MMAT5010 2223 Test

Q1.(i) Let (x_n) be a sequence in M and x be the weak limit of (x_n) . Suppose $x \notin M$. Since M is a norm-closed subspace of X, there is $f \in X^*$ such that $f(M) \equiv 0$ and $f(x) \neq 0$. But since x is the weak limit of (x_n) , $f(x) = \lim_{n \to \infty} f(x_n) = 0$. It is a contradiction. Therefore, $x \in M$.

(ii) Consider $X = c_0$ and (e_n) . Notice that $c_0^* = \ell^1$. Hence for any $f \in c_0^*$ (denote $f = (f_1, f_2, ..., f_n, ...)$), $\sum_{n=1}^{\infty} |f_n| = ||f||_{\ell^1} < \infty$. Hence $f(e_n) = f_n \to 0$ as $n \to \infty$. Therefore, (e_n) is weakly convergent but not convergent in c_0 .

(iii) Let $(x_n) \subset X$ be weakly convergent to $x \in X$. Let dim X = m and $\{e_1, ..., e_m\}$ be a base of X. Then there exist $\{\alpha_n(i)\}$ and $\{\alpha(i)\}$ such that $x_n = \sum_{i=1}^m \alpha_n(i)e_i$ for n = 1, 2, ... and $x = \sum_{i=1}^m \alpha(i)e_i$. And let $\{e_1^*, ..., e_m^*\} \subset X^*$ be defined as $e_i^*(e_j) = \delta_{ij}$ for i, j = 1, ..., m. Since (x_n) is weakly convergent to x,

$$\alpha_n(i) = e_i^*(x_n) \to e_i^*(x) = \alpha(i) \text{ as } n \to \infty \text{ for each } i = 1, 2, ..., m.$$

Hence

$$||x_n - x|| = ||\sum_{i=1}^m (\alpha_n(i) - \alpha(i))e_i|| \le \sum_{i=1}^m |\alpha_n(i) - \alpha(i)|||e_i|| \to 0.$$

Therefore, (x_n) is norm convergent to x.

Q2. (i) We claim that T is unbounded. In fact, we take $e_k = (0, 0, ..., 0, 1, 0, ...)(k$ th entry is 1, others are 0), then $e_k \in c_{00}$ and $||e_k||_{\infty} = 1$. Notice that $||Te_k||_{\infty} = k$ for each k = 1, 2, ... Hence T is unbounded. (ii) $T^{-1}y(k) = \frac{1}{k}y(k)$ for $y \in c_{00}, k = 1, 2, ...$ Then

$$||T^{-1}y||_{\infty} = \max\{\frac{1}{k}|y(k)|: k = 1, 2, ...\} \le \max\{|y(k)|: k = 1, 2, ...\} = ||y||_{\infty}.$$

Hence T^{-1} is bounded. We claim that $||T^{-1}|| = 1$. In fact, we take $y_0 = (1, 0, ...)$ (the first entry is 1, others are 0). Then $||y_0||_{\infty} = 1$ and $||T^{-1}y_0||_{\infty} = 1$. Therefore, $||T^{-1}|| = 1$.

Q3.(i) Let dim Z = n and $\{e_1, ..., e_n\}$ be a base of Z. Then for any $x \in Z$, there exist $\{\alpha_i\}_{i=1}^n$ such that $x = \sum_{i=1}^n \alpha_i e_i$. Since Z is of finite dimension, all norms

are equivalent. Hence, there eixsts a constant c such that $\sum_{i=1}^{n} |\alpha_i| \leq c ||x||$. Therefore, for any linear map T on Z,

$$||Tx|| = ||\sum_{i=1}^{n} \alpha_i Te_i|| \le \sum_{i=1}^{n} |\alpha_i| ||Te_i|| \le (\max_{1 \le i \le n} ||Te_i||) c ||x||.$$

Therefore, T is bounded.

(ii)Suppose T is bounded, then T is continuous. Hence for any sequence $(x_n) \subset \ker T$ such that $x_n \to x$, we have $Tx = \lim_{n\to\infty} Tx_n = 0$. Hence $x \in \ker T$. Therefore, ker T is closed.

Now assume that ker T is closed. Then $X/\ker T$ becomes a normed space. Also, it is known that there is a linear injection $\tilde{T} : X/\ker T \to Y$ such that $T = \tilde{T} \circ \pi$, where $\pi : X \to X/\ker T$ is the natural projection. Since dim $Y < \infty$ and \tilde{T} is injective, dim $(X/\ker T) < \infty$. This implies that \tilde{T} is bounded by (i). Hence T is bounded because $T = \tilde{T} \circ \pi$ and π is bounded.