THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH3310 2022-2023 Homework Assignment 5 Due Date: December 9 before 11:59 PM

1. Consider the linear system $A\mathbf{x} = \mathbf{k}$, where

$$A = \begin{pmatrix} 1 & 0 & -\frac{1}{4} & -\frac{1}{4} \\ 0 & 1 & -\frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & -\frac{1}{4} & 1 & 0 \\ -\frac{1}{4} & -\frac{1}{4} & 0 & 1 \end{pmatrix} \text{ and } \mathbf{k} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

Let $\mathbf{x}^* = (1, 1, 1, 1)^T$ be the solution of the linear system. Suppose $\{\mathbf{x}^{(m)}\}_{m=1}^{\infty}$ and $\{\mathbf{y}^{(m)}\}_{m=1}^{\infty}$ are the sequences of vectors obtained by the Jacobi method and Gauss-Seidel method respectively to solve the linear system with initialization $\mathbf{x}^{(0)} = \mathbf{y}^{(0)} = (0, 0, 0, 0)^T$. Let $\mathbf{e}_J^{(m)} := \mathbf{x}^{(m)} - \mathbf{x}^*$ and $\mathbf{e}_{GS}^{(m)} := \mathbf{y}^{(m)} - \mathbf{x}^*$ be the error vectors at the *m*-th iteration for the Jacobi and Gauss-Seidel method respectively.

- (a) Show that: $e_J^{(m)} = -2^{-m}(1, 1, 1, 1)^T$ for $m \ge 1$.
- (b) Show that: $e_{GS}^{(m)} = -4^{-m}(2,2,1,1)^T$ for $m \ge 1$.
- (c) Show that $\|\boldsymbol{e}_{GS}^{(m)}\|_2 < \|\boldsymbol{e}_J^{(m)}\|_2$ for $m \ge 1$. Hence, the Gauss-Seidel method converges faster than the Jacobi method.
- 2. Consider the linear system $A\mathbf{x} = \mathbf{b}$, where $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite. Consider:

$$f(\boldsymbol{\eta}) = \frac{1}{2}\boldsymbol{\eta}^T A \boldsymbol{\eta} - \boldsymbol{b}^T \boldsymbol{\eta}$$

- (a) For an iterative scheme $\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{p}_k$, where \boldsymbol{p}_k is a fixed direction, find α_k such that $f(\boldsymbol{x}^{(k+1)})$ is minimized.
- (b) The conjugate gradient method is given by

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{p}_k,$$
$$\boldsymbol{p}_{k+1} = -\boldsymbol{r}_{k+1} - \beta_k \boldsymbol{p}_k,$$
$$\beta_k = -\frac{\langle \boldsymbol{r}_{k+1}, \boldsymbol{p}_k \rangle_A}{\langle \boldsymbol{p}_k, \boldsymbol{p}_k \rangle_A}$$

where α_k is in the form given by (a), $\mathbf{r}_k = A\mathbf{x}^{(k)} - \mathbf{b}$, $\mathbf{p}_0 = -\mathbf{r}_0$, $\langle \mathbf{x}, \mathbf{y} \rangle_A = \mathbf{x} \cdot A\mathbf{y}$, $\mathbf{x}^{(0)} \in \mathbb{R}^n$ is an arbitrary initial guess. Provided that $\mathbf{r}_i \cdot \mathbf{r}_j = 0$ and $\langle \mathbf{p}_i, \mathbf{p}_j \rangle_A = 0$ for all $i \neq j$, show that $\beta_k = -\frac{\mathbf{r}_{k+1} \cdot \mathbf{r}_{k+1}}{\mathbf{r}_k \cdot \mathbf{r}_k}$.

3. Consider the gradient descent method for solving $A\mathbf{x} = \mathbf{b}$ with some $\alpha \in \mathbb{R}$ and A to be a symmetric positive definite matrix:

$$egin{aligned} & m{x}^{k+1} = m{x}^k + lpha m{d}^k \ & m{d}^k = -(Am{x}^k - m{b}) \end{aligned}$$

Prove that the method converges if and only if $\alpha < \frac{2}{\lambda_i}$ for all j where λ_j are the eigenvalues of A.

Hint: suppose η is the solution to $A\mathbf{x} = \mathbf{b}$, them η satisfies

$$\boldsymbol{\eta} = \boldsymbol{\eta} + \alpha (A\boldsymbol{\eta} - \boldsymbol{b}).$$

Using this equation, start with the error vector $e^k = x^k - \eta$ to make some observation.