THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH3310 2022-2023 Homework Assignment 5 Due Date: December 9 before 11:59 PM

1. Consider the linear system $Ax = k$, where

$$
A = \begin{pmatrix} 1 & 0 & -\frac{1}{4} & -\frac{1}{4} \\ 0 & 1 & -\frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & -\frac{1}{4} & 1 & 0 \\ -\frac{1}{4} & -\frac{1}{4} & 0 & 1 \end{pmatrix} \text{ and } \mathbf{k} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.
$$

Let $\boldsymbol{x}^* = (1, 1, 1, 1)^T$ be the solution of the linear system. Suppose $\{\boldsymbol{x}^{(m)}\}_{m=1}^{\infty}$ and $\{\boldsymbol{y}^{(m)}\}_{m=1}^{\infty}$ are the sequences of vectors obtained by the Jacobi method and Gauss-Seidel method respectively to solve the linear system with initialization $\mathbf{x}^{(0)} = \mathbf{y}^{(0)} = (0,0,0,0)^T$. Let $\mathbf{e}^{(m)}_I$ $J^{(m)}_{J} := \boldsymbol{x}^{(m)} - \boldsymbol{x}^{*}$ and $\bm{e}_{GS}^{(m)} := \bm{y}^{(m)} - \bm{x}^*$ be the error vectors at the m-th iteration for the Jacobi and Gauss-Seidel method respectively.

- (a) Show that: $e_j^{(m)} = -2^{-m}(1, 1, 1, 1)^T$ for $m \ge 1$.
- (b) Show that: $e_{GS}^{(m)} = -4^{-m}(2, 2, 1, 1)^T$ for $m \ge 1$.
- (c) Show that $||e_{GS}^{(m)}||_2 < ||e_{J}^{(m)}||$ $\|J^{(m)}\|_2$ for $m \geq 1$. Hence, the Gauss-Seidel method converges faster than the Jacobi method.
- 2. Consider the linear system $Ax = b$, where $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite. Consider:

$$
f(\boldsymbol{\eta}) = \frac{1}{2}\boldsymbol{\eta}^T A \boldsymbol{\eta} - \boldsymbol{b}^T \boldsymbol{\eta}
$$

- (a) For an iterative scheme $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{p}_k$, where \mathbf{p}_k is a fixed direction, find α_k such that $f(\boldsymbol{x}^{(k+1)})$ is minimized.
- (b) The conjugate gradient method is given by

$$
\begin{aligned} \boldsymbol{x}^{(k+1)} &= \boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{p}_k, \\ \boldsymbol{p}_{k+1} &= -\boldsymbol{r}_{k+1} - \beta_k \boldsymbol{p}_k, \\ \beta_k &= -\frac{\langle \boldsymbol{r}_{k+1}, \boldsymbol{p}_k \rangle_A}{\langle \boldsymbol{p}_k, \boldsymbol{p}_k \rangle_A} \end{aligned}
$$

where α_k is in the form given by (a), $r_k = Ax^{(k)} - b$, $p_0 = -r_0$, $\langle x, y \rangle_A = x \cdot Ay$, $x^{(0)} \in \mathbb{R}^n$ is an arbitray initial guess. Provided that $r_i \cdot r_j = 0$ and $\langle p_i, p_j \rangle_A = 0$ for all $i \neq j$, show that $\beta_k = -\frac{\boldsymbol{r}_{k+1}\cdot\hat{\boldsymbol{r}}_{k+1}}{\boldsymbol{r}_k\cdot\boldsymbol{r}_k}$ $\frac{+1\cdot \boldsymbol{r}_{k+1}}{\boldsymbol{r}_k\cdot \boldsymbol{r}_k}.$

3. Consider the gradient descent method for solving $A\mathbf{x} = \mathbf{b}$ with some $\alpha \in \mathbb{R}$ and A to be a symmetric positive definite matrix:

$$
\begin{aligned} \boldsymbol{x}^{k+1} &= \boldsymbol{x}^k + \alpha \boldsymbol{d}^k \\ \boldsymbol{d}^k &= -(A\boldsymbol{x}^k - \boldsymbol{b}) \end{aligned}
$$

Prove that the method converges if and only if $\alpha < \frac{2}{\lambda_j}$ for all j where λ_j are the eigenvalues of A.

Hint: suppose η is the solution to $Ax = b$, them η satisfies

$$
\eta = \eta + \alpha(A\eta - b).
$$

Using this equation, start with the error vector $e^k = x^k - \eta$ to make some observation.