Fall 2022
MATHS5011 Real Analysis I

Exercise 1 Suggested Solution

(1) Let {Ax}2, be a sequence of measurable sets in (X, M). Let
A={x € X: z e A for infinitely many k} |

and

B ={x € X : x € Ay for all except finitely many k} .

Show that A and B are measurable.

Solution

A:ﬁUAk.

n=1k>n
B=J (A4

n=1k>n
(2) Let ¥:R xR — R be continuous. Show that ¥(f,g) are measurable for
any measurable functions f, g. This result contains Proposition 1.3 as a special
case.
Solution Note that every open set G C R? can be written as a countable union
of set of the form V; x V5 where Vi, V5 open in R. (Think of V; x V5 = (a,b) X
(¢,d),a,b,c,d € Q).
Let G C R be open. Then ®~1(G) is open in R?, so

oG =W, x VD),

n



Then
i@ )G = vy x v = vihng (V)

is measurable since f and g are measurable. Hence h = (f, g).

(3) Show that f: X — R is measurable if and only if f~!([a,b]) is measurable
for all a,b € R.

Solution By def f : X — R is measurable if f~'(G) is measurable. YG open
in R. Every open set G in R can be written as a countable union of (a,b),
[—00,a), (b,00], a,b € R. So ff is measurable iff f~1(a,b), f~}[—o0,a), f~1(b, 0]

are measurable.

~) Use
o =N (a— Ly -)
Pl =7 [—oo,a+ 1)
700 =1 (o
) Use

FY(b, 0] = Of‘l {b+ %oo] .

(4) Let f: X X [a,b] — R satisfy (a) for each x, y — f(x,y) is Riemann

integrable, and (b) for each y, x — f(x,y) is measurable with respect to some



o-algebra M on X. Show that the function

Fz) = / £, y)dy

is measurable with respect to M.
Solution For simplicity let [a,b] = [0,1]. For n > 1, equally divide [0, 1] into
subintervals of length 1/n and let

Fo(x) = k: f (x E) L

n;,yn

Clearly F,, is measurable (with respect to M). Now

F(z) = lim F,(x) ,

n—oo

so it is also measurable.

(5) Let f, g, fr, k> 1, be measurable functions from X to R.
(a) Show that {z: f(x) < g(z)} and {z : f(z) = g(x)} are measurable sets.
(b) Show that {z : klim fr(x) exists and is finite} is measurable.

—00

Solution

(a) Suffice to show {x : F(x) > 0} and {z : F(z) = 0} are measurable. If F'is
measurable, use

{x: F(x) >0} = F (0, o]
{z: F(z) =0} = F7'[0,00] N F[~00, 0]

Alternatively, one may consider

{weX: flx)<gl@)}=J(f " [-oor) g™ (r,00)])

reQ
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and
{zeX: fla)=g@)}={reX: flz) <gl@)} N{zreX:flz)>g()}

(b) Since g(x) =limsup fi(x) and lign inf f(x) are measurable.
k—o0 —+00

{z: klim fr(z) exists } = {z: li}gn inf fi,(z) = limsup fi(z)}
—00 —00 E—s00

On the other hand, the set{z : g(z) < 400} is also measurable, so is their

Iintersection.

(6) There are two conditions (i) and (ii) in the definition of a measure p on
(X, M). Show that (i) can be replaced by the “nontriviality condition”: There
exists some £ € M with p(E) < oco.

Solution If p is a measure satisfying the nontriviality condition and (ii), let

Ay =E, A; = ¢ for i > 2 in ii),

00 > p(E) = Zu(Ai) > fi(Ar) + p(Az) = p(E) + p(é)

so 0 > p(¢) > 0. We have p is a measure satisfying (i) and (ii).
If 1 is a measure satisfying (i) and (ii), taking £ = ¢, we have the nontriviality

condition.
(7) Let {Ax} be measurable and Z,u(Ak) < oo and
k=1

A={z € X :x e A for infinitely many k}.

We know that A is measurable from (1). Show that u(A) = 0.

Solution Since ZM(Ak) < 00, we have Zu(Ak) — 0 as n — oo. For any
k=1 k=n



ne N, we have
and so

Taking n — oo, we have u(A) = 0.

This result is called Borel-Cantelli lemma.

(8) Let B be the set defined in (1). Let x4 be a measure on (X, M). Show that

u(B) < liminf p(Ag) .

k—o00

Solution Using the characterization

BZGﬂAJ"

k=1j>k

and the fact that {N;>;A;} is ascending in k, we have

wB) = ,}ggou<ﬂ Aj>

Jj=k

= hlgr_kgjlf,u (ﬂ Aj>

>k
< liminf p(Ag) .
k—o0

(9) Here we review Riemann integral. Let f be a bounded function defined
on [a,b],a,b € R. Given any partition P = {a =xg< T << X, = b} on
la,b] and tags z; € [x;j,xj11], there corresponds a Riemann sum of f given by

R(f, P,z) = 3"~ f(2;)(z;11 — x;). The function f is called Riemann integrable

J=0



with integral L if for every ¢ > 0 there exists some ¢ such that

|R(f,P,z) — L| <k,
whenever ||P|| < § and z is any tag on P. (Here ||P|| = max—) [z;41 — x;] is the
length of the partition.) Show that

1. For any partition P, define its Darboux upper and lower sums by
R(f,P) =" sup{f(x):a € [xj, x5} (0 — ;).
J

and

R(f,P) =) inf {f(z): x € [xj, 2] }(2j51 — 2;)

j
respectively. Show that for any sequence of partitions {P,} satisfying

| Pl — 0 as n — oo, lim, s R(f, P,) and lim,,_,. R(f, P,) exist.

2. {P,} as above. Show that f is Riemann integrable if and only if

lim R(f, P,) = lim R(f,P,) = L.

n—oo n—oo

3. A set E in [a,b] is called of measure zero if for every e > 0, there exists
a countable subintervals J,, satisfying > |J,| < ¢ such that £ C J,, Jn.
Prove Lebsegue’s theorem which asserts that f is Riemann integrable if and
only if the set consisting of all discontinuity points of f is a set of measure

zero. Google for help if necessary.
Solution:

(a) It suffices to show: For every ¢ > 0, there exists some ¢ such that

0 < R(f,P)—R(f) <e,



and

0 < R(f) - R(f,P) <e,

for any partition P, ||P|| < 0, where
R(f) = f R(f, P),

and

R(f) = SllepE(f, P).

If it is true, then lim, . R(f, P,) and lim,_. R(f, P,) exist and equal to
R(f) and R(f) respectively.

Given € > 0, there exists a partition () such that

R(f)+¢/2> R(f,Q).

Let m be the number of partition points of () (excluding the endpoints).
Consider any partition P and let R be the partition by putting together
P and ). Note that the number of subintervals in P which contain some
partition points of () in its interior must be less than or equal to m. Denote

the indices of the collection of these subintervals in P by J. We have

0 <R(f,P)—R(f R) <Y 2MAz; <2M x m||P|],
jeJ
where M = supy,;; | f|, because the contributions of R(f, P) and R(f,Q) from

the subintervals not in J cancel out. Hence, by the fact that R is a refinement

of Q,
R(f)+¢/2>R(f,Q) > R(f,R) > R(f,P) — 2Mm||P|],



ie.,

0 < R(f,P)— R(f) < /2 +2Mml||P||.

Now, we choose
€

0 < —m——
1+4Mm’

Then for P, ||P|| <,
0<R(f,P)—R(f) <e.

Similarly, one can prove the second inequality.

With the result in part a, it suffices to prove the following result: Let f
be bounded on [a,b]. Then f is Riemann integrable on [a,b] if and only if

R(f) = R(f). When this holds, L = R(f) = R(f).

According to the definition of integrability, when f is integrable, there exists
some L € R so that for any given ¢ > 0, there is a 6 > 0 such that for all
partitions P with ||P|| < 0,

|R(f,P,z) — L| <¢/2,

holds for any tags z. Let (P, 21) be another tagged partition. By the triangle

inequality we have
|R(f, P,z)—R(f, P1,z1)| <|R(f,P,z)—L|+|R(f, P1,z1)—L| < e/2+¢e/2 =¢.
Since the tags are arbitrary, it implies

R(f,P)—R(f,P) <e.

As a result,

IN
=



Note that the first inequality comes from the definition of the upper/lower

Riemann integrals. Since € > 0 is arbitrary, R(f) = R(f).

Conversely, using R(f) = R(f) in part a, we know that for £ > 0, there exists
a ¢ such that
OSE<JC7P>_E<JC7P> <g,

for all partitions P, ||P|| < . We have

< g,

and similarly,
R(f) = R(f,P.z) < R(f.P) - R(f,P) <e.
As R(f) = R(f), combining these two inequalities yields
|R(f, P,z) = R(f)] <¢,

for all P, ||P|| <6, so f is integrable, where L = R(f).

For any bounded f on [a,b] and x € [a, b], its oscillation at x is defined by

w(fx) = mf{(sup f(y) —inf f(y)) : y € (z = 6,2 +6) N a, b]}

= lim {(sup f(y) —inf f(y)) 1y € (v = 0,2+ ) Na, b}

It is clear that w(f,z) = 0 if and only if f is continuous at z. The set
of discontinuity of f, D, can be written as D = J;—, O(k), where O(k) =
{z € [a,b] : w(f,z) > 1/k}. Suppose that f is Riemann integrable on [a, b].

It suffices to show that each O(k) is of measure zero. Given ¢ > 0, by



Integrability of f, we can find a partition P such that

R(f,P) = R(f,P) < ¢/2k.

Let J be the index set of those subintervals of P which contains some elements

of O(k) in their interiors. Then

%Z |1;] < Z(Stjlpf - igff)m’j

Jj€J jeJ

< —inf YAz,
_;(S?pf in f)Az;

< e/2k.

Therefore

Z |I;| <e/2.

jed
Now, the only possibility that an element of O(k) is not contained by one of
these I; is it being a partition point. Since there are finitely many partition
points, say N, we can find some open intervals I], ..., I}y containing these

partition points which satisfy

oI < /2.

So {I;} and {I/} together form a covering of O(k) and its total length is

strictly less than €. We conclude that O(k) is of measure zero.

Conversely, given € > 0, fix a large k& such that + < e. Now the set O(k) is

10



of measure zero, we can find a sequence of open intervals {/;} satisfying

o) €| J I,
j=1

9]
Z ‘Iz]’ < e
j=1

One can show that O(k) is closed and bounded, hence it is compact. As a

result, we can find I;,, ..., [;, from {/;} so that

Ok)C I;, U..UI

N

N
oIl <e.
j=1

Without loss of generality we may assume that these open intervals are mu-
tually disjoint since, whenever two intervals have nonempty intersection,
we can put them together to form a larger open interval. Observe that
la,b]\ (£;; U---UI;,) is a finite disjoint union of closed bounded intervals, call
them Vs, i € A. We will show that for each i € A, one can find a partition
on each V; = [v;_1,v;] such that the oscillation of f on each subinterval in

this partition is less than 1/k.

Fix i € A. For each x € V;, we have
w(f,z) <
By the definition of w(f, x), one can find some J, > 0 such that
up{ (1) € B8 0 o, 5} = nf{f(2) = € Bl,0.) N0} <

where B(y,8) = (y — 8,y + 8). Note that V; C U,y B(w,0,). Since V; is

closed and bounded, it is compact. Hence, there exist z;,,...,2;,, € V; such

11



that V; C U;\il B(w;,, Oa, ). By replacing the left end point of B(z;;, (5%) with
vy if @y, — 6% < v;_1, and replacing the right end point of B(z;,, 5zzj) with
v; if 2y, + 5%_ > v;, one can list out the endpoints of {B(xlj,&j)}jj‘/il and use
them to form a partition S; of V;. It can be easily seen that each subinterval
in .S; is covered by some B ($zj75xlj), which implies that the oscillation of f

in each subinterval is less than 1/k. So, S; is the partition that we want.

The partitions S;’s and the endpoints of I;,, ..., I;, form a partition P of [a, b].
We have

R(f,P)— R(f,P) = Z(M] —m;)Az; + Z(MJ —m;)Az;

I

N
<MY |I |+ 3 A,
j=1

<2Me+¢e(b—a)
= [2M + (b — a)]e,

where M = supy, ;) |f| and the second summation is over all subintervals in

Vi,i € A. Hence f is integrable on [a, b].
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