusin’s Theorem (Theorem 2.12), it was assumed that f is non-negative,

bounded and A is compact. Complete the proof by showing the conclusion still holds when

f is finite a.e. and A is of finite measure.

Solution: We divide the proof into three steps.

Step 1. Assume that f is bounded and supported on a compact set A. Write f = f+ − f−.

Then both f+and f−are bounded and supported on A. Then by what is proved in Theorem

2.12, the conclusion of Lusin’s Theorem holds in this situation.

Step 2. Assume that f is bounded and vanishes outside a measurable set A with µ(A) <∞.

Let ε > 0 be fixed. By the regularity of µ, there exists a compact set K and an open set

G such that K ⊂ A ⊂ G and µ(G\K) < ε
2 . By Urysohn’s Lemma, there exists h ∈ Cc(X)

such that K < h < G

Now we apply Step 1 to f |K , we have there exists g ∈ Cc(X) such that

µ ({x ∈ X : g(x) 6= f |K (x)}) < ε

2
.

Observe that gh ∈ Cc(x), gh ≡ g on K and gh ≡ 0 outside G. Hence we have

{x : g(x)h(x) 6= f(x)} ⊆ {x : g(x) 6= f |K (x)} ∪ (G\K)

Therefore,

µ({x : g(x)h(x) 6= f(x)}) ≤ µ ({x : g(x) 6= f |K (x)}) + µ(G\K)

<
ε

2
+
ε

2
= ε

Step 3. Assume that f is finite a.e. and vanishes outside a measurable set A with µ(A) <∞.

For each n ≥ 1, we define

fn(x) :=

 f(x) if |f(x)| ≤ n

n · sign f(x) otherwise

Then we have fn(x)→ f(x) for every x ∈ X. Note that

{x : fn(x) 6= f(x)} ⊆ {x : |f(x)| > n}
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Since f is finite a.e., supported on A and µ(A) <∞, we have

µ({x : |f(x)| > n}) ↓ 0, as n→∞.

Hence there exists n0, such that

µ ({x : fn0(x) 6= f(x)}) < ε

2
.

Apply the result of Step 2 to fn0 , we get a g ∈ Cc(X) such that

µ ({x : g(x) 6= fn0(x)}) < ε

2
.

Note that

{x : g(x) 6= f(x)} ⊆ {x : g(x) = fn0(x), fn0(x) 6= f(x)} ∪ {x : g(x) 6= fn0(x)}

Hence we have µ({x : g(x) 6= f(x)}) ≤ ε, completing the proof.

(2) Let µ be a Riesz measure on Rn. Show that for every measurable function f , there exists a

sequence of continuous functions {fn} such that fn → f almost everywhere.

Solution: For each k ≥ 1, we define a set Bk := {x ∈ Rn : |x| ≤ k} and a function

fk(x) :=


f(x) if x ∈ Bk and |f(x)| ≤ k

k · sign f(x) if x ∈ Bk and |f(x)| > k

0 otherwise.

Then it is easy to see that fk(x) → f(x) at every x ∈ Rn. Note that fk is bounded

and supported on a set of finite measure, we can apply the result of Exercise (1) to get a

gk ∈ Cc (Rn), such that

µ ({x ∈ Rn : fk(x) 6= gk(x)}) < 1

2k
.

Let Ak = {x ∈ Rn : gk(x) 6= fk(x)}. Then by the Borel-Cantelli Lemma, we have for almost

every x ∈ Rn, x ∈ Ak for finite many k. As a consequence, we have gk → f a.e..

(3) Here we construct a Cantor-like set, or a Cantor set with positive measure, with positive

measure by modifying the construction of the Cantor set as follows. Let {ak} be a sequence
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of positive numbers satisfying

γ ≡
∞∑
k=1

2k−1ak < 1.

Construct the set S so that at the kth stage of the construction one removes 2k−1 centrally

situated open intervals each of length ak. Establish the facts:

(a) L1(S) = 1− γ,

(b) S is compact and nowhere dense,

(c) S is perfect hence uncountable.

Note. A set A is perfect if for every x ∈ A and ε > 0, (Bε(x)\{x}) ∩ A 6= ∅, that is, every

point in A is an accumulation point of A. It is known that a perfect set must be uncountable.

Solution:

(a) As the intervals removed at the same stage or different stages are mutually disjoint, we

have

L1(S) = 1−
∞∑
k=1

2k−1 length of interval removed in the k th stage

= 1−
∞∑
k=1

2k−1ak

= 1− γ.

(b) Let Sn be the set of points left in [0, 1] after the n-th level construction. Then Sn is

descending and S =
⋂∞
n=1 Sn. Notice that Sn is a union of 2n mutually disjoint closed

intervals hence is compact. Hence S is compact. The 2n components of Sn are of the

same length

bn = 2−n

(
1−

n∑
k=1

2k−1ak

)

Clearly bn → 0 as n→∞. Hence S does not have an interior point, since otherwise S

will contain an open interval which is also contained in every Sn, which is impossible

since bn →∞ as n→∞. Hence S is nowhere dense.

(c) If x ∈ S, then x belongs some connected component of Sn, ∀n ∈ N. Observe that the

end points of the 2n intervals of Sn are in S, so ∃yn end point of one of the interval s.t.

|yn − x| ≤ bn → 0 as n→∞
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We have S is a perfect set.

(4) Let 0 < ε < 1. Construct an open set G ⊂ [0, 1] which is dense in [0, 1] but L1(G) = ε.

Solution: Similar to the construction of Cantor’s familiar ”middle thirds” set. Define

K0 = [0, 1] and inductively define Kn ⊂ Kn−1 by removing an open interval of length

2(1 − ε)2−2n. By the construction each Kn has 2n connected components with length an

which satisfy  an = 1
2

(
an−1 − 2ε2−2n

)
, n = 1, 2, . . .

a0 = 1

from which we get an = (1− ε)2−n + ε2−2n. Thus

L1(K) = lim
n→∞

L1 (Kn) = lim
n→∞

2nan = 1− ε

Take G = [0, 1]\K, then L1(G) = ε. On the other hand, G is dense in [0, 1] since the interior

of K is empty.

(5) Let A be the subset of [0, 1] which consists of all numbers which do not have the digit 4

appearing in their decimal expansion. Find L1(A).

Solution: Let B = {0, 1, 2, 3, 5, 6, 7, 8, 9}, the set F0 = {x ∈ [0, 1] : x = 0.4a2a3 · · · , aj =

0, 1, 2, · · · , 9} = [
4

10
,

5

10
] is of Lebesgue measure

1

10
. Fix y1 ∈ B, |B| = 91 = 9, the set

Fy1 = {x ∈ [0, 1] : x = 0.y14a3 · · · , aj = 0, 1, 2, · · · , 9 ∀j ≥ 3} = [
y1
10

+
4

100
,
y1
10

+
5

100
] is of

Lebesgues measure
1

100
. Fix (y1, y2) ∈ B2, |B2| = 92 = 81, the set F(y1,y2) = {x ∈ [0, 1] :

x = 0.y1y24a4 · · · , aj = 0, 1, 2, · · · , 9 ∀j ≥ 4} is of measure
1

1000
. Continuing the process,

we have

A = [0, 1] \ (

∞⋃
n=1

⋃
(y1,y2,··· ,yn)∈Bn

F(y1,y2,··· ,yn) ∪ F0)

and as all F(y1,y2,··· ,yn), F0 are disjoint, we have

L1(A) = 1− 1

10
−
∞∑
n=1

∑
(y1,y2,··· ,yn)∈Bn

1

10n+1

= 1− 1

10
−
∞∑
n=1

9n

10n+1

= 0.
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(6) Let N be a Vitali set in [0, 1]. Show that M = [0, 1] \ N has measure 1 and hence deduce

that

L1(N ) + L1(M) > L1(N ∪M).

Remark: I have no idea what L1(N ) is, except that it is positive.

Solution: We first prove that every Lebesgue measurable subset of N must be of measure

zero. Let A be a Lebesgue measurable subset of N , {A+ q}q∈Q∩[0,1) is a sequence of disjoint

measurable set contained inside [−1, 2]. By translational invariance of Lebesgue measure,

L1(
⋃

q∈Q∩[0,1)

A+ q) =
∑

q∈Q∩[0,1)

L1(A+ q) =
∑

q∈Q∩[0,1)

L1(A) <∞,

Therefore we must have

L1(A) = 0.

We try to prove by contradiction, suppose there is an open set G s.t. L1(G) = 1 − ε < 1

and G ⊇ N c. Then [0, 1] \G is a measurable subset of N satisfying

0 < ε = L1([0, 1])− L1(G) ≤ L1([0, 1] \G).

Contradicting to our previous result.

(7) Let E be a subset of R with positive Lebsegue measure. Prove that for each α ∈ (0, 1), there

exists an open interval I so that

L1(E ∩ I) ≥ αL1(I).

It shows that E contains almost a whole interval. Hint: Choose an open G containing E

such that L1(E) ≥ αL1(G) and note that G can be decomposed into disjoint union of open

intervals. One of these intervals satisfies our requirement.

Solution: As ∃n ∈ N s.t. L1(E ∩ (−n, n)) > 0, WLOG we may assume that E has finite

outer measure, then ∀α ∈ (0, 1), ∃ open G s.t.G ⊇ E and

L1(E) +
(1− α)

α
L1(E) ≥ L1(G),
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Hence

L1(E) ≥ αL1(G).

we can write G =
∞⋃
i=1

Ii where Ii are disjoint open intervals. Then one of these Ii must

satisfy the desired property, otherwise

L1(E) ≤
∞∑
i=1

L1(E ∩ Ii) < α
∞∑
i=1

L1(Ii) = αL1(G) <∞,

contradicting the above inequality.

(8) Let E be a measurable set in R with respect to L1 and L1(E) > 0. Show that E−E contains

an interval (−a, a), a > 0. Hint:

(a) U , V open, with finite measure, x 7→ L1((x+ U) ∩ V ) is continuous on R.

(b) A, B measurable, µ(A), µ(B) < ∞, then x 7→ L1((x + A) ∩ B) is continuous. For

A ⊂ U , B ⊂ V , try

L1((x+ U) ∩ V )− L1((x+A) ∩B)| ≤ L1(U \A) + L1(V ⊂ B).

(c) Finally, x 7→ L1((x+ E) ∩ E) is positive at 0 and if (x+ E) ∩ E 6= ∅, then x ∈ E \ E.

Solution:

(a) We prove the case when U is an open interval I, note for all subset A,B of R,

((x+A) ∩B) \ (((y +A) ∩B)) = (x+A) \ (y +A) ∩B.

Therefore

∣∣L1((x+I)∩V )−L1((y+I)∩V )
∣∣ ≤ L1((x+I)\(y+I))+L1((y+I)\(x+I)) ≤ 4

∣∣x−y∣∣.
the function is Lipschitz and continuous. In general U can be written as countable

union of disjoint open intervals {Ii}, as
∞∑
i=1

`(Ii) <∞,∃N s.t. for all k ≥ N ,

∞∑
i=k

`(Ii) < ε.
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We have

∞∑
i=1

L1((x+Ii)∩V )−L1((y+Ii)∩V ) ≤
k∑
i=1

L1((x+Ii)∩V )−L1((y+Ii)∩V )+2ε < 3ε

for x sufficiently close to y. Similarly

∞∑
i=1

L1((y + Ii) ∩ V )− L1((x+ Ii) ∩ V ) ≤ 3ε.

We have the function L1((x+ U) ∩ V ) is continuous.

(b) Obviously , ((x+ U) ∩ V ) \ ((x+A) ∩B) ⊆ U \A ∪ V \B. Therefore, we have

0 ≤ L1((x+ U) ∩ V )− L1((x+A) ∩B) ≤ L1(U \A) + L1(V \B).

Note RHS is independent on x, y, so the result follow from outer regularity of Lebesgue

measure.

(c) the function L1((x + E) ∩ E) is continuous and positive at 0, ∃a > 0 s.t the function

remain positive on (−a, a), i.e

(x+ E) ∩ E 6= ∅

and ∀x ∈ (−a, a),∃e1e2 ∈ E s.t

x = e1 − e2 ∈ E − E.

Alternate proof. The following is a simple proof due to Karl Stromberg.

By the regularity of L1, for every ε > 0 there are a compact set K ⊂ E and an open set

U ⊃ E such that

L1(K) + ε > L1(E) > L1(U)− ε.

For our purpose it is enough to choose K and U such that

2L1(K) > L1(U).

Since K ⊂ U , there is an open cover of K that is contained in U . Since K is compact, one

can choose a small neighborhood V of 0 such that

K + V ⊂ U.
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Let v ∈ V , and suppose

(K + v) ∩K = ∅.

Then,

2L1(K) = L1(K + v) + L1(K) < L1(U),

contradicting our choice of K and U . Hence for all v ∈ V there exists k1, k2 ∈ K ⊂ E such

that

k1 + v = k2,

which means that V ⊂ E − E.

(9) Give an example of a continuous map φ and a measurable f such that f ◦φ is not measurable.

Hint: The function h = x + g(x) where g is the Cantor function is a continuous map from

[0, 1] to [0, 2] with a continuous inverse.

Solution: Let h = x + g(x) where g is the Cantor function. Then h : [0, 1] → [0, 2] is a

strictly monotonic and continuous map, so its inverse φ = h−1 is continuous too. Since g is

constant on every interval in the complement of C, one has that h maps such an interval to

an interval of the same length. Hence µ(h(C)) = 1, where C is the cantor set. Then h(C)

contains a non-measurable set A due to Proposition 3.3. Let B = φ(A). Set f = χB. Then

f ◦ φ is not measurable since its inverse image of 1 is A.


