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1. Consider a n× n tridiagonal linear system Ax = b, where:

A =


α −β
−β α −β . . .

. . .
. . .

. . .

−β α


where α ≥ β.

(a) Prove that the eigenvectors of A are given by

qj =


sin(jθ)
sin(2jθ)

...
sin(njθ)


for j = 1, 2, . . . , n and θ = π

n+1 .

(b) Suppose α = 2 and β = 1. Prove that the Jacobi method to solve Ax = b converges by looking
at the spectral radius of a suitable matrix. Please explain your answer with details.

(c) Suppose α = 2 and β = 1. Using the Housholder-John theorem, prove that the Gauss-Seidel
method to solve Ax = b converges. Please explain with details.

(d) Suppose α = 2 and β = 1. Explain why the SOR method converges for 0 < ω < 2. What
is the optimal parameter ωopt in the SOR method to obtain the fastest convergence. Please
explain your answer with details.

Solution:

(a) Consider Aqj :

(Aqj)1 = α sin (jθ)− β sin (2jθ)

= α sin (jθ)− 2β sin (jθ) cos (jθ)

= (α− 2β cos (jθ)) sin (jθ)

= (α− 2βcos(jθ))(qj)1

For k = 2, 3, . . . , n− 1,

(Aqj)k = −β sin ((k − 1)jθ) + α sin (kjθ)− β sin ((k + 1)jθ)

Note :
sin ((k − 1)jθ) = sin (kjθ) cos (jθ)− sin (jθ) cos (kjθ)

sin ((k + 1)jθ) = sin (kjθ) cos (jθ) + sin (jθ) cos (kjθ)

Then we have

(Aqj)k = (α− 2β cos (jθ)) sin (kjθ) = (α− 2β cos (jθ))(qj)k

Finally,
(Aqj)n = −β sin ((n− 1)jθ) + α sin (njθ)
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Note

sin ((n− 1)jθ) = sin ((n+ 1)jθ − 2jθ)

= sin

(
(n+ 1)j

π

n+ 1
− 2jθ

)
= sin (jπ) cos (2jθ)− cos (jπ) sin (2jθ)

= − cos (jπ)× 2 sin (jθ) cos (jθ)

= −2 cos (jπ) cos (jθ) sin (jπ − njθ)

= −2 cos (jπ) cos (jθ)
(
sin (jπ) cosnjθ − cos (jπ) sin (njθ)

)
= −2 cos2 (jπ) cos (jθ) sin (njθ)

= −2 cos (jθ) sin (njθ)

So,
(Aqj)n = (−2β cos (jθ) + α) sin (njθ) = (α− 2β cos (jθ))(qj)n

Hence, qj is an eigenvector with eigenvalue α− 2β cos (jθ).

(b) For α = 2 and β = 1,

MJ =


0 1

2
1
2 0 1

2 . . .
. . .

. . .
. . .

1
2 0


By (a), MJ has eigenvalues − cos (jθ), j = 1, 2, . . . , n .
Since 0 < jθ < π, we have −1 < − cos (jθ) < 1 for all j. And so the spectral radius is less
than 1 and Jacobi method converges.

(c) Clearly, A is symmetric real matrix and self-adjoint, and so as N∗ +N −A.
Note

A =


2 −1
−1 2 −1 . . .

. . .
. . .

. . .

−1 2


has eigenvalues 2 − 2 cos (jθ) and 0 < 2 − 2 cos (jθ) as 0 < jθ < π. Also, N = D + L for
Gauss-Seidel method,

N∗ +N −A = D∗ + L∗ +D + L− (L+D + U) = D

, D = diag(2, 2, . . . , 2). So A and N∗+N−A are positive definite. Then Gauss-Seidel method
converges by Householder-John Theorem.

(d) Note Jacobi method converges and −1 < − cos (θ) ≤ − cos (jθ) ≤ − cos (nθ) < 1 and cos (θ) =
− cos (π − θ) = − cos (nθ) > 0. So,

ρ(MJ) = cos (θ) = − cos (nθ)

A is consistently ordered as it is tridiagonal. Then by D. Young’s Theorem, SOR method
converges when 0 < ω < 2 and ωopt =

2
1+

√
1−cos2 θ

= 2
1+sin θ .
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2. Consider:

A =

 1 −1 0
−1 0 −1
0 −1 1


Find the QR factorization of A by Gram-Schmidt process. Compute the first iteration in QR
method. Please show all your steps.

Solution:

q1 =
a1

||a1||
=

 1/
√
2

−1/
√
2

0


q̃2 = a2 − (qT

1 a2)q1

=

−1
0
−1

+
1√
2

 1/
√
2

−1/
√
2

0


=

−1/2
−1/2
−1


q2 =

q̃2

||q̃2||
=

−1/
√
6

−1/
√
6

−
√
2/3


q̃3 = a3 − (qT

1 a3)q1 − (qT
2 a3)q2

=

 0
−1
1

− 1√
2

 1/
√
2

−1/
√
2

0

− (− 1√
6
)

−1/
√
6

−1/
√
6

−
√

2/3


=

−2/3
−2/3
2/3


q3 =

q̃3

||q̃3||
=

−1/
√
3

−1/
√
3

1/
√
3


So,

Q =

 1/
√
2 −1/

√
6 −1/

√
3

−1/
√
2 −1/

√
6 −1/

√
3

0 −
√
2/3 1/

√
3

 and R =


√
2 −1/

√
2 1/

√
2

0
√

3/2 −1/
√
6

0 0 2/
√
3


3. Consider:

A =

 1 −1 0
−1 0 −1
0 −1 1


Suppose an initial vector is given as x(0) = (1,−1, 1)T . Calculate the first iteration of power method.
Find the eigenvalue and the normalised eigenvector associated to it.

Solution: Ax(0) = (2,−2, 2)T . Then normalised eigenvector is (1,−1, 1)T . Thus the eigenvalue is
2.
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4. Let A ∈ Mn×n(C) be a n×n complex-valued matrix. Suppose the characteristic polynomial of A is
given by: fA(t) = (−1)n(t− λ1)(t− λ2)...(t− λn), where λ1, ..., λn are eigenvalues of A. Assuming
that

|λ1| = |λ2| = ... = |λk| > |λk+1| ≥ ... ≥ |λn|,

where k < n. Suppose A = QJQ−1, where J is the Jordan canonical form of A and Q is an invertible
matrix. Assuming that the diagonal entries of J are arranged in descending order in terms of their
magnitudes. Denote the j-th column of Q by qj , where q1, q2, ..., qk are eigenvectors of A
associated to λ1, λ2,..., λk respectively.

Let x0 be the initial vector defined as x0 = a1q1 + a2q2 + ... + anqn, where aj ∈ C for 1 ≤ j ≤ n
and ai ̸= 0 for i = 1, 2, ..., k. Consider the iterative scheme:

xj+1 =
Axj

||Axj ||∞
for j = 0, 1, 2, ...

(a) Suppose λ1 = λ2 = ... = λk ∈ R. will ||Axj ||∞ always converge as j → ∞. If yes, what will
it converge to? If not, please give a counter-example and explain your answer with details.
Please show the full details of your proof.

(b) In general, if |λ1| = |λ2| = ... = |λk|, will ||Axj ||∞ always converge j → ∞? If yes, what will
it converge to? If not, please give a counter-example and explain your answer with details.
Please show the full details of your proof.

Solution: It’s easy to find for all m ∈ N+

xm =
Axm−1

∥Axm−1∥∞
=

A2xm−2

∥Axm−1∥∞∥Axm−2∥∞
= · · · = Amx0∏m−1

i=0 ∥Axi∥∞
.

On the other side, we have ∥xm∥∞ = 1, so
∏m−1

i=0 ∥Axi∥∞ = ∥Amx0∥∞ and then

xm =
Amx0

∥Amx0∥∞
.

From the definition of x0,

Amx0 =

n∑
i=1

aiλ
m
i qi.

(a) Yes. Given λ1 = λ2 = · · · = λk ∈ R and |λ1| > |λk+1| ≥ |λk+2| ≥ · · · ≥ |λn| > 0, we can split
Amx0 into 2 parts,

Amx0 = λm
1

k∑
i=1

aiqi +

n∑
i=k+1

aiλ
m
i qi = λm

1 y + zm.

When m is big enough, it’s clear that |λ1|m∥y∥∞ > ∥zm∥∞, limm→∞
∥zm∥∞

|λ1|m∥y∥∞
= 0 and

|λ1|m∥y∥∞ − ∥zm∥∞ ≤ ∥Amx0∥∞ ≤ |λ1|m∥y∥∞ + ∥zm∥∞.

Therefore, for such big m, we have

|λ1|m+1∥y∥∞ − ∥zm+1∥∞
|λ1|m∥y∥∞ + ∥zm∥∞

≤ ∥Axm∥∞ =
∥Am+1x0∥∞
∥Amx0∥∞

≤ |λ1|m+1∥y∥∞ + ∥zm+1∥∞
|λ1|m∥y∥∞ − ∥zm∥∞

.

For the left one,

lim
m→∞

|λ1|m+1∥y∥∞ − ∥zm+1∥∞
|λ1|m∥y∥∞ + ∥zm∥∞

= |λ1| ·
1− |λ1| · limm→∞

∥zm+1∥∞
|λ1|m+1∥y∥∞

1 + limm→∞
∥zm∥∞

|λ1|m∥y∥∞

= |λ1|.

Similarly, limm→∞
|λ1|m+1∥y∥∞+∥zm+1∥∞

|λ1|m∥y∥∞−∥zm∥∞
= |λ1|, which means limm→∞ ∥Axm∥∞ = |λ1|.

4



(b) No. Suppose

J =

2 0 0
0 −2 0
0 0 1

 , Q =

1 0 1
1 1 0
0 1 1

 , A = QJQ−1 =

 3
2

1
2 − 1

2
2 0 −2
3
2 − 3

2 − 1
2

 ,

Then for A, we have q1 = (1, 1, 0)T , q2 = (0, 1, 1)T , q3 = (1, 0, 1)T , λ1 = 2, λ2 = −2 and
λ3 = 1.

Let x0 = q1 + q2 + q3,

Amx0 = (2m + 1, 2m + (−2)m, (−2)m + 1)T .

When m is odd, ∥Amx0∥∞ = 2m + 1 and when m is even, ∥Amx0∥∞ = 2m+1, hence

∥Axm∥∞ =
∥Am+1x0∥∞
∥Amx0∥∞

=

{
2− 2

2m+1 ,m is odd
1
2 + 1

2m+1 ,m is even

which means ∥Axm∥∞ diverges.
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