sec1.1 EXERCISES

1. Determine whether the vectors emanating from the origin and termi-
nating at the following pairs of points are parallel.



(a) (3,1,2) and (6,4,2)

(b) (—3,1,7) and (9,3, -21)
(c) (5,—6,7) and (—5,6,—7)
(d) (2,0,—5) and (5,0, —2)

. Find the equations of the lines through the following pairs of points in

space.

(a) (3,—2,4) and (-5,7,1)
(b) (2.4,0) and (-3, —6,0)
(¢) (3,7,2) and (3,7, -8)

(d) (—2,-1,5) and (3,9,7)

. Find the equations of the planes containing the following points in space.

(a) (2,-5,-1), (0,4,6), and (~3,7,1)
(b) (3,—6,7), (—2,0,—4), and (5, -9, —2)
(c) (—8,2,0), (1,3,0), and (6,—5,0)

(d) (1,1,1), (5,5,5), and (—6,4,2)

. What are the eoordinates of the vector ¢ in the Euclidean plane that

satisfies property 3 on page 37 Justify your answer.

. Prove that if the vector x emanates from the origin of the Euclidean

plane and terminates at the point with eoordinates (ay, as), then the
vector tr that emanates from the origin terminates at the point with
coordinates (tag, taa).

. Show that the midpoint of the line segment joining the points (a,b) and

(e,d) is ((a + €)/2, (b + d)/2).

. Prove that the diagonals of a parallelogram bisect each other.



sec].2 EXERCISES

1. Label the following statements as true or false.

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)

(i)

Every vector space contains a zero vector.

A vector space may have more than one zero vector.

In any vector space, ar = br implies that a = b.

In any vector space, ar = ay implies that © = y.

A vector in F™ may be regarded as a matrix in My .1 (F).

An m x n matrix has m columns and n rows.

In P(F), only polynomials of the same degree may be added.

If f and g are polynomials of degree n, then f + g 15 a polynomial
of degree n.

If f is a polynomial of degree n and ¢ is a nonzero scalar, then cf
is a polynomial of degree n.



{j) A nonzero secalar of F' may be considered to be a polynomial in
P(F} having degree zero.

(k) Two functions in JF(5, F) are equal if and only if they have the
same value at each element of S.

2. Write the zero vector of Ma, 4 F).

3. It

what are Mz, May, and Mas?

4. Perform the indicated operations.

25 -3 4 -2 5
(@) (1 0 7)+(—5 3 2)
8 4\ fr -8
m [ 3 —2)+(o -3
i 8 k3 oa

TEE

6 4
(d -5( 3 -2
1 8

{(e) (22 — 72 44z 4+ )+ (B2 + 227 — 62+ 7)
(£) (—3z+ T2+ 8z —6) + (227 — Bz + 10)
(g) 5(2r7 — 6t + 822 — 3x)

(h) 3(z® —2:* + 4z +32)

Exercises 5 and 6 show why the definitions of matrix addition and scalar
multiplication (as defined in Example 2) are the appropriate ones.

5. Richard Gard (“Effects of Beaver on Trout in Sagehen Creek, Cali-
fornia,” J. Wildlife Management, 25, 221-242) reports the following
number of trout having crossed beaver dams in Sagehen Creek.

Upstream Crossings

Fall Spring Summer
Brook trout 8 3 1
Rainbow trout 3 0 0

Brown trout 3 a 0




10.

Diownstream Crossings

Fall Spring Summer
Brook trout 9 1 4
Rainbow trout a o 0
Brown trout 1 1 0

Record the upstream and downstream crossings in two 3 x 3 matrices,
and verify that the sum of these matrices gives the total number of
crossings (both upstream and downstream) categorized by trout species
and season.

At the end of May, a furniture store had the following inventory.

Early Mediter-
American Spanish TANEAN Danish
Living room suites 4 2 1 3
Bedroom suites B 1 1 4
Dining room suites 3 1 2 6

Record these data as a 3 x 4 matrix M. Tb prepare for its June sale,
the store decided to double its inventory on each of the items listed in
the preceding table. Assuming that none of the present stock is sold
until the additional furniture arrives, verify that the inventory on hand
after the order is filled is deseribed by the matrix 2M. If the inventory
at the end of June is deseribed by the matrix

L T
A=1|6 2 1 5],
1 0 3 3

interpret 2M — A. How many suites were sold during the June sale?

Let §={0,1} and F' = R. In F(S, R), show that f =g and f+g =k,
where f(f) =2t + 1, g{t) = 1+ 4¢ — 262, and h(¢) = 5 + 1.

In any vector space V, show that (e + b)(x +y) = ax +ay + bz + by for
any r,y € V and any a,b e F.

Prove Corollaries 1 and 2 of Theorem 1.1 and Theorem 1.2{c).

Let V denote the set of all differentiable real-valued functions defined
on the real line. Prove that V is a vector space with the operations of
addition and sealar multiplication defined in Example 3.



11.

12.

13.

14.

15.

16.

17.

18.

Let V = {0} consist of a single vector ¢ and define & + & = @ and
cfl = 0 for each sealar ¢ in F. Prove that V is a vector space over F.
[V i= called the zero vector space.)

A real-valued funetion f defined on the real line is called an even func-
tion it f(—¢) = f(#) for each real number {. Prove that the set of even
tunctions defined on the real line with the operations of addition and
scalar multiplication defined in Example 3 is a vector space.

Let V denote the set of ordered pairs of real numbers. If (a;,a05) and
(b1,b2) are elements of V and ¢ £ R, define

(G]_.GQ}I + {51.59] == -[ll| + b1,a.gbg) and c(ﬂl,ag} = l[cm,a.g},
Is V a vector space over R with these operations? Justify your answer.
Let V = {{a1,a2,...,an):a; € Cfori = 1,2,...n}; so V is a vector
space over O by Example 1. Is V a vector space over the field of real

numbers with the operations of coordinatewise addition and multipli-
cation?

Let V = {(a1,a9,...,an): @i € Rfori = 1,2,...n}; so V is a vec
tor space over R by Example 1. Is V a vector space over the field of
eomplex numbers with the operations of coordinatewise addition and
multiplication?

Let V denote the set of all m x n matrices with real entries; so V
is a vector space over 2 by Example 2. Let F be the field of rational
numbers. Is V a vector space over F with the usual definitions of matrix
addition and scalar multiplication?

Let V = {(a1,a2): aj,a2 € F}, where F is a field. Define addition of
elements of V coordinatewise, and for ¢ € F and (ag,a2) € V, define

a1, as) = (a1, 0).
Is V a vector space over F with these operations? Justify your answer.

Let V = {(aj,aa): a1,a0 £ R}. For (a,aa),(b1,be) € V and ¢ € R,
define

(ay,aa) + (b, ba) = (a1 + 2by, a2 + 3ba) and  clay,aa) = (cay, cas).

Is V a vector space over R with these operations? Justify your answer.



19.

21.

22,

Let V = {(a1,a2): aj,az € R}. Define addition of elements of V coor-
dinatewise, and for (ay,as) in V and ¢ £ R, define
(0,0} ite=0

clay,az) = (m“%) ifes#0.

Is V a vector space over B with these operations? Justify your answer.

Let V be the set of sequences {a,} of real numbers. (See Example 5 for
the definition of a sequence.) For {an}, {bn} € V and any real number
t, define

{an} + {bn} = {an + by} and Hap} = {ian}.
Prove that, with these operations, V is a vector space over .

Let V and W be vector spaces over a field F. Let
Z={{v,w): veVandwe W}
Prove that Z is a vector space over F with the operations
(viywy) + (va,wa) = (vg +vo,wy +we) and  ofv,wy) = (cvy, cun).

How many matrices are there in the vector space Mp.n(Z2)? (See
Appendix C.)



sec1.3 EXERCISES

1. Label the following statements as true or false.

{a) IfV is a vector space and W is a subset of V that is a vector space,
then W is a subspace of V.

(b) The empty set is a subspace of every vector space.

(c) If Vis a vector space other than the zero vector space, then V
contains a subspace W such that W # V.

(d) The intersection of any two subsets of V is a subspace of V.



e SR IR O

(e) An n x n diagonal matrix can never have more than n nonzero
entries.

(f} The trace of a square matrix is the product of its diagonal entries.

(g) Let W be the ry-plane in R*; that is, W = {(a,, a3, 0): a;,a, € R}.
Then W = R%.

Determine the transpose of each of the matrices that follow. In addition,
if the matrix is square, compute its trace.

4 2 D8 —6
{a)( 5 —1) (b) (3 1 r)

g g m o0 -3
{c]( 0 —2) (d) ( 2 4 3)

6 1 5 T 6

@t -135 @75

5 -4 0 6
(2 |6 ) o 1 -3
7 6 -3 5

Prove that (ad + bB)t = aA® + bB! for any A, B € My.n(F) and any
abe F.

Prove that (A*)f = A for each 4 € My .q(F).

Prove that A + A* is symmetric for any square matrix A.

Prove that tr{ad + bB) = atr{A) + bur(B) for any A, B € M, ..(F).
Prove that diagonal matrices are svmmetric matrices.

Determine whether the following sets are subspaces of R* under the
operations of addition and sealar multiplieation defined on R*. Justify
VOUT ANswers.

{a) W1 = {(01.0.2,&3} = R3: ] = 3!12 and ag = —GQ}

(b) WQ—{(ﬂl.GQ,E.g}I:RE: iy =a3+2}

(c) Wg—{(al as, G&}ERglzal—Taz+a3=0}

(d) 1(&1.&2.113]‘ER31 EI[-JI.G.Q—G;; =0}

(e) W5={(al as. aa}ER‘g.':z1+9a.g—3a_g—l}

(f) W; = {(ay,a9.az) € R®: 5a2 — 3a2 + 6a2 = 0}
I 2 3

Let Wy, Wa, and W, be as in Exercise 8. Deseribe Wy mnWas, Wy Wy,
and Wz "W, and ohserve that each is a subspace of R®.



10.

11.

12,

13.

14.

15.

16.

17.

18.

19.

20

21.

22,

Prove that Wy = {(ay,a2,...,an) E F*1a1+as+---+ap =0} is a
subspace of F*, but Ws = {(a,a2,...,aq) EF*: a1 +as+---+ap =1}
is not.

Istheset W = { f(z) € P(F): f(z) = 0or f(x) has degree n} a subspace
of P{F) if n = 17 Justify your answer.

An m xn matrix A is called upper triangular if all entries lying below
the diagonal entries are zero, that is, if A;; = 0 whenever i = j. Prove
that the upper triangular matrices form a subspace of My .n (F).

Let S be a nonempty set and F a field. Prove that for any sy € S,
{f € F(S,F): f(sg) =0}, is a subspace of F{(S5, F).

Let S be a nonempty set and F a field. Let C(S, F') denote the set of
all funetions f € F({5,F) such that f{s) = 0 for all but a finite number
of elements of 5. Prove that C(S, F') is a subspace of F(S, F).

Is the set of all differentiable real-valued functions defined on R a sub-
space of C(R)? Justify your answer.

Let C"(R) denote the set of all real-valued funetions defined on the
real line that have a continuous nth derivative. Prove that C"(R) is a
subspace of F(R, R).

Prove that a subset W of a vector space V is a subspace of V if and
only if W # @, and, whenever a € F and =,y € W, then ax £ W and
z+yeW.

Prove that a subset W of a vector space V is a subspace of V if and only
if? eWand ar +y € W whenever e € F and z,y € W.

Let Wy and W3 be subspaees of a vector space V. Prove that Wy UWs
is a subspace of V if and only if Wy © Ws or Wa C Wy,

.T Prove that if W is a subspace of a vector space V and wy, wa, . .., w, are
in W, then ajuy +asws + - - -+ apwy € W for any scalars ay, ag, ..., a5.

Show that the set of convergent sequences {a,} (i.e., those for which
limp_. o, an exists) is a subspace of the vector space V in Exereise 20 of
Section 1.2.

Let Fy and Fs be fields. A funection g € F(F;, Fs) is called an even
function if g(—¢) = g(¢) for each { £ F and is called an odd function
if g(—t) = —g(t) for each ¢ £ Fy. Prove that the set of all even funetions
in F(Fy, F3) and the set of all odd funetions in F{Fy, F3) are subspaces
of F(FL_FQ).



The following definitions are used in Exerecises 23-30.

Definition. If Sy and S are nonempty subsets of a vector space V', then
the sum of §, and Sa, denoted Sy + 52, istheset {x+y:x € 5 andy € S3}.

Definition. A vector space V is called the direct sum of W and W, if
W, and W are subspaces of V such that Wy MWa = {0} and Wy + W, = V.
We denote that V is the direct sum of Wy and Ws by writing V = W & Wa.

23.

24,

25.

26.

27.

Let Wy and Wy be subspaces of a vector space V.

(a) Prove that W, +Wa is a subspace of V that contains both Wy and
Wa.

(b) Prove that any subspace of V that eontains both W, and Ws must
also contain W, + Wa.

Show that F™ is the direct sum of the subspaces
Wi = {(ai,as,...,an) € F"': an = 0}
and

W2= I{l].],lﬂg“..,ﬂﬂ:lEFn'.ﬂl =ilg = - =g | =U}.

Let Wy denote the set of all polynomials f{x) in P(F) such that in the
representation

f(x) = aga™ + ap_y2™!

+ .-+ a1z +ag,
we have a; = 0 whenever : is even. Likewise let Ws denote the set of
all polynomials g{x) in P(F) such that in the representation

() = bnz™ + b1 ™ £ By + by,
we have b; = 0 whenever i is odd. Prove that P(F) = W © Wa.

In My n(F) define W) = {A € My, (F): Aj; = 0 whenever i > j}
and Wa = {A € Mpun(F): Aj; = 0 whenever i < it. (Wy is the
set of all upper triangular matrices defined in Exercise 12.) Show that
Mpxn(F) = Wi & Wa.

Let V denote the vector space consisting of all upper triangular n x n
matrices {as defined in Exercise 12), and let W denote the subspace of
V consisting of all diagonal matrices. Show that V = W, @& Wa, where
W3 = {A £ V: Ay = 0 whenever i > j}.



28.

29,

30.

31.

A matrix M is called skew-symmetric if M* = —M. Clearly, a skew-
symmetric matrix is square. Let F' be a field. Prove that the set W,
of all skew-symmetric n x n matrices with entries from F' is a subspace
of My ,n(F). Now assume that F' is not of characteristic 2 (see Ap-
pendix C), and let Wa be the subspace of My, (F) consisting of all
symmetric n x n matriees. Prove that My, o(F) = Wy & Wa.

Let F be a field that is not of characteristic 2. Define
Wy = {4 € Mpyn(F): Aj; = 0 whenever i < j}

and Wa to be the set of all symmetric n x n matrices with entries
from F. Both W; and W are subspaces of Mu..n(F). Prove that
Mpwn(F) =W & Ws. Compare this exercise with Exercise 28,

Let Wy and Ws be subspaces of a vector space V. Prove that V is the
direct sum of W and Ws if and only if each veetor in V can be uniquely
Written as x; + x4, Where =3 € W, and x5 € Wa.

Let W be a subspace of a vector space V over a field F. For any v € V
the set {v}+W = {v+w: w £ W} is called the coset of W containing
v. It is customary to denote this eoset by v + W rather than {v} + W.

(a) Prove that v +W is a subspace of V if and only if v € W.
(b) Prove that vy + W = vo + W if and only if vy — ve € W.

Addition and sealar multiplication by sealars of F' can be defined in the
collection § = {v + W: v € V} of all cosets of W as follows:

(1 + W)+ (va + W) = (g +12) + W
for all vy, va £V and
alv 4+ W) =av+W

forallv e Vanda € F.

(e¢) Prove that the preceding operations are well defined; that is, show
that if vy + W =v; + W and wa + W = w3 + W, then

(vr + W)+ (va + W) = (v] + W) + (v + W)
and
a(vy + W) = a(v] + W)

for alla € F.

(d) Prove that the set S is a vector space with the operations defined in
(e). This vector space is called the quotient space of V modulo
W and is denoted by V/W.



sec1.4 EXERCISES

1. Label the following statements as true or false.

(a)

(b)
(c)

(d)
(e)
(f)

The zero vector is a linear combination of any nonempty set of
vectors.

The span of & is @.

If S is a subset of a vector space V, then span(S) equals the inter-
section of all subspaces of V that contain S.

In solving a system of linear equations, it is permissible to multiply
an equation by any constant.

In solving a system of linear equations, it is permissible to add any
multiple of one equation to another.

Every system of linear equations has a solution.



2. Solve the following systems of linear equations by the method intro-
duced in this section.

2ry — 215 — 3xg =-2
(2) 3xy —3x3 — 253+ 5xy= T
Iy — Ta— 2r3— T4=-3

3y — Tra + dx3 =10
(h} I1—2I2+ Tg = 3

2ry — za—2r3= 6

Ty + 23— I3+ T4=95
(¢) = +4xy—3rg —3z,=6

2ry 4+ 3wy — w3 +4ry =8

Ty + 200 + 214 = 2
(d) =y + 813 + 5xy = —6
T+ Tz+Or3+brg= 3
T1+ 239 — da3— T4+ TH= T
—I + 1023 — 3ry — 4z = —16
k&) 21y + Bxyg — Br3— dry— zT5= 2
4ry + 11z — Txz — 105y — 235 = i
Ty + 210+ Bxg= -1
(f) 2cy + o+ 13= 8

3ry+ T2— 1I3= 15
I1+3I2+1BI3=—5

3. For each of the following lists of vectors in R*, determine whether the
first vector can be expressed as a linear combination of the other two.

(a) (-2,0,3),(1,3,0),(2.4,-1)
(b) €1:2,—3}~{—3,?,1J|( —1.—1}
(e) (3,4,1),(1,-2.1),(-2,-11)
(d) (2,-1,0),(1,2, 3)( -3,2)
(e) (5,1,-5),(1,-2,-3),(-2,3,—4)
() (-2,2,2),(1,2,-1),(-3,-3,3)

4. For each list of polynomials in Ps(R), determine whether the first poly-
nomial can be expressed as a linear combination of the other two.

() 2234508422 o4+ 1,07 +32 -1

(b) 42® +2* —6,2° — 22 4424 1,32% — 622+ 4+ 4

) —22° — 11 4+324+ 2,23 — 222 4+ 3 — 1,203 4+ 2% 4+ 32— 2
(d) =2+ 42241322 — 322 4424 1,23 — 22+ 22 4+ 3
(e) 28 -8B 44x,2° 222 43— 1,5 — 2243

(F) 6 — 32 442,28 — 22 4+ 20 +3,22% — 3z 4 1



5.

10.

11.1

12.

13.

14.

e

In each part, determine whether the given vector is in the span of S.

(a) (2,-1.1), §={(1,0,2),(-1,1,1)}

(b) (-1,2,1), §={(1,0,2),(-1,1,1)}

© (11,12, §={(1,0,1,-1),(0,1,1,1)}

(d) (2,-1,1,-3), §={(1,0,1,-1),(0,1,1,1)}

(e) — 18 +2:2+3x+3 S={rf+rl+r+1 2 +x+1zx+1}
(f) 222 —22+x+3, S={+s2+z+1, 22 +x+1,z+1}

() (_é i) S={(_1 g)(g D(é é)}
@ {3 Bhoe=f(2 98 3E )

Show that the vectors (1,1,0), (1,0,1), and (0,1, 1) generate F2.

In F", let e; denote the vector whose jth eoordinate is 1 and whose
other coordinates are 0. Prove that {ey, ea,..., en} generates F™.

Show that P,(F) is generated by {1, z,... ="}

Show that the matrices

1. 0 01 00 e 00
0 o) 0o o/ 1 0/ 01
generate Ma,o(F).

Show that if

M = (é g). Ms = ([U} [f) 3 and Mz= (2 é)

then the span of { My, M2, Mz} is the set of all symmetrie 2 x 2 matrices.

Prove that span{{z}) = {az: a € F} for any vector x in a vector space.
Interpret this result geometrically in R®.

Show that a subset W of a vector space V is a subspace of V if and only
if span{W) =W.

Show that if 5; and S5 are subsets of a vector space V such that §; C Ss,
then span(Sy) C span{Sa). In particular, if 5| C S5 and span(S;) =V,
deduce that span(Sa) = V.

Show that if 5y and S are arbitrary subsets of a vector space V, then
span(S;USs) = span( Sy )+span(Sz). (The sum of two subsets is defined
in the exercises of Section 1.3.)



15.

16.

17.

Let 5y and Ss be subsets of a vector space V. Prove that span(S;nSs) C
span(Sy) M span(Ss). Give an example in which span(S; M S2) and
span(Sy) M span(Ss) are equal and one in which they are unequal.

Let V be a veetor space and S a subset of V with the property that
whenever vy, va,....vq € S and ayvy + asva + -+ + agvy, = 0, then
ay = ag = -+ = ap = 0. Prove that every vector in the span of § can
be uniguely written as a linear eombination of vectors of S.

Let W be a subspace of a vector space V. Under what conditions are
there only a finite number of distinet subsets S5 of W such that S gen-
erates W7



sec1.5 EXERCISES

1. Label the following statements as true or false.

(a) If S is a linearly dependent set, then each vector in S is a linear
combination of other vectors in S.

(b) Any set containing the zero vector is linearly dependent.

(c) The empty set is linearly dependent.

(d) Subsets of linearly dependent sets are linearly dependent.

(e) Subsets of linearly independent sets are linearly independent.

(£) If ayxy + asxs + -+ + gy = 0 and xy.79,...,1, are linearly
independent, then all the sealars a; are zero.

2.% Determine whether the following sets are linearly dependent or linearly
independent.

10 9 e
® {(1 (2 a)}mMeam

() {£#4+2:% 22432+ 1,28 — 22+ 22 — 1)} in P3(R)



(d) {z*—r,2:% +4,—22% + 322 + 2¢ + 6} in P3(R)
(e) {(1,-1,2),(1,-2.1),(1,1,4)} in R®
() {(1.-1,2),(2.0,1),(~1,2,~1)} in R?

o (290 D09 Dertn
o {396 (26 Dperin

(i) {z' -z 4502 Bz +6,—xt 4+ — 522 4 5z — 13,

14322 345,20 4 83 4 x4+ 1,28 — x4+ 2} in Py(R)
(i) {z*—z* 4522 —8z+6, -2+ b2 4bx—3,

¥+ 327 — 35+ 5,20 + 7 + 427 + 81} in Py(R)

-6 )}

4. InF", let e; denote the vector whose jth coordinate is 1 and whose other
coordinates are (. Prove that {ey,e2,---.e,} is linearly independent.

3. In Ma.3(F), prove that the set

11\ fo o\ fo o\ /10
o o], {1 1],[o a},[1 0
o 0)] \o of \1 1f \1 o

is linearly dependent.

5. Show that the set {1.x,x%,...,z"} is linearly independent in P,(F).

6. In M. (F), let EY denote the matrix whose only nonzero entry is 1 in
the ith row and jth column. Prove that {EY:1<i<m, 1 <j<n}
is linearly independent.

7. Recall from Example 3 in Section 1.3 that the set of diagonal matrices in
Ma.2(F) is a subspace. Find a linearly independent set that generates
this subspace.

8. Let §={(1,1,0),(1,0,1),(0,1,1)} be a subset of the vector space F?.

(a) Prove that if F = R, then S is linearly independent.
(b) Prove that if I has characteristic 2, then S is linearly dependent.

0.7 Let u and v be distinet vectors in a vector space V. Show that {u, v} is
linearly dependent if and only if u or v is a multiple of the other.

10. Give an example of three linearly dependent vectors in R® such that
none of the three is a multiple of another.



11.

12.
13.

14.

15.

16.

17.

18.

19.

Let § = {uy,us,...,up} be a linearly independent subset of a vector
space V over the field Zs. How many vectors are there in span(S)?
Justify your answer.

Prove Theorem 1.6 and its corollary.

Let V be a vector space over a field of characteristic not equal to two.

(a) Let u and v be distinet vectors in V. Prove that {u, v} is linearly
independent if and only if {u + v, u — v} is linearly independent.

(b) Let u, v, and w be distinet vectors in V. Prove that {uw,v, w} is
linearly independent if and only if {u + v, w +w, v +w} is linearly

independent.
Prove that a set 5 is linearly dependent if and only if § = {0} or
there exist distinet vectors v, uy, ua, ..., uy in S such that v is a linear
combination of uy, ua, ..., un.
Let § = {uj,ua,...,un} be a finite set of vectors. Prove that § is
linearly dependent if and only if uy = 0 or ugyq € span({wu;, ua, ..., uz})

for some k (1 <k < n).

Prove that a set S of vectors is linearly independent if and only if each
finite subset of S is linearly independent.

Let M be a square upper triangular matrix (as defined in Exercise 12
of Section 1.3} with nonzero diagonal entries. Prove that the eolumns
of M are linearly independent.

Let S be a set of nonzero polynomials in P(F) such that no two have
the same degree. Prove that S is linearly independent.

Prove that if {44, A4s,...,Ax} is a linearly independent subset of
M, on(F), then {A], AL ... . AL} is also linearly independent.

Let f, g, € F(R, R) be the functions defined by f(t) = ™ and g(t) = ™,
where r # s. Prove that f and g are linearly independent in F(R, R).



sec1.6 EXERCISES

1. Label the following statements as true or false.
(a) The zero vector space has no basis.
(b) Every vector space that is generated by a finite set has a basis.

{c) Every vector space has a finite hasis.
{d) A veetor space cannot have more than one hasis.



(e) If a vector space has a finite basis, then the number of vectors in
every basis is the same.

(f) The dimension of Pg(F) is n.

(g) The dimension of M, ,(F) is m + n.

(h) Suppose that V is a finite-dimensional vector space, that 5 is a
linearly independent subset of V, and that S, is a subset of V that
generates V. Then 5 eannot eontain more vectors than Ss.

(i) If S generaves the vector space V., then every vector in V ean be
written as a linear combination of vectors in S in only one way.

(i) Every subspace of a finite-dimensional space is finite-dimensional.

(k) IfV is a vector space having dimension n, then V has exaetly one
subspace with dimension 0 and exactly one subspace with dimen-
sion n.

(I) If Vis a vector space having dimension », and if S is a subset of
V with n vectors, then 5 is linearly independent if and only if §
spans V.

Determine which of the following sets are hases for R*.

(a) {(1,0,-1),(2,5,1),(0,—4,3)}

(b) {(2,-4,1),(0,3,-1),(6,0,—-1)}

(© {(1,2,-1),(1,0,2),(2,1,1)}

(d) {(-1,3,1),(2.-4,-3),(-3.8,2)}

(e) {(1,-3,-2),(-3,1,3),(-2,-10,-2}}

Determine which of the following sets are hases for Po( /).

(a) {-1-z+2:2242—2:21- 22+ 427%)

(b) {1+2r+223+2% r+r?)

(c) {1-2¢—2:2, 243z 22 1—z+62%)

(d) {-1+2c4422,3 4z — 1027, -2 — 5z — 627}
(e) {1+2r—x24—-2z4 22 1418z — 02}

Do the polynomials =% — 222 +1,42% — £ 43, and 3x —2 generate Pa{ R)?
Justify your answer.

Is {(1,4,-6),(1,5,8),(2,1,1),(0,1,0) } a linearly independent subset of
R*? Justify your answer.

Give three different bases for F2 and for Ma .2 F).

The vectors wy = (2, -3, 1), wa = (1,4, -2), ug = (—8,12,-4), uy =
(1,37, —17}, and us = (—3, —5,8) generate R®. Find a subset of the set
{ary, ua, uz, ng, us} that is a basis for R,



10.

11.

12.

13.

14.

Let W denote the subspace of R® consisting of all the vectors having
coordinates that sum to zero. The vectors

uy =(2,-3,4,-5,2), uz=(—6,9,-12,15,—6),
=197 -01), w=(2-82-94),
=L 121 -8, wy=(0,-3,-18.9,19),
iy = (L0, -2.3.-9), us=1{2-1.1,-5.7)

generate W. Find a subset of the set {u;,us,...,us} that is a basis for
W.

The vectors v = (1,1,1,1), ws = (0,1,1,1), u3 = (0,0,1,1), and
ug = (0,0,0,1) form a basis for F!. Find the unique representation
of an arbitrary vector (aj,as,as,aq) in F* as a linear combination of
Ty, Ua, U3, and Ty.

In each part, use the Lagrange interpolation formula to construet the
polvnomial of smallest degree whose graph contains the following points.

(a} {_21 _6}3 {_135)1 (13}

(b) (-4,24), (1,9), (3,3)

(c) (-2.3), (-1,-6), (1,0), (3,-2)
(d) (—3,-30), (-2,7), (0,15), (1,10)

Let w and » be distinet vectors of a vector spaee V. Show that if {u, v}
is a basis for V and a and b are nonzero scalars, then both {u + v, au}
and {au, bv} are also bases for V.

Let w, v, and w be distinet vectors of a vector space V. Show that if
{u,v,w} is a basis for V, then {u+ v+ w, v+ w,w} is also a basis for V.

The set of solutions to the system of linear equations

T — 219 + 33 =0
21’1—3I2 +I3=G

is a subspace of R*. Find a basis for this subspace.
Find hases for the following subspaces of F°:
Wi = {(a1,a2,a3,a4,a5) € F: a1 —as —ags = 0}
and
Wa = {{ay,a9,a1,a4,85) € F*: s = a3 = a4 and a; +a; =0}.

What are the dimensions of W, and Wa?



15.

16.

17.

18.

19.
20.1

21.

22,

23.

24,

25.

The set of all n % » matrices having trace equal to zero is a subspace W
of My.n(F) (see Example 4 of Section 1.3). Find a basis for W. What
is the dimension of W?

The set of all upper triangular n x n matriees is a subspace W of
Mpcn(F') (see Exercise 12 of Section 1.3). Find a basis for W. What is
the dimension of W?

The set of all skew-symmetric n » n matrices is a subspace W of
My cn(F') (see Exercise 28 of Section 1.3). Find a basis for W. What is
the dimension of W?

Find a basis for the vector space in Example 5 of Seetion 1.2. Justify
VOUr answer.

Complete the proof of Theorem 1.8.

Let V be a vector space having dimension n, and let 5 be a subset of V
that generates V.

{a) Prove that there is a subset of S that is a basis for V. (Be careful

not to assume that S is finite.)
(b) Prove that S contains at least n vectors.

Prove that a vector space is infinite-dimensional if and only if it contains
an infinite linearly independent subset.

Let W, and Ws be subspaces of a finite-dimensional vector space V.
Determine necessary and sufficient conditions on Wy and Ws so that
dim{W; M Ws) = dim({W).

Let vy, v9,...,v, v be vectors in a vector space V, and define W, =

span({vg, va,...,vg}), and Ws = span({vy,va,. .., v, v}

(a) Find necessary and sufficient conditions on v such that dim(W,) =
dim(Wa).

(b) State and prove a relationship involving dim(W;) and dim({Ws) in
the case that dim(W,) # dim{Ws).

Let f(x) be a polynomial of degree n in P,(R). Prove that for any
g{x) € Pn(R) there exist scalars ep, ¢1,...,cn such that

glx) = cof (z) + er f'(z) + caf "(z) + - .- + en f ™M (),
where ™ (r) denotes the nth derivative of fiz).

Let WV, W, and Z be as in Exercise 21 of Section 1.2, If V and W are
vector spaces over F of dimensions m and n, determine the dimension
of Z.



26.

27.

28.

For a fixed a € R, determine the dimension of the subspace of Py(R)
defined by {f € Pa(R): f(a) =0}.

Let Wy and Ws be the subspaces of P(F) defined in Exercise 25 in
Section 1.3. Determine the dimensions of the subspaces W 1 Pp(F)
and Wa NP, (F).

Let V be a finite-dimensional vector space over O with dimension n.
Prove that if V is now regarded as a vector space over R, then dimV =
2n. (See Examples 11 and 12.)

Exercises 20-34 require knowledge of the sum and direet sum of subspaces,
as defined in the exercises of Section 1.3.

20.

30.

31.

32.

(a) Prove that if Wy and W2 are finite-dimensional subspaces of a
vector space V, then the subspace W, + Wa is finite-dimensional,
and dim(W; +Ws) = dim(W,) + dim(Ws) — dim(W; N'Ws). Hint:

Start with a basis {uy,uwa,... ug} for Wy M'Ws and extend this
set to a basis {uy, ua, ..., ug, vy, va,.. .0y} for Wy and to a basis
{ur,un, ... yug, wy,wa, ... wy} for Wa.

(b) Let W; and W1 be finite-dimensional subspaces of a vector space
V, and let V = W, +W,. Deduce that V is the direct sum of W,
and Wo if and only if dim(V) = dim(W;) + dim({Wa).

V= Ma.a(F), Wy ={(ﬂ b) EV:a._b.,-:eF}_.

c a

w2={( " "')ev:a.beF}.
—a b :

Prove that W, and W, are subspaces of V., and find the dimensions of
Wl. WQ_. W] -+ WQ, and W1 Iﬁrw?,

and

Let W, and W2 be subspaces of a vector space V having dimensions m
and n, respectively, where m = n.

(a) Prove that dim{W; Nn'Ws) < n.
(b) Prove that dim(W; + Wa) < m+n.

(a) Find an example of suhspaces Wy and Wy of R® with dimensions
m and n, where m > n > 0, such that dim{W, MWz} = n.

(b) Find an example of subspaces W, and Wy of R® with dimensions
m and n, where m > n > 0, such that dim{W; + W) = m + n.



(c) Find an example of subspaces W, and W5 of R? with dimensions
m and n, where m > n, such that both dim(W; NM'Wa2) < n and
d_lIl'll:W1 +Wa)<m<4+n.

33. (a) Let W, and Wy be subspaces of a vector space V such that V =
Wy &Ws. If 5y and 3 are bases for Wy and Wa, respectively, show
that 3y M F2 = @ and 5 U 33 is a basis for V.
(b) Conversely, let 3 and 2 be disjoint bases for subspaces Wy and
Wa, respectively, of a vector space V. Prove that if 5 U215 a
basis for V, then V =W, @ W,.

34. (a) Prove that if Wy is any subspace of a finite-dimensional vector
space V, then there exists a subspace Wa of V such that V =
Wy & Wa.
(b) Let V = R? and Wy = {(a1,0): a; € R}. Give examples of two
different subspaces Wy and W; such that V = W, & W, and V =
W, & W,
The following exercise requires familiarity with Exercise 31 of Seetion 1.3.
35. Let W be a subspace of a finite-dimensional vector space V, and consider
the hasis '{I.E|..L[3,_, .,uk} for W. Let {u1,ug__, S 1 TR 19 ST ._,u,;} be
an extension of this hasis to a basis for V.
(a) Prove that {up;y + W, upsa +W, ..., iy + W} is a basis for V/W.
(b) Derive a formula relating dim(V), dim(W), and dim(V/W).



sec1.7 EXERCISES

1. Label the following statements as true or false.

(a)
(b)
(c)
(d)
(e)

(£)

Every family of sets contains a maximal element.

Every chain contains a maximal element.

If a family of sets has a maximal element, then that maximal
element is unique.

If a chain of sets has a maximal element, then that maximal ele-
ment is unique.

A basis for a vector space is a maximal linearly independent subset
of that vector space.

A maximal linearly independent subset of a vector space is a basis
for that vector space.

Show that the set of convergent sequences is an infinite-dimensional

subspace of the vector space of all sequences of real numbers. (See
Exercise 21 in Seetion 1.3.)

3. Let V be the set of real numbers regarded as a vector space over the
field of rational numbers. Prove that V is infinite-dimensional. Hint:



Use the fact that = is transeendental, that is, = is not a zero of any
polynomial with rational coefficients.

. Let W be a subspace of a (not necessarily finite-dimensional) vector

space V. Prove that any basis for W is a subset of a basis for V.

Prove the following infinite-dimensional version of Theorem 1.8 (p. 43):
Let 3 be a subset of an infinite-dimensional vector space V. Then Fis a
basis for V if and only if for each nonzero vector v in V, there exist unique
Vectors uy, ua, ..., iy in F and unique nonzero sealars ¢y, ca, . .., cp such
that v = eyuy + coua + -+ - + epup.

. Prove the following generalization of Theorem 1.9 (p. 44): Let 57 and

S5 be subsets of a vector space V such that §) € Ss. If 5 is linearly
independent and Ss generates V, then there exists a basis 3 for V such
that Sy € 3 C Sa. Hint: Apply the maximal prineciple to the family of
all linearly independent subsets of S that contain 5y, and proceed as
in the proof of Theorem 1.13.

Prove the following generalization of the replacement theorem. Let 3
be a basis for a vector space V, and let S be a linearly independent
subset of V. There exists a subset 5, of 4 such that § 1 5 is a basis
for V.



sec2.1 EXERCISES

1. Label the following statements as true or false. In each part, V and W
are finite-dimensional vector spaces (over F), and T is a function from

WV to W.

(a) If T is linear, then T preserves sums and sealar products.

{(b) IT{x+y)=T(z)+ T(y), then T is linear.

(c) T is one-to-one if and only if the only vector « such that T(z) = 0
isr=0.

(d) I T is linear, then T(0y) = Ow.

(e) IfT is linear, then mullity(T) + rank(T) = dim{W).

(f) IfT is linear, then T earries linearly independent subsets of V onto
linearly independent subsets of W.

(g) IfT,U:V — W are both linear and agree on a basis for V, then
T=1U

(h) Given ry,r2 € V and yy, 3o € W, there exists a linear transforma-

tion T: V — W such that T(z;) = y; and T(zs} = ya.

For Exercises 2 through 6, prove that T is a linear transformation, and find
bases for both N(T) and R(T). Then compute the nullity and rank of T, and
verify the dimension theorem. Finally, use the appropriate theorems in this
section to determine whether T is one-to-one or onto.

. A RS —F R2 defined b}' T{-ﬂ.l‘ aa, az} = {cu — da, 2:13).

3. T:R? = R? defined by T(ai,as) = (a1 + as,0, 2a; — as).

4. T:May3(F) — Maya(F) defined by

T(on @2 aw) _ (2an—an aiz+2ap
az; @z 4 0 0

5. T:Py(R) — P3(R) defined by T(f(x)) = =f(z) + f'(z).



10.

11.

12,

13.

14.

15.

T: Mpun(F) — F defined by T(A) = tr{4). Recall (Example 4, Sec-
tion 1.3) that

tr(4) = Au.

Prove properties 1, 2, 3, and 4 on page 65.
Prove that the transformations in Examples 2 and 3 are linear.

In this exercise, T: R? — R? is a funetion. For each of the following
parts, state why T is not linear.

(a) T(ay,a2) = (1,a3)

(b) T(a1,a2) = (a1,a7)

(c) T(a1,e2)= (sinay,0)

(d) T(ﬂhﬂz} (laa], aa)

(e) T(ay,az}=(a1+1,a2)

Suppose that T: R?2 — R? is linear, T(1,0) = (1.4), and T(1,1) = (2,5).
What is T(2,3)? Is T one-to-one?

Prove that there exists a linear transformation T: R? — R® such that
T(1,1) = (1,0,2) and T(2,3) = (1,—1,4). What is T(8,11)?

Is there a linear transformation T: R* — R? such that T(1,0,3) = {1,1)
and T(=2,0,—6) = (2, 1)?

Let V and W be vector spaces, let T: V — W be linear, and let
{wy,ws,... ,wg} be a linearly independent subset of R(T). Prove that
it § = {vy,ve,...,ug} is chosen so that T(w) =w; fori=1,2,... |k,
then § is linearly independent.

Let WV and W be vector spaces and T: V — W be linear.

(a) Prove that T is one-to-one if and only if T carries linearly inde-
pendent subsets of V onto linearly independent subsets of W.

{b) Suppose that T is one-to-one and that S is a subset of V. Prove
that S is linearly independent if and only if T(S) is linearly inde-

pendent.

(c) Suppose 3 = {vy,va,...,v,} 15 a basis for V and T is one-to-one
and onto. Prove that T(3) = {T(v1), T{va},..., T(wa)} is a basis
for W.

Recall the definition of P(R) on page 10. Define

T:P(R)— P(R) by T[I{I}J=fn fle)dt

Prove that T linear and one-to-one, but not onto.



16.

17.

18.

19.

20.

21.

22,

23.

Let T: P(R) — P(R) be defined by T(f({z)) = f(z). Recall that T is
linear. Prove that T is onto, but not one-to-one.

Let V and W be finite-dimensional vector spaces and T: V — W be
linear.

(a) Prove that if dim(V) < dim(W), then T cannot be onto.
(b) Prove that if dim(V) = dim(W), then T ecannot be one-to-one.

Give an example of a linear transformation T: R* — R? such that
N({T) =R(T).

Give an example of distinet linear transformations T and U such that
MN(T) = N(U) and R(T) = R(U).

Let V and W be vector spaces with subspaces V; and W, respectively.
If T: V — W is linear, prove that T(V,) is a subspace of W and that
{r e V:T(z) € Wy} is a subspace of V.

Let V be the vector space of sequences described in Example 5 of Sec-
tion 1.2. Define the funetions T,U: V — V by

Tl:a.1.a.g,._,) = {ag__ﬂ;;,, } and U{a|,_ug,,, :I = l:D,rJ[,GQ._, )

T and U are ealled the left shift and right shift operators on V,
respectively.

{(a) Prove that T and U are linear.

(b) Prove that T is onto, but not one-to-one.

(c) Prove that U is one-to-one, but not onto.

Let T: R® — R be linear. Show that there exist scalars a, b, and ¢ such
that T(z,y, z) = az + by + ¢z for all (x,y, z) € R®. Can you generalize
this result for T: F* — F? State and prove an analogous result for
T:F*—=F™.

Let T: R* — R be linear. Deseribe geometrically the possibilities for
the null space of T. Hint: Use Exercise 22,

The following definition is used in Exercises 24-27 and in Exercise 30.

Definition. Let V be a vector space and W, and Wa be subspaces of
V such that V = Wy @& Wa. (Recall the definition of direct sum given in the
exercises of Section 1.3.) A funetion T: V — V is ealled the projection on
W, along W, if, for + = 1y + zo with =; € Wy and x2 € Wa, we have
T(z) = 11.

24.

Let T: R? — R2. Include figures for each of the following parts.



25.

26.

27.

(a) Find a formula for T(a,b), where T represents the projection on
the y-axis along the r-axis.

(b) Find a formula for T(a,b), where T represents the projection on
the y-axis along the line L = {(s,5): s € R}.

Let T: R® — R&.

(a) If Tia.,b,c) = (a,b,0), show that T is the projection on the xy-
plane along the z-axis.

{b) Find a formula for T(a,b, ¢}, where T represents the projection on
the z-axis along the ry-plane.

(¢) If T(a,b,c) = (a — ¢, b,0), show that T is the projection on the
zy-plane along the line L = {{a,0,a): a € R}.

Using the notation in the definition above, assume that T: V — V is
the projection on W, along Was.

(a) Prove that T is linear and Wy = {z e V: T(z) =z}.

(b) Prove that Wy = R(T) and Wa = N(T).

(c) Deseribe T if W, =V.

{(d) Describe T if W, is the zero subspace.

Suppose that W is a subspace of a finite-dimensional vector space V.

(a) Prove that there exists a subspace W' and a funetion T: V — V
such that T is a projection on W along W'.

(b) Give an example of a subspace W of a vector space V such that
there are two projections on W along two (distinet) subspaces.

The following definitions are used in Exercises 28-32.

Definitions. Let V be a vector space, and let T: V — V be linear. A

subspace W of V is said to be T-invariant if T(x) € W for every © € W, that
is, TIW) CW. If W is T-invariant, we define the restriction of T on W to
be the function Tw: W — W defined by Tw(z) = T(x) for all x € W.

Exercises 28-32 assume that W is a subspace of a vector space V and that
T:V — V is linear. Warning: Do not assume that W is T-invariant or that
T is a projection unless explicitly stated.

28.
29.
30.

31.

Prove that the subspaces {0}, V, R(T), and N(T) are all T-invariant.
If W is T-invariant, prove that Ty is linear.

Suppose that T is the projection on W along some subspace W'. Prove
that W is T-invariant and that Tw = hy.

Suppose that V = R(T)&W and W is T-invariant. (Becall the definition
of direct sumn given in the exercises of Section 1.3.)



32.

33.

34.

(a) Prove that W C N(T).

(b} Show that if V is finite-dimensional, then W = N{T).

(c) Show by example that the conclusion of (b) is not necessarily true
it V 1s not finite-dimensional.

Suppose that W is T-invariant. Prove that N{Tw) = N{T) N W and
R(Tw) = T(W).

Prove Theorem 2.2 for the case that 7 is infinite, that is, R(T) =
span({T(v): v € 3}).

Prove the following generalization of Theorem 2.6: Let V and W be
vector spaces over a common field, and let F be a basis for V. Then for
any funetion f: 3 — W there exists exactly one linear transformation
T:V — W such that T(x) = f(x) for all =z £ 3.

Exercises 35 and 36 assume the definition of direct sum given in the exercises
of Section 1.3.

a5.

36.

37.

38.

39.

Let V be a finite-dimensional veetor space and T: WV — V be linear.

(a) Suppose that V = R(T) + N(T). Prove that V =R(T) & N(T).
(b) Suppose that R(T)N({T} = {0}. Prove that V =R({T) & N(T).

Be eareful to say in each part where finite-dimensionality is used.

Lot V and T be as defined in Exercise 21.

{a) ProvethatV =R(T)+N(T), but V is not a direct sum of these two
spaces. Thus the result of Exercise 35(a) above cannot be proved
without assuming that V is finite-dimensional.

(b} Find a linear operator T, on V such that R{T)nN(T,) = {0} but
V is not a direct sum of R(T;) and N(T,). Coneclude that V being
finite-dimensional is also essential in Exercise 35(h).

A funetion T: V — W between vector spaces V and W is called additive
if Tlx+y) = T(x) + T(y) for all z,y € V. Prove that if V and W
are vector spaces over the field of rational numbers, then any additive
funetion from V into W is a linear transformation.

Let T: € — C be the function defined by T(z) = =. Prove that T is
additive (as defined in Exercise 37) but not linear.

Prove that there is an additive function T: R — R (as defined in Ex-
ercise 37) that is not linear. Hint: Let V be the set of real numbers
regarded as a vector space over the field of rational numbers. By the
corollary to Theorem 1.13 (p. 60), V has a basis 3. Let = and y be two
distinet vectors in 4, and define f: 3 — V by f(z) =y, fly) = =, and
flz) = = otherwise. By Exercise 34, there exists a linear transformation



T: VWV — V such that T{u) = f(u) for all u € 5. Then T is additive, but
for e = y/x, T(ex) # cT(x).

The following exercise requires familiarity with the definition of quofient space
given in Exercise 31 of Section 1.3

40. Let V be a vector space and W be a subspace of V. Define the mapping

V- VWhbyglv)=v+WilreveV.

(a) Prove that 5 is a linear transformation from V onto V /W and that
N(n) = W.

{b) Suppose that V is finite-dimensional. Use (a) and the dimen-
sion theorem to derive a formula relating dim(V), dim(W), and
dim(V /W).

{c) Read the proof of the dimension theorem. Compare the method of
solving (b) with the method of deriving the same result as outlined
in Exercise 35 of Section 1.6.



1.

5.

EXERCISES
sec2.2

Label the following statements as true or false. Assume that V and
W are finite-dimensional vector spaces with ordered bases 3 and -,
respectively, and T,U: V — W are linear transformations.

(a) For any sealar a, aT + U is a linear transformation from V to W.
(b) [T[; = [U]}; implies that T = U.
(c) Ifm =dim(V) and n = dim(W), then [T]} is an m x n matrix.
(d) [T+Ul5=[T]3+ U]
(e) L{V,W) is a vector space.
(f) L(V,W)=L{W.V).
Let 3 and ~ be the standard ordered bases for R™ and R™, respectively.
For each linear transformation T: R® — R™, compute [T]}.
(a) T:R?— R? defined by T(ay.as) = (2a; — as, 3a1 + das, a1).
(b) T:R® — R? defined by T(a;.az,az) = (2a; + 3az — a3, a; +az).
I:C:I T: Rz — R defined b)' Tl:a.1,a.g,a.3} = 2LI1 +aa — 3{13.
(d) T:R® — R® defined by

T{a.h sz, r]g:l = {2&2 + ag, —ay + 4&2 + daz,ay + Gg}l_
(e) T:R"™ — R" defined by T(aj.,as,... ,a,) = (a1, 81,... ,a1).
(f) T:R™ — R™ defined by T(a;,aa,... ;a83) = (@p,Gn_1,.-- ;21 }-
(g) T:R™— R defined by T(ay,as,...,an) = a1 + an.
Let T: R2 — R? he defined h}' Tl:a.l_.ﬂ.gll = (a.]_ —aa, ay, 2a; +a2). Let 3
be the standard ordered basis for R? and v = {(1,1,0),(0,1,1),(2,2.3)}.
Compute [T[}. If « = {(1,2),(2,3)}, compute [T]3.

Define
b
T: Msya(R)—Pa(R) by T (j d) =(a+b)+ (2d)x + b
Let

(G DEDC LY o

Compute [T]}.

Let
{6 0.6 36 D42 9
i g={1,z,z%},

v={1}.



6.

T

(2) Define T: Mo, a(F) — Maya(F) by T(4) = A*. Compute [T],.
(b) Define

T: Pa(R) — Maxa(R) mem=F?}?%)

where * denotes differentiation. Compute [T|3.

(c) Define T: Ma,o(F) — F by T(A) = tr(A). Compute [T].
(d) Define T: Po(R) — R by T(f(x)) = f(2). Compute [T]}.

(e) If
1 -2
A=0] J*
compute [A],.

(f) I f(z)=3—-6z +::E+_oompul:e [F(z)]s-
(g) Fora < F, compute [af,.

Complete the proof of part (b) of Theorem 2.7.

Prove part (b) of Theorem 2.8,

8.7 Let V be an n-dimensional vector space with an ordered basis 3. Define

10.

11.

T:V— F* by T(x) = [z]z. Prove that T is linear.

Let V be the vector space of complex numbers over the field . Define
T:V — WV by T(z) = =, where 7 is the complex conjugate of z. Prove
that T is linear, and compute [T] 5, where 3 = {1,:i}. (Recall by Exer-
cise 38 of Section 2.1 that T is not linear if V is regarded as a vector
space over the field C.)

Let V be a vector space with the ordered basis # = {vy,v2,..., v}
Define vy = (0. By Theorem 2.6 (p. 72), there exists a linear trans-
formation T: V — V such that T(v;) = vj +vj_y for j =1,2,... /n.
Compute [T]z.

Let V be an n-dimensional vector space, and let T: V — V be a linear
transformation. Suppose that W is a T-invariant subspace of V (see the
exercises of Section 2.1) having dimension k. Show that there is a basis
{3 for V such that [T|z has the form

(0 c)

where A is a £ x k matrix and O is the (n — k) % k zero matrix.



12.

13.

14.

15.

16.

Let V be a finite-dimensional vector space and T be the projection on
W along W', where W and W" are subspaces of V. (See the definition
in the exercises of Section 2.1 on page 76.) Find an ordered basis 3 for
V such that [T is a diagonal matrix.

Let V and W be vector spaces, and let T and U be nonzero linear
transformations from V into W. If R(T) N R{U} = {0}, prove that
{T.U} is a linearly independent subset of (W, W).

Let V = P(R), and for j = 1 define T;(f(x)) = fY9(x), where fUl(z)
is the jth derivative of f(z). Prove that the set {T, Ta,..., Ta}lisa

linearly independent subset of £(V) for any positive integer n.

Let V and W be vector spaces, and let S5 be a subset of V. Define
S = {T € L(V,W): T(z) = O forallz £ §}. Prove the following
Statements.

(a) SYis a subspace of £(V,W).

(b) If Sjand S; are subsets of V and ) C S, then S§ € 57,

(c) If Vy and Va are subspaces of V, then (V; +Vs3)? = V] nvi.

Let V and W be vector spaces such that dim(V) = dim(W), and let
T:V — W be linear. Show that there exist ordered bases 3 and ~ for
V and W, respeetively, such that [T]} is a diagonal matrix.



sec2.3 EXERCISES

Label the following statements as true or false. In each part, V. W,
and Z denote vector spaces with ordered (finite) bases o, 4, and -,
respectively; T: V — W and U: W — Z denote linear transformations;
and A and B denote matrices.

(a) [UTJ: =[TJ2[U]5-

(b) [T(v)lg =[T|E[v)a for all w & V.

(c) [U(w)]a = [UE[w]s for all w e W.

(d) [Wa=1I.

(e) [T°]5 = (T3>

(f) A? =T implies that A =T or A = —1I.

(g) T =La for some matrix A.

(h) A? = O implies that A = O, where O denotes the zero matrix.

(l:l I:—A+B =Las+Lg.
(i) If A issquare and A;; = 4 for all i and j, then A = 1.

(a) Let
-G =Y

2
1 1 4
s h LB D(Q)
3
Compute A(2B + 3C), (AB)D, and A(BD).
(b) Let

2 5 1 —3 0
A=(-3 1|, B={f1 -1 4], and C=(4 0 3).
4 2 5 Bid

Compute A', A'B, BC*, CB, and CA.

Let g{z) = 3+ x. Let T: Pa(R) — P3(R) and U: P3(R) — R? be the
linear transformations respectively defined by

T(fiz)) = f(x)g(z) + 2f(x) and U(a+br+er?) = (a+b,c,a —b).
Let / and ~ be the standard ordered hases of Po(R) and R®, respeetively.



i - L

10.

11.

12,

13.

(a) Compute [U]},[T]s, and [UT|} directly. Then use Theorem 2.11
to verify your result.

(b} Let h(x) = 3 — 2r + x%. Compute [hiz)]s and [U(k(x))]y. Then
use U];; from (a) and Theorem 2.14 to verify your result.

For each of the following parts, let T be the linear transformation defined
in the corresponding part of Exereise 5 of Section 2.2, Use Theorem 2.14
to compute the following vectors:

(8 [T(A)a, where a — (1 1),
(b} [T(f(x))]a, where f(z) =4 — 6z + 322
{c) [T(A)],, where A = G 3

(d) [T(f(x))]y, where fiz) =6 — = + 2.

Complete the proof of Theorem 2.12 and its corollary.
Prove (b) of Theorem 2.13.

Prove (¢) and (f} of Theorem 2.15.

Prove Theorem 2.10. Now state and prove a more general result involv-
ing linear transformations with domains unequal to their codomains.

Find linear transformations U, T: F? — F? such that UT = Ty (the zero
transformation) but TU # Ty, Use your answer to find matrices 4 and
B such that AB = O but BA = O.

Let A be an n x » matrix. Prove that A is a diagonal matrix if and
only if A;; = 8;;A4; for all < and ;.

Let V be a vector space, and let T: V — V be linear. Prove that T2=T,
if and only if R(T) C N(T).

Let V., W, and Z be vector spaces, and let T:V — Wand U: W — Z
be linear.

{a) Prove that if UT is one-to-one, then T is one-to-one. Must U also
be one-to-one?

(b) Prove that if UT is onto, then U is onto. Must T also be onto?

(¢} Prove that if U and T are one-to-one and onto, then UT is also.

Let A and B be n x n matrices. Recall that the trace of A is defined
by

tr(d) = i A,

Prove that tr{AB) = tr(BA) and tr(A) = tr{At).



14. Assume the notation in Theorem 2.13.

15.

16.

17.

18.

19.

20.

(a) Suppose that z is a (eolumn) vector in FP. Use Theorem 2.13(b)
to prove that Bz is a linear combination of the columns of B. In
particular, if 2 = (ay.aa,...,ap)", then show that

P
Bz = Za.jvj_
=1

(b} Extend (a) to prove that column j of AB is a linear eombination
of the columns of A with the coefficients in the linear combination
being the entries of column j of B.

(¢) For any row vector w € F™, prove that wA is a linear combination
of the rows of A with the coefficients in the linear combination
heing the coordinates of w. Hint: Use properties of the transpose
operation applied to (a).

(d) Prove the analogous result to (b) about rows: Row ¢ of AB is a
linear combination of the rows of B with the coefficients in the
linear combination being the entries of row 1 of 4.

Let M and A be matrices for which the product matrix M A is defined.
If the jth eolumn of A is a linear combination of a set of columns
of A, prove that the jth column of M A is a linear combination of the
corresponding columns of M A with the same corresponding coefficients.

Let V be a finite-dimensional vector space, and let T: ¥V — V be linear.

(a) If rank(T) = rank(T?), prove that R(T) nN(T) = {0}. Deduce
that V =R(T) & N(T} (see the exercises of Section 1.3).
(b) Prove that V = R(T¥) & N(T*) for some positive integer k.

Let V be a vector space. Determine all linear transformations T: V — V
such that T = T2, Hint: Note that © = T{z) + (x — T(x)) for every
r in V, and show that V = {y: T{y) = y} & N(T) (see the exercises of
Section 1.3).

Using only the definition of matrix multiplication, prove that multipli-
cation of matrices is associative.

For an incidence matrix A with related matrix B defined by B;; =1 if
i is related to j and j is related to 1, and By; = 0 otherwise, prove that
i belongs to a clique if and only if (B*); = 0.

Use Exercise 19 to determine the eliques in the relations corresponding
to the following incidence matrices.



21,

22,

23.

0101 0011
1000 1001
@ lg 1 8 2 (B [inaéa
1010 1010

Let A be an incidence matrix that is associated with a dominance rela-
tion. Prove that the matrix 4 + A? has a row [column]| in which each
entry is positive except for the diagonal entry.

010
A=10 0 1
1 00

corresponds to a dominanece relation. Use Exercise 21 to determine
which persons dominate [are dominated hy| each of the others within
two stages.

Prove that the matrix

Let A be an n % n incidence matrix that corresponds to a dominance
relation. Determine the number of nonzero entries of A.



sec2.4 EXERCISES

1. Label the following statements as true or false. In each part, V and
W are vector spaces with ordered (finite) bases o and 4, respectively,
T:V — W is linear, and A and B are matrices,

(me)~" = T2

T is invertible if and only if T is one-to-one and onto.

T =La, where A = [T]&.

Mz 3(F) is isomorphic to F5.

P, (F} is isomorphic to P,,(F) if and only iF n=m

AB = I implies that A and B are invertible.

If A is invertible, then {4~1)~! = A,

A is invertible if and only if Ly is invertible.

A must be square in order to possess an inverse.

(a)
(b)
(<)
(d)
(e)
(f)
(g)
(h)
(i)

2. For each of the following linear transformations T, determine whether
T is invertible and justify your answer.

(a)
(b)
(c)
(d)

(e)

(f)

e i

2 R2 —3 RS defined h}' T(m.ug] = [aj == 2:13,:1-2_.3{!] +4az}.

: R? — R? defined by T(a,as) = (3a1 — a2, as,4a;).

2 R3 —3 RS defined h}' T(fu._ag,ag] = (3a1 = 2&3,&2,3&1 g 4&2}.
: P3(R) — P2(R) defined by T(p(x)) = p'(z).

: Maxa(R) — PofR) defined by T (: 3) =a+2bz+ (c+d)r

o c+

 Ma5a (I — Mg (R) defirisd by T (j 3) £ (“”’ “ d)_



3. Which of the following pairs of vector spaces are isomorphic? Justify
VOUT AlSWers.

(a) F3 and P3(F).

(b) F*and P3(F).

(€) My,5(R) and Py(R).

(d) V={A € May2(R): tr(A) =0} and R%.

4.7 Let A and B be n x n invertible matrices. Prove that AB is invertible
and (AB)"!'=B—'A-%

5.1 Let A be invertible. Prove that A® is invertible and (A*)~! = (A~1)%

6. Prove that if A is invertible and AB = O, then B = O.

7. Let A be an n x n matrix.

{a) Suppose that A2 — 0. Prove that A is not invertible.
(b) Suppose that AB = O for some nonzero n x n matrix B. Could A
be invertible? Explain.

8. Prove Corollaries 1 and 2 of Theorem 2.18.

9. Let A and B be n x n matrices such that AB is invertible. Prove that A
and B are invertible. Give an example to show that arbitrary matrices
A and B need not be invertible if AR is invertible.

10.7 Let A and B be » x n matrices such that AB = I,,.

(a) Use Exercise 9 to conclude that A and B are invertible.

(b) Prove A= B~! (and hence B = A~1). (We are, in effect, saying
that for square matrices, a “one-sided” inverse is a “two-sided”
inverse. )

(¢) State and prove analogous results for linear transformations de-
fined on finite-dimensional veetor spaces.

11. Verify that the transformation in Example 5 is one-to-one.
12. Prove Theorem 2.21.

13. Let ~ mean “is isomorphic to.” Prove that ~ is an equivalence relation
on the class of vector spaces over F.

\.r={(El G+b):u,b,e€ F}.
0 e

Construct an isomorphism from V to F2,

14, Let



15.

16.

17,

18.

19.

20.1

21.

Let V and W be finite-dimensional vector spaces, and let T: V — W be
a linear transformation. Suppose that 5 is a basis for V. Prove that T
is an isomorphism if and only if T{3) is a basis for W.

Let B be an n x n invertible matrix. Define &: My n(F)} — Myn(F)
by &(4) = B~'AB. Prove that & is an isomorphism.

Let V and W be finite-dimensional vector spaces and T: V — W be an
isomorphism. Let Vy be a subspace of V.

(a) Prove that T(Vy) is a subspace of W.
(b) Prove that dim(Vyp) = dim({T{Vg)).

Repeat Example 7 with the polynomial p(x) = 1 4+ = + 227 + =%

In Example 5 of Section 2.1, the mapping T: Ma.2(R) — Ma,o( R) de-
fined by T(M) = M" for each M € Ma..»(R) is a linear transformation.
Let 3= {E', E'? E?' E?*], which is a basis for Ma.s(R), as noted in
Example 3 of Seetion 1.6.

(a) Compute [T]s.
(b) Verify that Lyé5(M) = ¢5T(M) for A = [T]; and

I 2
w3
Let T: V — W be a linear transformation from an n-dimensional vector
space V to an m-dimensional vector space W. Let 4 and + be ordered
bases for V and W, respectively. Prove that rank(T) = rank(L4) and
that nullity(T) = nullity(L 1), where A = [T]}. Hint: Apply Exercise 17
to Figure 2.2,

Let V and W be finite-dimensional veector spaces with ordered bases
3 = {vi,va,...,vq} and v = {un,wo,..., wn}, respectively. By The-
orem 2.6 (p. 72), there exist linear transformations Ty;: V — W such
that

wy ifk=3
Ti:'{"k}={a[ ifk?é;.

First prove that {Ty;: 1 <i <m, 1 £ j < n} is a basis for L(V,W).
Then let M* he the m x n matrix with 1 in the ith row and jth column
and 0 elsewhere, and prove that [Ty;]} = M™Y. Again by Theorem 2.6,
there exists a linear transformation &: £(V. W) — My, (F) such that
®(Ti;) = MY, Prove that & is an isomorphism.



22,

23.

Tz Pn{'F) — F* by T(f) = (f(c), flc1),--- , Flen)). Prove that T is
an isomorphism. Hint: Use the Lagrange polynomials associated with
L) P = P =

Let V denote the vector space defined in Example 5 of Section 1.2, and
let W = P{F). Define

mn
T:V—=W by T(a)=) ali),
i=i)
where n is the largest integer such that o(n) £ 0. Prove that T is an
isomorphism.

The following exercise requires familiarity with the conecept of quolient space
defined in Exercise 31 of Section 1.3 and with Exercise 40 of Section 2.1.

24, Let T:V — Z be a linear transformation of a vector space V onto a

vector space Z. Define the mapping
T:V/N(T)=Z hy T(v+NT))=T(v)

for any coset v+ N(T) in V/N(T).

(a) Prove that T is well-defined; that is, prove that if v + N(T) =
v’ + N(T), then T(v) = T(z").

(b) Prove that T is linear.

(c) Prove that T is an isomorphism.

(d} Prove that the diagram shown in Figure 2.3 commutes; that is,
prove that T = Ty,

Figure 2.3

25. Let V be a nonzero vector space over a field F, and suppose that S is

a basis for V. (By the corollary to Theorem 1.13 (p. 60) in Section 1.7,
every vector space has a basis). Let C(S, F') denote the vector space of
all funetions f € F(5, F) such that fis) = 0 for all but a finite number



of vectors in 5. (See Exercise 14 of Seetion 1.3.) Let ¥: C(S5,F) — V
be the funection defined by

¥(fi= . fla)s
a£ 8, fla)#0

Prove that ¥ is an isomorphism. Thus every nonzero vector space can
be viewed as a space of functions.



sec2.5 EXERCISES

1. Label the following statements as true or false.

(a)

(b)
(c)

(d)
(e)

Suppose that 8 = {r),Ts,...,2,} and 3" = {=z{,z5,..., 2} are
ordered bases for a vector space and ¢ is the change of coordinate
matrix that changes 4-coordinates into F-coordinates. Then the
jth column of Q is [z;]a.

Every change of coordinate matrix is invertible.

Let T be a linear operator on a finite-dimensional vector space V,
let 3 and 3" be ordered bases for V, and let ) be the change of
coordinate matrix that changes 3'-coordinates into S-eoordinates.
Then [T} — Q[T]»Q~".

The matrices A, B € My (F) are called similar if B = Q' AQ for
some ) £ My.n(F).

Let T be a linear operator on a finite-dimensional vector space V.
Then for any ordered bases 3 and + for V, [T)z is similar to [T],.

2. For each of the following pairs of ordered bases 3 and 3 for R?, find
the change of coordinate matrix that changes F'-coordinates into 3-
coordinates.

(a)
(b)
(c)
(d)

B3 = {e1,ea} and B’ = {(a1, a3}, (b1, b2} }
B=1{(-1,3),(2,-1)} and 3" = {(0,10},(5,0)}
8=1{(2,5),(-1, _3]} and ."3F = {e1,ea}
8=1{(-4,3),(2—1)} and & = {(21), (-4, 1)}

3. For each of the following pairs of ordered bases 5 and 4 for Pa(R),
find the change of coordinate matrix that changes 3'-coordinates into
F-eoordinates.

(a)
(b)

(c)
(d)

(e)
(f)

B ={z?,,1} and

B = {aax® + arx + ag, bax? + byx + by, cax? + ey + e}
A= {1,z,2*} and

G = {aax® + arx + ag, bax® + by + by, cax? + cyr + e}
f={2s2—=z,3 + 1,121} and 5 = {1,z,2°}
B={z—z+1,z+1,2> +1} and
F={r?+x+4,45% - 3r + 2,22 + 3}
f={z?—z,2?+ 1,z -1} and
B={br?—2x -3 9222 4 52 4522 £ 3}
B={22—z+1,22+3c-2, -2+ 2r+ 1} and

B ={9x—9,z2+21x — 2,32% + 52 + 2}

4. Let T be the linear operator on R? defined by

()~ (@),



let § be the standard ordered basis for R?, and let

7-{6)-G))

Use Theorem 2.23 and the fact that
B
1 2 | 1

Let T be the linear operator on Py(R) defined by T(p{x)) = p'(x),
the derivative of p(z). Let 8 = {l,z} and ' = {1+ =,1 —z}. Use
Theorem 2.23 and the fact that

G

For each matrix A and ordered basis 4, find [L4]s. Also, find an invert-
ible matrix €@ such that [La|s = Q1 AQ.

Y = o-{()0)
o) e}

() A(i?lél s 3{(1)1(?)@}1
(g o) e a SLERU)

In R?, let L be the line ¥y — mx, where m # 0. Find an expression for
T(z,y), where

to find [T]'ls-' .

palie palis
[CI [ CI 1

to find [—I—]'ﬂi s

(a) T is the reflection of R? ahout L.
(b) T is the projection on L along the line perpendicular to L. (See
the definition of projection in the exercises of Section 2.1.)

Prove the following generalization of Theorem 2.23. Let T: V — W be
a linear transformation from a finite-dimensional vector space V to a
finite-dimensional vector space W. Let J and 3" be ordered bases for



10.

11.

12.

13.1

14.

V, and let 5 and + be ordered bases for W. Then [T[}, = P~'[T[}Q,
where ¢} is the matrix that changes F'-eoordinates into F-coordinates
and P is the matrix that changes +'-coordinates into y-coordinates.

Prove that “is similar to” is an equivalence relation on My ., (F).

Prove that if A and B are similar n» x n matrices, then tr(4) = tr(B).
Hint: Use Exercise 13 of Seetion 2.3.

Let V be a finite-dimensional vector space with ordered bases o, 3,
and .

(a) Prove that it ¢} and K are the change of coordinate matrices that
change n-coordinates into [F-coordinates and F-coordinates into
~v-coordinates, respectively, then RQ) is the change of coordinate
matrix that changes a-coordinates into ~-coordinates.

(b} Prove that if @) changes a-coordinates into F-coordinates, then
! changes F-coordinates into a-coordinates.

Prove the corollary to Theorem 2.23.

Let V be a finite-dimensional vector space over a field F, and let 3 =
[ T TR Ty } be an ordered basis for V. Let ) be an n x n invertible

matrix with entries from F. Define

n
zj =ZQsti forl <j<n,
i=1
and set 3" = {x{,z5,...,z}. Prove that 3 is a basis for V and hence

that € is the change of coordinate matrix changing #'-coordinates into
F-eoordinates.

Prove the converse of Exercise 8: If A and B are each m x n matrices
with entries from a field F, and if there exist invertible m xm and n x n
matrices P and ¢, respectively, such that B = P~'A(Q, then there exist
an n-dimensional veetor space V and an m-dimensional vector space W
{both over F'), ordered bases 3 and 3° for V and ~ and +' for W, and a
linear transformation T: V — W such that

A=[T[} and B=[T]}.

Hints: Let V = F*, W =F", T = Ly, and 3 and ~ be the standard
ordered bases for F* and F™, respectively. Now apply the results of
Exercise 13 to obtain ordered bases 7 and +' from & and ~ via @ and
P, respectively.



sec2.6 EXERCISES

1. Label the following statements as true or false. Assume that all vector
spaces are finite-dimensional.

(a)
(b)

(c)
(d)
(e)
()

(g)

Every linear transformation is a linear funetional.

A linear funetional defined on a field may be represented as a 1x 1
matrix.

Every vector space is isomorphic to its dual space.

Every vector space is the dual of some other vector space.

If T is an isomorphism from V onto V* and 3 is a finite ordered
basis for V, then T(3) = 3*.

If T is a linear transformation from V to W, then the domain of
(TL)I. i.S me-

If V is isomorphic to W, then V* is isomorphic to W*.



{(h) The derivative of a funetion may be considered as a linear func-
tional on the vector space of differentiable functions.

. For the following functions f on a vector space V, determine which are
linear funetionals.
{a) V =P(R); f(p(z)) = 2p'(0}+p"(1), where ' denotes differentiation
(b) V=R f(z,y) = (22,4y)
(€) V= Maxa(F); f(A) = tr(A)
(d) V=R%flr,yz)=x+y>+2°
1
(e) V =P(R); f(p(x)) = [, p(t) dt
(£) V =Maxo(F); f(A) = Ay

. For each of the following veector spaces V and bases 3, find explicit
formulas for veetors of the dual basis 3* for V*, as in Example 4.

(a) V=FR?%p=1{(1,0,1),(1,21),(0,0,1)}

(b) V=Pa(R); 8={1,z,7%)}

. LetV = Rz,_ and define fy,fa,fz £ V* as follows:

filz,y,2)=2-2y, falz,y,z)=xc+y+z falryz2)=y-3=

Prove that {fi,fs,fz} is a basis for V*, and then find a basis for V for
which it is the dual basis.

. Let V =Py(R), and, for p(x) € V, define f;,f; £ V* by

1 2
f1(p(x)) = fu plt)dt and fa(p(z)) = fo p(t) dt.

Prove that {fy,fa} is a basis for V*, and find a basis for V for which it
is the dual basis.

. Define f € (R?)* by f(z,4) = 2z + y and T: R? = R? by T(x,y) =

(3z + 2y, x).

{a) Compute T{f).

(b) Compute [T*]5.. where 3 is the standard ordered basis for R? and
3* = {fy,fa} is the dual basis, by finding scalars a, b, ¢, and d such
that T!{ﬂ] = afy + «fz and Tz{fg:l = bfy + dfa.

(c) Compute [T|s and ([T]z)", and compare your results with (b).

. Let V = P{(R) and W = R? with respective standard ordered hases 3

and ~. Define T: V — W by

T(p(x)) = (p(0) — 2p(1), p(0) + p'(0)),

where p'(x) is the derivative of p(x).



10.

(a) For f ¢ W* defined by f(a,b) = a — 2b, compute T*(f).
(b) Compute [TL,"f without appealing to Theorem 2.25.

{¢) Compute [T]; and its transpose, and compare your results with

Show that every plane through the origin in R® may be identified with
the mull space of a vector in (R*)*. State an analogous result for R2.

Prove that a funetion T: F* — F™ is linear if and only if there exist
fi.fa,....fm € (F*)* such that T(z) = (fi(x), fa{z),...,fm(z)) for all
= € F*. Hint: If T is linear, define f;(x) = (g; T)(x) for = € F*; that is,
f; = TH(g;) for 1 < i < m, where {g,.85,... .8} 15 the dual basis of
the standard ordered basis for F™.

Let V = Pn(F), and let cp, ey, ..., cp be distinet scalars in F.

(a) For 0 € i < n, define f; € V* by f;ip(x)) = plg;). Prove that
{fo,f1,...,fn} is a basis for V*. Hint: Apply any linear comhi-
nation of this set that equals the zero transformation to p(r) =
{x —e1)(x —en)---(x —eyn), and deduee that the first coefficient is
ZEro.

(b) Use the corollary to Theorem 2.26 and (a) to show that there exist
unique polynomials po(x), p1(x), ..., pa(x) such that pi(c;) = &y
for 0 < i < n. These polynomials are the Lagrange polynomials
defined in Section 1.6.

(c) For any sealars ag,ay,..., ay, (not necessarily distinet ), deduee that
there exists a unigue polynomial g r) of degree at most n such that
glei) = a; for 0 < i < n. In faet,

n
q(z) = z a;p;(x).
=0
(d) Deduce the Lagrange interpolation formula:
m
plx) = ples)pi(x)
=0
for any p(x) € V.
(e) Prove that
b n
[ ooyt =3 pted,
- i=0
where

b
di= | pilt)dt.

a



Suppose now that

b B8 gam g
T

For n = 1, the preceding result vields the trapezoidal rule for
evaluating the definite integral of a polynomial. For n = 2, this

result yields Simpson's rule for evaluating the definite integral of
a polynomial.

11. Let V and W be finite-dimensional vector spaces over F, and let 4 and
12 be the isomorphisms between V and V** and W and W**, respec-
tively, as defined in Theorem 2.26. Let T: V — W be linear, and define
T = (T')t. Prove that the diagram depicted in Figure 2.6 commutes
(ie., prove that T = Ty ).

w

| [+

V" Tlt w.o

Figure 2.6

12. Let V be a finite-dimensional vector space with the ordered basis 3.
Prove that «(3) = 3**, where ¢ is defined in Theorem 2.26.

In Exercises 13 through 17, V denotes a finite-dimensional vector space over
F. For every subset § of V, define the annihilator S° of S as

8% — {feV*: f(x) =0 for all z € S}.

13. (a) Prove that S” is a subspace of V*.

(b) If W is a subspace of V and = & W, prove that there exists f € W?
such that f(z) # 0.

(c) Prove that (§”)° = span(«:{5)), where o is defined as in Theo-
rem 2.26.

(d) For subspaces W, and W, prove that W; = W2 if and only if
WO — Wi,

(e) For subspaces W, and Ws, show that (W + W) = WY Wi,

14. Prove that if W is a subspace of V, then dim(W) + dim(W®°) = dim(V).
Hint: Extend an ordered basis {zy,xa,..., 73} of W to an ordered ba-
sis 3 = {x1,79,...,zn} of V. Let * = {fi,fs,...,fz}. Prove that
{f*».'_l, fk-__g. iy fn} is a basis for \Mﬂ
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16.

17.

18.

19.

20.

Suppose that W is a finite-dimensional vector space and that T: V — W
is linear. Prove that N(T*) = (R(T))".

Use Exercises 14 and 15 to deduece that rank{L¢) = rank(L ) for any
A £ men[F}

Let T be a linear operator on V, and let W be a subspace of V. Prove
that W is T-invariant (as defined in the exercises of Section 2.1) if and
only if WP is T'-invariant.

Let V be a nonzero vector space over a field F', and let S be a bhasis
for V. (By the corollary to Theorem 1.13 (p. 60) in Section 1.7, every
vector space has a basis.) Let &: V* — L£{S5, F') be the mapping defined
by @(f) = fs. the restriction of f to S. Prove that & is an isomorphism.
Hint: Apply Exercise 34 of Section 2.1.

Let V be a nonzero vector space, and let W be a proper subspace of V
(i.e., W V). Prove that there exists a nonzero linear funetional f € V*
such that f(x) = 0 for all z € W. Hint: For the infinite-dimensional
ease, use Exercise 34 of Seetion 2.1 as well as results about extending
linearly independent sets to bases in Section 1.7.

Let V and W be nonzero vector spaces over the same field, and let
T:V — W be a linear transformation.

(a) Prove that T is onto if and only if T® is one-to-one.
(b) Prove that T' is onto if and only if T is one-to-one.

Hint: Parts of the proof require the result of Exercise 19 for the infinite-
dimensional case.



sec2.7 EXERCISES

1. Label the following statements as true or false.

(a)

(b)
(c)

(d)

(e)

(f)

(g)

The set of solutions to an nth-order homogeneous linear differential
equation with constant coefficients is an n-dimensional subspace of
B

The solution space of a homogeneous linear differential equation
with constant coefficients is the null space of a differential operator.
The auxiliary polynomial of a homogeneous linear differential
equation with constant coefficients is a solution to the differential
equation.

Any solution to a homogeneous linear differential equation with
constant coefficients is of the form ae® or at*e™, where a and e
are complex numbers and & is a positive integer.

Any linear combination of solutions to a given homogeneous linear
differential equation with constant coefficients is also a solution to
the given equation.

For any homogeneous linear differential equation with constant
coefficients having auxiliary polynomial p(t), if ¢y, 00,..., 0 are
the distinct zeros of p(t), then {e®' &' . et} is a hasis for
the solution space of the given differential equation.

Given any polynomial p(t) € P(C), there exists a homogeneous lin-
ear differential equation with constant coefficients whose anxiliary
polynomial is p(t).



For each of the following parts, determine whether the statement is true
or false. Justify your claim with either a proof or a counterexample,
whichever is appropriate.

(a) Any finite-dimensional subspace of C™ is the solution space of a
homogeneous linear differential equation with constant coefficients.

(b) There exists a homogeneous linear differential equation with con-
stant coefficients whose solution space has the basis {t,#%}.

(¢) For any homogeneous linear differential equation with constant
coefficients, if x is a solution to the equation, so is its derivative

'

Given two polynomials p(t} and g(t) in P(C), if £ € N(p(D)) and y £
N{g(D)), then

(d) z+y< N(p(D)g(D)).
(e) zy < N(p(D)q(D)).

Find a basis for the solution space of each of the following differential
equations.

(a) v"+2' +y=20

{h} yn’l’J’ el yJ’

(€) ¥ -2P +y=10

(d) ¥"+2+y=20

(e) ¥y -y 43" +5y=0

Find a basis for each of the following subspaces of C>.

(a) N(D2-D-1
(b) N(D*-3D2+3D-1)
(¢) N(D?+6D?+8D)

Show that C™ is a subspace of F(R, C).

(a) Show that D: C* — C* is a linear operator.
(b) Show that any differential operator is a linear operator on C™.

Prove that if {x,y} is a basis for a vector space over C, then so is

{%{Hm,%qz—y)}

Consider a second-order homogeneous linear differential equation with
constant coefficients in which the auxiliary polynomial has distinet con-
jugate complex roots a + ib and a — ib, where a,b £ R. Show that
{e™ cos b, €™ sin bt} is a basis for the solution space.



9.

10.

11.

12.

13.

Suppose that {U;,Us, ..., Uy} is a collection of pairwise commutative
linear operators on a vector space V (i.e., operators such that U;U; =
U;U; for all 4, 7). Prove that, for any i (1 <¢ < n),

N(U;) € N(UjUz---Uyg).

Prove Theorem 2.33 and its corollary. Hinté: Suppose that
bie™t + bae™" 4 ... 4 bpe™" = 1 (where the o;'s are distinet).

To show the b;'s are zero, apply mathematical induection on n as follows.
Verify the theorem for n = 1. Assuming that the theorem is true for
n — 1 functions, apply the operator D — e, to both sides of the given
equation to establish the theorem for n distinet exponential funetions.

Prove Theorem 2.34. Hint: First verify that the alleged basis lies in
the solution space. Then verify that this set is linearly independent by
mathematical induetion on k as follows. The case £ = 1 is the lemma
to Theorem 2.34. Assuming that the theorem holds for & — 1 distinet
c's, apply the operator (D — )™ to any linear combination of the
alleged basis that equals 0.

Let V be the solution space of an nth-order homogeneous linear differ-
ential equation with constant coefficients having auxiliary polynomial
pit). Prove that if p(t) = g(f)h(t). where g(t) and k(t) are polynomials
of positive degree, then

N(h(D}) = R{g(Dv)) = g(D)(V),

where Dy : V — V is defined by Dy(x) = =’ for © € V. Hint: First prove
g(D)(V) € N(h(D)). Then prove that the two spaces have the same
finite dimension.

A differential equation

=1 ... Faig™ Lagi—

y'™ +an-1y
is called a nonhomogeneous linear differential equation with constant
coefficients if the a;'s are constant and & is a funetion that is not iden-
tically zero.

(a) Prove that for any = € C™ there exists y € C™ such that y is
a solution to the differential equation. Hint: Use Lemma 1 to
Theorem 2.32 to show that for any polynomial p(f), the linear
operator p(D): C* — C™ is onto.



14.

15.

16.

{b) Let ¥ be the solution space for the homogeneous linear equation
v+ an gy 4o '™ +agy = 0.

Prove that if = is any solution to the associated nonhomogeneous
linear differential equation, then the set of all solutions to the
nonhomogeneous linear differential equation is

{z+y:yeV}h

Given any nth-order homogeneous linear differential equation with con-
stant coefficients, prove that, for any solution r and any &y € R, if
x(tg) = '(tg) = --- = =™ W{ty) = 0, then = = 0 (the zero function).
Hint: Use mathematical induction on n as follows. First prove the con-
clusion for the case n = 1. Next suppose that it is true for equations of
order n — 1, and consider an nth-order differential equation with aux-
iliary polynomial p(t). Faetor p(t) = g{t)(t — ), and let z = g((D))=x.
Show that z{tp) = 0 and ' — cz = 0 to conclude that = = (0. Now apply
the induetion hypothesis.

Let V be the solution space of an nth-order homogeneous linear dif-
ferential equation with constant coefficients. Fix #p € R, and define a
mapping &: V — C" by

x(ta)
='(to)
(1) = 5 for each r in V.

I{n—l](:ﬂ)

(a) Prove that & is linear and its null space is the zero subspace of V.
Deduee that & is an isomorphism. Hint: Use Exercise 14.

(b) Prove the following: For any nth-order homogeneous linear dif-
ferential equation with constant coefficients, any {5 € K, and any
complex numbers ep, cy,...,cn—1 (NOt necessarily distinet), there
exists exactly one solution, x, to the given differential equation
such that =(tg) = cp and 2™ (tg) = ep for k=1,2,...n— 1.

Pendular Motion. It is well known that the motion of a pendulum is
approximated by the differential equation

g + %e — 0,
where #(t) is the angle in radians that the pendulum makes with a
vertical line at time ¢ (see Figure 2.8), interpreted so that # is positive

if the pendulum is to the right and negative if the pendulum is to the
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18.

\

left of the vertical line as viewed by the reader. Here [ is the length
of the pendulum and g is the magnitude of acceleration due to gravity.
The variable ¢ and constants ! and g must be in compatible units (e.g.,
t in seconds, | in meters, and g in meters per second per second).

{a) Express an arbitrary solution to this equation as a linear eombi-
nation of two real-valued solutions.

(b) Find the unique solution to the equation that satisfies the condi-
tions

P(0)=8 >0 and 6'(0)=0.

{The significance of these conditions is that at time { = 0 the
pendulum is released from a position displaced from the vertical
by #g.)

(c) Prove that it takes 274/ /g units of time for the pendulum to make
one cireuit back and forth. (This time is called the period of the
pendulum. }

Periodic Motion of a Spring without Damping. Find the general solu-
tion to (3), which deseribes the periodic motion of a spring, ignoring
frictional forces.

Periodic Motion of a Spring with Damping. The ideal periodic motion
described by solutions to (3) is due to the ignoring of frictional forees.
In reality, however, there is a frictional force acting on the motion that
is proportional to the speed of motion, but that aets in the opposite
direction. The modification of (3) to aceount for the frictional foree,
called the damping force, is given by

my” + 1y’ + ky =0,

where r = (1 is the proportionality constant.

(a) Find the general solution to this equation.
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20.

{b) Find the unique solution in (a) that satisfies the initial conditions
y(0) =0 and y'(0) = vg, the initial velocity.

(c) For y(t) as in (b}, show that the amplitude of the oscillation de-
creases to zero; that is, prove that zE.rgu y(t) = 0.

In our study of differential equations, we have regarded solutions as
complex-valued funetions even though funetions that are useful in de-
seribing physical motion are real-valued. Justify this approach.

The following parts, which do not involve linear algebra, are included
for the sake of completeness.

(a) Prove Theorem 2.27. Hint: Use mathematical induetion on the
number of derivatives possessed by a solution.
(b) For any c,d € C, prove that

3 1
etf=c" and e °=—.

en’.‘
(¢) Prove Theorem 2.28,
(d) Prove Theorem 2.29.
{e) Prove the product rule for differentiating complex-valued fune-
tions of a real variable: For any differentiable functions r and
y in F(R,C), the produet cy is differentiable and

(zy) =z'y+ =y

Hint: Apply the rules of differentiation to the real and imaginary
parts of Ty.

(f) Prove that if r € F(R.C) and =" = 0, then r is a constant fune-
tion.



sec3.1 EXERCISES

Label the following statements as true or false.

(a) An elementary matrix is always square.

{(b) The only entries of an elementary matrix are zeros and ones.

(¢) The n x n identity matrix is an elementary matrix.

{d) The product of two n x n elementary matrices is an elementary
matrix.

(e) The inverse of an elementary matrix is an elementary matrix.

(f) The sum of two n x n elementary matrices is an elementary matrix.

(g) The transpose of an elementary matrix is an elementary matrix.

(h) If B is a matrix that can be obtained by performing an elementary
row operation on 4 matrix A, then B ean also be obtained by
performing an elementary column operation on A.

(i) If B is a matrix that can be obtained by performing an elemen-
tary row operation on a matrix A, then A can be obtained by
performing an elementary row operation on B.

Let

1 2 3 1 0 3 1 0 3
A=11 0 1},B=(1 -2 1],andC=|0 -2 -2].
1. =1 % 1 -3 1 1 -3 1

Find an elementary operation that transtorms A into B and an elemen-
tary operation that transforms B into €. By means of several additional
operations, transform O into Is.

Use the proof of Theorem 3.2 to obtain the inverse of each of the fol-
lowing elementary matrices.

00 1 100 100
(@ [0 10 m [o 2 0 @ | 010
100 00 1 <20 3

Prove the assertion made on page 149: Any elementary n x n matrix ean
be obtained in at least two ways—either by performing an elementary
row operation on I, or by performing an elementary eolumn operation
on f,.

Prove that E is an elementary matrix if and only if E* is.

Let A be an m x n matrix. Prove that if B can be obtained from A by
an elementary row [eolumn| operation, then B can be obtained from
A* by the corresponding elementary column [row] operation.

Prove Theorem 3.1,



10.

11.

12.

Prove that if a matrix ¢ can be obtained from a matrix P by an elemen-
tary row operation, then P ean be obtained from ¢ by an elementary
matrix of the same type. Hint: Treat each type of elementary row
operation separately.

Prove that any elementary row [eolumn| operation of type 1 can be
ohtained by a suceession of three elementary row [column| operations
of type 3 followed by one elementary row [eolumn| operation of type 2.

Prove that any elementary row [column| operation of type 2 can be
obtained by dividing some row [eolumn| by a nonzero scalar.

Prove that any elementary row [column| operation of type 3 can be
obtained by subtracting a multiple of some row [column| from another
row [column]|.

Let A be an m x n matrix. Prove that there exists a sequence of
elementary row operations of types 1 and 3 that transforms A into an
upper triangular matrix.



sec3.2 EXERCISES

1. Label the following statements as true or false.

(a) The rank of a matrix is equal to the number of its nonzero columns.

(b) The produet of two matrices always has rank equal to the lesser of
the ranks of the two matrices.

(¢} The m x n zero matrix is the only m x n matrix having rank 0.

(d) Elementary row operations preserve rank.

(e) Elementary column operations do not necessarily preserve rank.

(f) The rank of a matrix is equal to the maximum number of linearly
independent rows in the matrix.

{g) The inverse of a matrix can be eomputed exclusively by means of
elementary row operations.

(h} The rank of an n x n matrix is at most n.

(i) An » x n matrix having rank n is invertible.

2. Find the rank of the following matrices.

110 110
(a) (0 1 1) (b) (2 1 1) (c) G ? i)
110 1. 1 :1



i ®d g
121 id 19
‘“”'(242) Bhlo 2 -8 p i
10 000
1 20 11 1101
9 41 30 2 2 0 2
BDltae a2 51 ® (1101
ok, 1 -8 § 1101

. Prove that for any m x n matrix A, rank(A) = 0 if and only if A is the
ZETO MAtrix.

. Use elementary row and column operations to transform each of the
following matrices into a matrix D satisfying the conditions of Theo-
rem 3.6, and then determine the rank of each matrix.

i1 18 5 1
(a) (2 0 -1 2) (b) (—1 2)
if 13 o i

. For each of the following matrices, compute the rank and the inverse if
it exists.

: 1
@(; 1) ® (5 3) (© (; _31)
0 - 4 IF 2 1 1
(d) (1 ) (e) (—1 1 2) () (1
2 —5 1 01 i

1
®] > _ (1)
3

[Z- -~

L ]
|
L

— o
——
b SR

W= L D
=T 4y B
L L= O
O D
L =R ==
=
[~ T e B - R

. For each of the following linear transformations T, determine whether

T is invertible, and compute T~ if it exists.

(a) T:Pa(R)— PafR) defined by T(f(x)) = f'(x) + 2f'(z) — fiz).
(b) T:Pa(R)— P2(R) defined by T(f(z)) = [z + 1)f"().
(¢) T:R®—= R? defined by

T[Cu._ aa, EI3) == (a.] - 20-3 + ag,—iq +aa + 9{13_.:11 -+ t:l.3:|.
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11.

12,

(d) T:R®— Ps(R) defined by
T(ay,n9,a3) = (a1 + aa + 03) + (ay — aa + az)z + a1

(e) T:Pa(R)— R defined by T(f(z)) = (f(—1), £(0), f(1)).
(f) T:Ma.a(R) — R? defined by

T(A) = (tr(A), tr(A*), tr(EA), tr( AE)),

01
503,
Express the invertible matrix

L 2 4
T 4 i
E il 2

as a product of elementary matrices.

where

Let A be an m x n matrix. Prove that if ¢ is any nonzero sealar, then
rank(cAd) = rank( A4).

Complete the proof of the corollary to Theorem 3.4 by showing that
elementary column operations preserve rank.

Prove Theorem 3.6 for the case that A is an m x 1 matrix.

Let
[0 - 0)

B

where B’ is an m x n submatrix of B. Prove that if rank(B) = r, then
rank(B’) =r— L

Let B' and I) be m x n matrices, and let B and D be (m+1) x (n+1)
matrices respectively defined by

(1|0 - iy 1] = By
0 0

B-] | . and D= | i
0 0

Prove that if B’ can be transformed into [V by an elementary row
|column| operation, then B can be transformed into D by an elementary
row [column| operation.



13.
14.

15.

16.
17.

18.

19.

20.

21.

22.

Prove (b} and (e¢) of Corollary 2 to Theorem 3.6.

Let T,U: V — W be linear transformations.

{a) Prove that R{T+U) € R(T)+R{U). {See the definition of the sum
of subsets of a vector space on page 22.)

(b) Prove that if W is finite-dimensional, then rank({T+U) < rank{T)+
rank{U).

(c) Deduce from (b} that rank(4 + B) < rank(A) + rank(B) for any
m ¥ n matrices A and B.

Suppose that A and B are matrices having n rows. Prove that
M(A|B) = (MA|MB) for any m x n matrix M.

Supply the details to the proof of (b) of Theorem 3.4

Prove that if B isa 3 x 1 matrix and € is a 1 x 3 matrix, then the 3 x 3
matrix BC has rank at most 1. Conversely, show that if 4 isany 3 x 3
matrix having rank 1, then there exist a 3 x 1 matrix B and a 1 x 3
matrix € such that A = BC.

Let A be an m x n matrix and B be an n % p matrix. Prove that AB
can be written as a sum of » matrices of rank one.

Let A be an m x n matrix with rank m and B be an n x p matrix with
rank n. Determine the rank of AB. Justify your answer.

Let
1 0 -1 Z 1
-1 1 3 -1 0
-2 1 4 -1 3
3 -1 5 1 -6
(a) Find a 5 x 5 matrix M with rank 2 such that AM = O, where O
is the 4 x 5 zero matrix.

(b) Suppose that B is a 5 x 5 matrix such that AB = O. Prove that
rank(B) < 2.

e

Let A be an m x n matrix with rank m. Prove that there exists an
n ® m matrix B such that AB = I,.

Let B be an n x wm matrix with rank m. Prove that there exists an
m ¥ n matrix A such that AB = Ip,.



sec3.3 EXERCISES

1. Label the following statements as true or false.

(a)
(b)
(c)
(d)
(e)
(f)

(g)

(h)

Any system of linear equations has at least one solution.

Any system of linear equations has at most one solution.

Any homogeneous system of linear equations has at least one so-
lution.

Any system of n linear equations in n unknowns has at most one
solution.

Any system of n linear equations in » unknowns has at least one
solution.

If the homogeneous system corresponding to a given system of lin-
ear equations has a solution, then the given system has a solution.
If the coefficient matrix of a homogeneous system of n linear equa-
tions in n unknowns is invertible, then the syvstem has no nonzero
solutions.

The solution set of any system of m linear equations in » unknowns
is a subspace of F™.

For each of the following homogeneous systems of linear equations, find

the dimension of and a basis for the solution set.



1+ 312 =0 Ty 4+ 12— 13=10
L ol g e e

25y 4+ T — T3 =10
Ty — T2+ T3=10
Ty + 229 — 213 =10

Iy + 219 — 13 =10
() 223 + T2+ 23 =0 i

1 + 215 =10

(€) T1+213 —3x3 + x4 =10 (f) I — To=0

r+ 2ty +xry=0

(&) Tz — T3+ x4 =0
. Using the results of Exercise 2, find all solutions to the following sys-

tems.

1 +3za= 5 Iy +xs— xI3=1
oy SRR ) JF R

QI[ + To— T3=25

T3 +2r9 —x3=13 i e

(C) 2I1 + To4 13— @ {dJ Iy I3+ Tz= 1

Ty 4+ 210 — 213 =4

1+ 223 = 5

(8) oy +2m0 — B3+ x4 =1 (f) O S

Ty + 2z 13+ =1
T —13+xy=1

(g)

For each system of linear equations with the invertible coefficient matrix
A,

(1) Compute A~L.

(2} Use A~! to solve the system.

K] + 21’9 — &3 =5
Iy + I2+I3 =1
27y — 2o + 13 =4

1+ 31 =4
(a) 21y + 512 =3 (b)

Give an example of a system of »n linear equations in n unknowns with
infinitely many solutions.

. Let T: R* — R? be defined by T(a,b,c) = (a + b, 22 — ¢). Determine
T-1(1,11).

. Determine which of the following systems of linear equations has a so-
lution.
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11.

12,

13.

1+ To— T3+2ry=2
{a} 1+ T2+ 213 =]
2£|+2I2+ L3+2_Ei=4

I +xs— 1I3=1
(b) dry + 22+ 313 =2

1+ za+ 33 —x4=0
T1+ Ta+ Izt Eg=1
ry— 21+ T3—1T4=1
dry + 5+ 8z3 —z4=0

T+ 219+ 353 =1
{C) T+ T2 — x3=0 l:d:l
Ty + 253+ z3=3

T1+ 219 — x3=1
(e) 251+ xa+213=13
T —4dxe + T3 =4

Let T: R® — R? be defined by T(a,b,c) = (a + b,b — 2c,a + 2¢). For
each vector v in R®, determine whether » € R(T).
(a) v=(1,3,-2) (b)) v=(21,1)

Prove that the system of linear equations Ax = b has a solution if and
only if & € R{La).

Prove or give a counterexample to the following statement: If the co-
efficient matrix of a system of m linear equations in n» unknowns has
rank m, then the system has a solution.

In the closed model of Leontief with food, elothing, and housing as the
basic industries, suppose that the input-output matrix is

¥ x &
® I T6
5 1 5
A=11% & 18
I I X
4 & =

At what ratio must the farmer, tailor, and earpenter produce in order
for equilibrium to be attained?

A certain economy consists of two sectors: goods and services. Suppose
that 60% of all goods and 30% of all services are used in the production
of goods. What proportion of the total economic output is used in the
produetion of goods?

In the notation of the open model of Leontief, suppose that

I % 5
A= 1 1 and d= ( )
3 3 3
are the input-output matrix and the demand vector, respectively. How
much of each commodity must be produced to satisfy this demand?



14. A certain economy consisting of the two sectors of goods and services
supports a defense system that consumes $90 billion worth of goods and
$20 billion worth of services from the economy but does not contribute
to economic production. Suppose that 50 cents worth of goods and
20 cents worth of services are required to produce $1 worth of goods
and that 30 cents worth of of goods and 60 cents worth of services are
required to produce §1 worth of services. What must the total output
of the economic system be to support this defense system?



sec3.4 EXERCISES

1. Label the following statements as true or false.

(a) If (A']V) is obtained from (A|b) by a finite sequence of elementary
column operations, then the systems Ar = b and A’z = ¥ are
equivalent.



(b)

(c)
(d)
(e
(f)

(g)

If (A'|b") is obtained from (A|b) by a finite sequence of elemen-
tary row operations, then the systems Ar = b and A'c = b are
equivalent.

If Ais an n x n matrix with rank n, then the reduced row echelon
form of Ais [,,.

Any martrix ean be put in reduced row echelon form by means of
a finite sequence of elementary row operations.

If (A|b) is in reduced row echelon form, then the system Ax = bis
consistent.

Let Ax = b be a system of m linear equations in n» unknowns for
which the augmented matrix is in reduced row echelon form. If
this system is eonsistent, then the dimension of the solution set of
Ax = 0 is n —r, where r equals the number of nonzero rows in A.
If a matrix A is transtormed by elementary row operations into a
matrix A’ in reduced row echelon form, then the number of nonzero
rows in A’ equals the rank of A.

Use Gaussian elimination to solve the following systems of linear equa-
tioms.

(a)

(c)

(d)

(e)

(h)

Ty 4+ 21y — 13=-1 S ImT e
R S R e
Sy | Frn— oa——1 A1 — n —
Ty + 5x3 =9

Ty + 210 + 255= 6
3ry + 512 — 13+ 63y =17
2I1+4I2+ I3+ in=12
21 —Tr3+ 11y = T

Ty — Tag—2x3+ dr4=-T

2ry — 19+ 6xzg+ Bxy=-2
-2+ wa—drz3— Jry= 0

3y — 219 + 913 + 10xy = -5

oy —dxe — T3+ TY= 3 Ty + 219 —x3+ 3z =2
2ry —Brs + 3 —dzy= 9 (f) 2xy +4dro — 13+ 6x4=5
-1y + 4dr9 — 203 + 534 = —6 i + 25y =3

21y — 219 — F3+6xy—2o5=1
Ty — To+ Fz+2rg— zT5=2
dry —dxs + bx3 + Ty — x5 =06
3ty — Tt xT3— TYy+225= 5
Iy — Is—I3— 214 — Is 2
51 — 210 + 13 — 3x4 + 35 = 10
2y — Ia — 254+ 5= 5



3ry — za+ x4 dog+ 5= 2
T — Ta4+2e3+3rg+ 15 =-1
21’1 == 3I2 +6.!73 + gi'.i + 4_55 = —5
Try — 229 + dxq + 8y + 5= 6
2r, + 3z, —dr, =
3r1 — dro + Bz + 3xy

Ti— Ta+2xs+ T4d— T5=
—211 + 513 — 913 — g4 — Hrs = —8

o
: 8
0] 9
3. Suppose that the aupmented matrix of a system Ar = b is transformed
into a matrix (A’|b") in reduced row echelon form by a finite sequence

of elementary row operations.
(a) Prove that rank(A") # rank(A’|b’) if and only if (A’|b") contains a

row in which the only nonzero entry lies in the last eolumn.

(b) Deduce that Ar = b is consistent if and only if { A'|}) contains no
row in which the only nonzero entry lies in the last column.

4. For each of the systems that follow, apply Exercise 3 to determine
whether the system is consistent. If the system is consistent, find all
solutions. Finally, find a basis for the solution set of the corresponding
homogeneous system.

Ty + 219 — 3+ T,,=2 Ty +Tg — dzg + 1y = -2
(3) 21’1 + Toa+4+ Tz — T4= a (b) Ty 4+ Ta+ Tz —Ty= 2
T+ 219 — 3x3 + 203 =2 T+ 10— I3 = 0

T1+ T3 — 33 +14=1
() zy+xa+ T3 —14=2
Ty + Ta — I3 =10

5. Let the reduced row echelon form of A be

10 20 -2
01 5 0 -3).
oG9 01T 6

Determine A if the first, second, and fourth columns of 4 are

i e <)

respectively.
6. Let the reduced row echelon form of A be
1 -3 0 4 0 5
O 0130 2
0 o000 1 -
a 0 0COoOOD



10.

11.

12,

Determine A if the first, third. and sixth columns of A are

1 3 3
9 1 o
ERCE ER

3 4 5

respectively.

It can be shown that the vectors uy = (2, —3,1), us = (1,4, -2}, ug =
(—8,12, —4), uy = (1,37, —17), and uy = (-3, —5,8) generate R*. Find
a subset of {uy, s, u3, ug, us} that is a basis for R%.

Let W denote the subspace of R® consisting of all vectors having eoor-
dinates that sum to zera. The vectors

uy = (2,-3,4,-5,2), ug = (—6,9,-12,15, —6),
uz = (3,-2,7,-9,1), ug = (2,-8,2,-2,6),
ug =(—1,1,2,1,-3), ug = (0,—3, —18,9,12),

wr = (1,0,-2,3,-2), and ug =(2,-1,1,-9,7)
generate W. Find a subset of {uy,us, ..., ug} that is a basis for W.

Let W he the subspace of Ms, 5(R) consisting of the symmetric 2 x 2
matrices. The set

={G )6 8606 D6 )
-1 1)'\2 3/°\1 9/'\-2 4)'\ 2 -1
generates W. Find a subset of § that is a basis for W.
Let

V = {(x1,za, 3,74, 75) € R?: x1 — 229 + 33 — x4 + 225 = 0O}

(a) Show that § = {{0,1,1,1,0)} is a linearly independent subset of
vV

(b) Extend S to a basis for V.

Let V be as in Exercise 10.

(a) Show that 5 = {(1,2,1,0,0}} is a linearly independent subset of
V.

(b) Extend S to a basis for V.

Let V denote the set of all solutions to the system of linear equations

Ty — In +2z4 — 3z + zg=0
21y — 19 — 13 + 314 — das + d3g = 0.



13.

14.

15.

(a) Show that § = {(0,—-1,0,1,1,0),(1,0,1,1,1,0)} is a linearly inde-
pendent subset of V.
(b) Extend S to a basis for V.

Let V be as in Exercise 12.

(a) Show that 5§ = {(1,0,1,1,1,0),(0,2,1.1,0,0)} is a linearly inde-
pendent subset of V.
(b) Extend S to a basis for V.

If (A|b) is in reduced row echelon form, prove that A is also in redueed
row echelon form.

Prove the corollary to Theorem 3.16: The reduced row echelon form of
a matrix is unique.



sec4.1 EXERCISES

1. Label the following statements as true or false.

(a)
(b)

(c)
(d)

The funetion det: Ma,a(F) — F is a linear transformation.

The determinant of a 2 x 2 matrix is a linear function of each row
of the matrix when the other row is held fixed.

If A< Ms.a(F) and det(A) =0, then A is invertible.

If u and » are vectors in R? emanating from the origin, then the
area of the parallelogram having « and v as adjacent sides is

det (E) :



10.

11.

(e) A ecoordinate system is right-handed if and only if its orientation
equals 1.

Compute the determinants of the following matrices in Ma,.o R).

6 -3 -5 2 & D
@3 @) wEd)
Compute the determinants of the following matrices in Ma.o(C).
-1+ ¢ 1—4: 5—2 6+4i 2 3
(@) ( 342 2—31') (b) (—3+ i ) (©) (4 6;:)

For each of the following pairs of vectors » and v in R?, compute the
area of the parallelogram determined by » and v.

(a) u=(2-2)and v=(25)

{(b) u={(1,3) and v = (-3,1)

(c) u=(4,-1)and v=(—6,-2)

{(d) u=(3,4) and v = (2, —6)

Prove that if B is the matrix obtained by interchanging the rows of a
2 x 2 matrix A, then det(B) = — det(A).

Prove that if the two columns of A € Ma.o(F) are identical, then
det(A) = 0.
Prove that det{A') = det(A4) for any 4 £ My, o(F).

Prove that if A € Ma,.2(F) is upper triangular, then det(A) equals the
product of the diagonal entries of 4.

Prove that det{AB) = det{A)- det(B) for any A, B € Ma.a(F).

The classical adjoint of a 2 x 2 matrix 4 € Ma.a(F) is the matrix

_f A —Ap
4 (‘-“121 An) ‘
Prove that

(a) CA = AC = [det(A)]L.

(b) det(C') — det(A).

(c) The classical adjoint of A® is C*.

(d) If A is invertible, then A~! = [det(A)]~'C.

Let &: My, o(F) — F be a funetion with the following three properties.

(i) 4 is a linear funetion of each row of the matrix when the other row
is held fixed.
(ii) If the two rows of A € Ma,a(F) are identical, then 4{A) = 0.



12.

(iii) If I is the 2 x 2 identity matrix, then §(I) = 1.

Prove that 4(A) = det(A) for all A € Ma,.o(F). (This result is general-
ized in Section 4.5.)

Let {u, v} be an ordered hasis for R?. Prove that

0(:)=1

if and only if {u,v} forms a right-handed coordinate system. Hint:
Recall the definition of a rotation given in Example 2 of Section 2.1.



secd.? EXERCISES

1. Label the following statements as true or false.

(a)
(b)

(c)
(d)

(e)
(f)

(g)
(h)

The funection det: My . (F)} — F is a linear transformation.

The determinant of a square matrix can be evaluated by eofactor
expansion along any row.

If two rows of a square matrix 4 are identical, then det(4) = 0.
If B is a matrix obtained from a square matrix A by interchanging
any two rows, then det{B) = —det{A4).

If B is a matrix obtained from a square matrix A by multiplying
arow of A by a secalar, then det(B) = det(A).

If B is a matrix obtained from a square matrix A by adding &
times row 1 to row j, then det(B) = kdet(A).

If A € Myxn(F) has rank n, then det(A) = 0.

The determinant of an upper triangular matrix equals the produet
of its diagonal entries.



2. Find the value of & that satisfies the following equation:
3a; 3aa 3as a1 as as
det | 35y 3bs 3by | =kdet | by ba by ).
der 3ea Aes L B = T =
3. Find the value of k that satisfies the following equation:
2aq 2aq Qg ay az az
det | 35y +5c1 3bo +5cy 3bz +5c3 | =kdet | by by bz ).
Ter Toa Tea £1 2 3
4. Find the value of & that satisfies the following equation:
bi+e baten batcy a; as az
det{ay+ec1 as+ee azs+ecz| =kdet | By b by |.
aj+by aa+be az+ba cp o o3

In Exercises 5-12, evaluate the determinant of the given matrix by cofactor
expansion along the indicated row.
1 0 2
B b
B Rk @ 0

0 1 2
4 W =%
. 2 3 0

along the first row

| R
-1 0 -3
¥ 5 3 B
along the second row
0 14:¢ 2
- 0 1-:
Bl B g
along the third row

g 2 1 3
=k 28

11. 3 -1 0 1
=L E X

along the fourth row

along the first row

10 2
015
B. -1 3@

along the third row

] 244 0
13 %
W el o 3y

along the second row

1 -1 2 -1

-3 4 1 1

12. 2 -5 -3 8
—2 6 4 1

along the fourth row

In Exercises 13-22, evaluate the determinant of the given matrix by any le-

gitimate method.



13.

15.

17.

19.

21.

23.

24.
25.
26.
27.
28.

29.7

30.

001 2 3 4
g 2 3 14. |5 6 0
4 5 6 700
1 3 -1 3 2
4 5 6 16. 4 -8 1
T8 9 oL !
0 1 1 -2 3
1 2 -5 18. | — 2 -5
6 -4 3 3 -1 2

i 2 -1 -1 24 3
3 1+ 2 20. | 1—1 i 1
1 —4 3i 2 -1+

1 0 -2 3 1 =2 3 -12
-3 1 1 2 a9 | =3 12 -14 19
0 4 -1 1 -9 22 20 31
2 3 0 1 -4 0 -14 15

Prove that the determinant of an upper triangular matrix is the produet
of its diagonal entries.

Prove the corollary to Theorem 4.3.

Prove that det(kA) = K" det(A) for any A € M. (F).

Let A € Mpyn(F). Under what conditions is det{—A) = det(A4)7
Prove that if A € M;,..(F) has two identical columns, then det{A) = 0.
Compute det{ E;) if E; is an elementary matrix of type 1.

Prove that if E is an elementary matrix, then det(E*) = det(E).

Let the rows of A £ My.n(F) be aj,as,...,ay, and let B be the matrix
in which the rows are ag,ap—y,...,a;. Calculate det(B) in terms of
det(A).



sec4.3 EXERCISES

1. Label the following statements as true or false.

(a)
(b)
(c)
(d)
(e)
(f)

()
(h)

If E is an elementary matrix, then det(E) = +1.

For any A, B € Mpun(F), det{AB) = det{A)- det(B).

A matrix M € My.»(F) is invertible if and only if det(M} = 0.
A matrix M € M, .,(F) has rank n if and only if det(M) £ 0.
For any A € Mpxn(F), det(A") = — det(A).

The determinant of a square matrix can be evaluated by cofactor
expansion along any column.

Every system of n linear equations in = unknowns can be solved
by Cramer’s rule.

Let Ax = b be the matrix form of a system of n linear equations
in n unknowns, where © = (1, 1a,...,7,)% If det(A) # 0 and if
M;. is the n % n matrix obtained from A by replacing row k of A
by B, then the unique solution of Az = b is

det( M)
T = fork=212:.;m
AT
In Exercises 2-7, use Cramer's rule to solve the given system of linear equa-
tions.
apir) + apars = by 2+ o —3z3= 5
2. amr +azmri=hk 3 1 —240+ 13=10
where ayjass — ajaaa; #0 3y +das — 213 = 0
22,4+ Tog—3dzz= 1 Ty — g+ dog=—4
4. T — 2134 33= 10 5 —8ry +3r5+ 13= 8B
3z + doo — 233 =5 2ry — Ta+ z3= 0
Ty — Tg+drg=-2 oy + Tt xTa= 4
B_ —SI|+3I2+ J53= D 7_ —QIJ_— _1'2 = ]2
2ry — z3+ zz= 6 Ty + 20 4 13 = 8

8. Use Theorem 4.8 to prove a result analogous to Theorem 4.3 (p. 212),
hut for columns.

9. Prove that an upper triangular n x n matrix is invertible if and only if
all its diagonal entries are nonzero.



10.

11.

12.

13.

14.

15

16.

17.

18.

19.

20.

21

A matrix M € My .. (C) is called nilpotent if, for some positive integer
k, M¥ = O, where O is the n % n zero matrix. Prove that if M is
nilpotent, then det(M) = 0.

A matrix M € M,,,.,(C) is called skew-symmetric if M' = —M.
Prove that if M is skew-symmetric and n is odd, then M is not invert-
ible. What happens if n is even?

A matrix @ € My, (R) is called orthogonal if Q' = I. Prove that
if €7 is orthogonal, then det{Q) = 1.

For M € My..n(C), let M be the matrix such that (M);; = M;; for all
i, j, where My; is the complex conjugate of M;;.

(a) Prove that det(M) = det{M).
(b) A matrix @ € Mp.p(C) is called unitary if QQ* = I, where
@ = Q% Prove that if () is a unitary matrix, then |det(Q)| = 1.

Let 3 = {uy, ug,...,un} be asubset of F" containing » distinet vectors,
and let B be the matrix in My ., (F) having u; as columm j. Prove that
3 is a basis for F™ if and only if det{B) # 0.

.T Prove that if A, B € M,,,,,(F) are similar, then det(A) = det{B).

Use determinants to prove that if A, B € My .. (F) are such that AB =
I, then A is invertible (and henee B = A~!).

Let A, B € My.n(F) be such that AB = —BA. Prove that if n is odd
and F is not a field of characteristic two, then A or B is not invertible.

Complete the proof of Theorem 4.7 by showing that if 4 is an elementary
matrix of type 2 or type 3, then det{AB) = det( A}~ det( B).

A matrix A € Myl F) is called lower triangular if A4;; = 0 for
1< i< j< n Suppose that A is a lower triangular matrix. Describe
det(A) in terms of the entries of A.

Suppose that M £ My.n(F') can be written in the form
A B
M= (o I) ,
where A is a square matrix. Prove that det(M) = det(A).

.} Prove that if M & Mupn(F) can be written in the form

..
M_(o C')‘

where A and ' are square matrices, then det{M) = det{A) - det(C).



22,

23.

25.

Let T: Pp(F) — F*! he the linear transformation defined in Exer-
cise 22 of Section 2.4 by T(f) = (fleo), fier),-.., flca)), where
op, €1, -.. ,op Are distinet sealars in an infinite field F. Let 3 be the
standard ordered basis for P, (F') and + be the standard ordered basis
for Fotl,

(a) Show that M = [T[} has the form

1 a o e
1 o o oy
1 sy c;]l cn

A matrix with this form is called a Vandermonde matrix.
(b) Use Exercise 22 of Section 2.4 to prove that det(M) £ 0.
(c) Prove that

de(M)= [ (e- e,

0<i<j<n
the product of all terms of the form ¢; — s for 0 <i < j < m.

Let A € M,.,(F) be nonzero. For any m (1 < m < n), an m x m
submatrix is obtained by deleting any n — m rows and any n — m
eolumns of A.

{(a) Let k(1< k < n) denote the largest integer such that some & x k
submatrix has a nonzero determinant. Prove that rank(4) = k.

(b) Conversely, suppose that rank(4) = k. Prove that there exists a
E = k submatrix with a nonzero determinant.

Let A € Myun(F) have the form

0 00 0 ap
= 0 a

PRI 8 = o 0 a
B D e ol e

Compute det(A + tI), where [ is the n x n identity matrix.

Let e5; denote the cofactor of the row j, column k entry of the matrix
A € Musen(F).

{a) Prove that if B is the matrix obtained from A by replacing column
k bj" €5, then det(B) = Cik-



(b) Show that for 1 < j < n, we have
Cj1
Cj2
Al L | =det(Ad)-e;.
Cin
Hint: Apply Cramer’s rule to Az = e;.
(c)} Deduee that if C' is the n % n matrix such that Cy; = cj;, then
AC = [det{ A)|1.
(d) Show that if dei(A) # 0, then A~ = [det(4)]~'C.

The following definition is used in Exercises 26-27.

Definition. The classical adjoint of a square matrix A is the transpose
of the matrix whose ij-entiry is the ij-cofactor of A.

26. Find the classical adjoint of each of the following matrices.

4 D D

Ay A
(a) (Aa] AQQ) (b) (g g)
-4 0 0 3 T
(c) 020 (d) [0 8
0065 0 5
1—: 0 0 T 1 4
(e}( £ % n) (f)( 6 -3 u)
O i | g o

O O

-1 2 5 3 2414 0
(g) 8 0 -3 (h) { —14: O i
4 & 1 0 1 3-2
27. Let C be the classical adjoint of A € Myyn(F). Prove the following
statements.

(a) det(C) = [det(A)]" L.

(b) C"is the classieal adjoint of At

(c) If A is an invertible upper triangular matrix, then ¢ and A~! are
both upper triangular matrices.

28. Let yi,y....,un be linearly independent funetions in C*. For each
y € €=, define T(y) € C>= by

y(t)  wlt)  w) - walt)
[T(w)](6) = det v B B ey
w)(t) = i : : -

T I 03 T O MRS e )



The preceding determinant is called the Wronskian of v, y1, ..., yn.

{a) Prove that T: C* — C™ is a linear transformation.
{b) Prove that N(T) =span({y1,¥2,...,¥n})-



sec4.4 EXERCISES

1. Label the following statements as true or false,

{a) The determinant of a square matrix may be computed by expand-
ing the matrix along any row or column.

(b) In evaluating the determinant of a matrix, it is wise to expand
along a row or column containing the largest number of zero en-
tries.

(c) If two rows or columns of A are identical, then det{A4) = 0.

(d) If Bis a matrix obtained by interchanging two rows or two columns
of A, then det{B) = det{A).

(e) If B is a matrix obtained by multiplying each entry of some row
or column of 4 by a sealar, then det{ B) = det{A).

(f) If B is a matrix obtained from A by adding a multiple of some row
to a different row, then det(B) = det(A).

(g) The determinant of an upper triangular n xn matrix is the produet
of its diagonal entries.

{h) For every A € My,.n(F), det(A?) = —det{ 4).

(i) IfA, B M, ,(F), then det(AB) = det(4}- det(B).
(j) If Q is an invertible marrix, then det(Q 1) = [det(Q)] 1.
(k) A matrix ¢ is invertible if and only if det(Q)) # 0.

2. Ewaluate the determinant of the following 2 x 2 matrices.
4 -5 -1 7
(@) (2 3) (b) ( 3 3)

(©) (121_;.5 _;jfz) ) (—362' i)

3. Evaluate the determinant of the following matrices in the manner indi-
cated.



0 1 2
o (1 1)

along the first row

0 1 2
o (1 149)

along the second colummn

0 1+i 2
ey Tuy 1
& Ao W @

along the third row

& 2 E 3
1 0 -2 2
(g) R
%

along the fourth column

1" 0 2
w (11¢)

along the first column

1 0 2
01 5
-1 3 0

along the third row

i 241 0
-1 3 24
(£) 0 -1 1-1

along the third column

(d)

R (O s
i 4 A A
(p) | 2 -5 -3 8
5 & 1

along the fourth row

. Evaluate the determinant of the following matrices by any legitimate

method.

123
(a) {4 5 6
7T 8 9
0 1 1
@1 2 -5
6 -4 3

(b)

(d)

1 0 -2 3

-3 1 i 2
gl s 1 |

2 3 D 1

-1 3 2
4 -8 1
2 2 5

Lol et ok
| |
[ 1 )
|
L=k B ]
e S—

1 -2 3 —12
-5 12 -14 19
-5 22 20 1
-4 9 -14 15

. Suppose that M € My .n(F) can be written in the form

. Tk B
- B

where A is a square matrix. Prove that det{M) = det(A).



6.7 Prove that if M € My.n(F) can be written in the form

ok W
=4 3.

where A and C are square matrices, then det(M) = det(A)- det{C).



sec4.5 EXERCISES

1. Label the following statements as true or false.

(a) Any n-linear function 4: My (F) — F is a linear transformation.
(b) Any n-linear funetion 4: My . (F) — F is a linear funetion of each
row of an n % n matrix when the other n — 1 rows are held fixed.

(c) If &: Mpun(F) — F is an alternating n-linear function and the
matrix A £ My (F') has two identical rows, then 6{A) = 0.

(d) If §: Mpun(F) — F is an alternating n-linear function and B is
obtained from A € My . (F') by interchanging two rows of A, then
a(B) =48(A).

(e) There is a unique alternating n-linear function &: Mg . (F) — F.

(f) The function 4: My.n(F) — F defined by 4(A) = 0 for every
A € Mpxa(F) is an alternating n-linear function.

2. Determine all the 1-linear funetions 6: My.1(F) — F.

Determine which of the functions 8: Ma.a(F) — F in Exercises 3-10 are
3-linear funetions. Justify each answer.



10.
11.
12.
13.

14.

15.

16.

17.

18.

19.

20.

ol

a{A) = k, where k is any nonzero sealar
8(A) = Az

6(A) = Ay Aza s

A(A) = Ay + Agg + Agp

d(A) = Ay Aay Azs

8(A) = A1 Az Az

8(A) = A7, A3, A%,

a(A) = AjAaoAzz — A AaAss

Prove Corollaries 2 and 3 of Theorem 4.10.
Prove Theorem 4.11.

Prove that det: Ms, o(F) — F is a 2-linear function of the columns of
a matrix.

Let a,b,e,d € F. Prove that the function 4: Ma.2(F) — F defined by
5(}4) = A1|A2211+ A“.AQIE; + A12A226+ Alegld i a Xlinear funection.

Prove that d: Ma,a(F) — F is a 2-linear function if and only if it has
the form

AlA) = Appdasa + Ay Aoy b+ Ajadosc + Apadad
for some sealars a, b,e,d € F.

Prove that if 6: My .n(F) — F is an alternating n-linear funetion, then
there exists a scalar k such that 6(A) = kdet(A) for all A £ Mp.n(F).

Prove that a linear combination of two n-linear functions is an n-linear
funetion, where the sum and scalar product of n-linear functions are as
defined in Example 3 of Seetion 1.2 (p. 9).

Prove that the set of all n-linear functions over a field F is a vector
space over F under the operations of function addition and scalar mul-
tiplication as defined in Example 3 of Seetion 1.2 (p. 9).

Let 6: Mpun(F) — F be an n-linear function and F' a field that does
not have characteristic two. Prove that if §(B) = —4§(A) whenever B is
obtained from A £ Mpyn(F) by interchanging any two rows of A, then
a{M) = 0 whenever M £ M, . (F) has two identical rows.

Give an example to show that the implication in Exereise 19 need not
hold if F" has characteristic two.



sech.1 EXERCISES

1. Label the following statements as true or false.

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)

Every linear operator on an n-dimensional vector space has n dis-
tinet eigenvalues.

If a real matrix has one eigenvector, then it has an infinite number
of eigenvectors.

There exists a square matrix with no eigenvectors.

Figenvalues must be nonzero sealars.

Any two eigenvectors are linearly independent.

The sum of two eigenvalues of a linear operator T is also an eigen-
value of T.

Linear operators on infinite-dimensional veetor spaces never have
eigenvalues.

An n x n matrix A with entries from a field F is similar to a
diagonal matrix if and only if there is a basis for F" consisting of
eigenvectors of A.

Similar matrices always have the same eigenvalues.

Similar matrices always have the same eigenvectors.

The sum of two eigenvectors of an operator T is always an eigen-
vector of T.

2. For each of the following linear operators T on a vector space V and
ordered bases 3, compute [T|s, and determine whether 3 is a basis
consisting of eigenvectors of T.

(a)
(b)

(c)

(d)

vereT(0) - () mao-{(3). ()}

V =Py (R), T(a+ bz) = (6a — 6b) + (12a — 11b)z, and
B={3+45,2+ 3z}

() 5 (“)
-4 0)-(3)-6)}

V =Ps(R), T{a+br + cx?) =
{—da+ 26— 2c) — (Ta + 3b+ Tc)r + (Ta+ b+ 5c)x°

]

and ={r—=2% 14122 -1-x+2%



(e) V=Ps(R), T(a+bs+ce?+d?) =
—d+ (—e+d)x+ (a+b— ) + (—b+ c— 2d)z,
and f= {1 -z +2%1+1%,1,z+2%)

_ a by [(—Ta—4db+de—4d b
0 V—Mi’xﬂ{RJ'T(c d)_(—Sa—4b+5c:—4d d)" anit

i-TE el o B Y

. For each of the following matrices A € My, n(F),

(i) Determine all the eigenvalues of A.

(i) For each eigenvalue A of A, find the set of eigenvectors correspond-
ing to A

(iii) It possible, find a basis for F" consisting of eigenvectors of A.

(iv) If suceessful in finding such a basis, determine an invertible matrix
() and a diagonal matrix D such that Q—'AQ = D.

(a) A=(; g) for F— R

a -3 3

) A=[-1 1 -1| faxF=R

2. 2 &
i

(©) .»f|=(2 _12) for F =C

3 0 =1
(d A=[4 1 4| foxF=nR
9 0 -1

. For each linear operator T on V, find the eigenvalues of T and an ordered

basis 4 for V such that [T|s is a diagonal matrix.

(a) V =R?and T(a,b) = (~2a + 3b, — 10a + 95)

(b) V=R®and T(a.b,c) = (7a — 4b + 10c, da — 3b+ 8¢, —2a + b— )
(c) V=R®andT(a,b,c)=(—4a+3b—6c,6a—Th+12¢, 6a—6b+11c)
(d) V =Py(R)and T(ax +b) = (—6a 4 2b)x + (—6a + &)

(e) V=Pa(R)and T(f(z)) ==zf'(x)+ f(2)z + f(3)

(£) V=Ps(R)and T(f(x)) = flx) + f(2)x

(g) V=P3(R) and T(f(x)) = =f'(z) + f"(z) - f(2)

) V- My andT(2 7) - (2 2)

[ c a



10.

11.

(i) V=Myo(R)and T (2 D 7 (Z :)

(j) V=Mao.ofR)and T(A) = A" +2.tr(A)- I
Prove Theorem 5.4.

Let T be a linear operator on a finite-dimensional veetor space V, and
let 3 be an ordered basis for V. Prove that A is an eigenvalue of T if
and only if A is an eigenvalue of [T|s.

Let T be a linear operator on a finite-dimensional vector space V. We
define the determinant of T, denoted det(T), as follows: Choose any
ordered basis 3 for V. and define det(T) = det([T|5).

(a) Prove that the preceding definition is independent of the choice
of an ordered basis for V. That is, prove that if 3 and ~ are two
ordered hases for V, then det([T]s) = det([T],)

{(b) Prove that T is invertible if and only if de:[ ) -;é 0.

(c) Prove that if T is invertible, then det(T—!) = [det(T)]~%.

{(d) Prove that if U is also a linear operator on V then det(TU) =
det(T)- det(U).

(e) Prove that det(T — A ) = det{[T|g — AJ) for any scalar A and any
ordered basis 3 for V.

(a) Prove that a linear operator T on a finite-dimensional vector space
is invertible if and only if zero is not an eigenvalue of T.

(b) Let T be an invertible linear operator. Prove that a sealar A is an
eigenvalue of T if and only if A~! is an eigenvalue of T—1.

(c) State and prove results analogous to (a) and (b) for matrices.

Prove that the eigenvalues of an upper triangular matrix M are the
diagonal entries of M.

Let V be a finite-dimensional veetor space, and let A be any sealar.

(a) For any ordered basis 3 for V, prove that [Aly]s = M.
(b) Compute the characteristie polynomial of Aly.
(€) Show that Aly is diagonalizable and has only one eigenvalue.

A scalar matrix is a square matrix of the form AJ for some sealar A;
that is, a scalar matrix is a diagonal matrix in which all the diagonal
entries are equal.

(a) Prove that if a square matrix A is similar to a sealar matrix A,
then A = Al.

(b) Show that a diagonalizable matrix having only one eigenvalue is a
scalar matrix.



12.

13.

(c)

(a)
(b)

Prove that (; }) is not diagonalizable.

Prove that similar matrices have the same characteristic polyno-
mial.

Show that the definition of the characteristic polynomial of a linear
operator on a finite-dimensional vector space V is independent of
the choice of basis for V.

Let T be a linear operator on a finite-dimensional vector space V over a
field F, let 3 be an ordered hasis for V. and let A = [T|z. In reference
to Figure 5.1, prove the following.

(a)
(b)

If v € V and ¢g(v) is an eigenveetor of A corresponding to the
eigenvalue A, then v is an eigenvector of T corresponding to A.

If A is an eigenvalue of A (and hence of T), then a vector y € F"
is an eigenvector of A eorresponding to A if and only if ¢':El(y} is
an eigenvector of T corresponding to A.

14.7 For any square matrix 4, prove that A and A" have the same charac-
teristic polynomial (and hence the same eigenvalues).

15.1 (a) Let T be a linear operator on a vector space V, and let = be an

16.

17.

18.

(b)
(a)
(b)

eigenvector of T corresponding to the eigenvalue A. For any posi-
tive integer m, prove that = is an eigenvector of T™ corresponding
to the eigenvalue A™.

State and prove the analogous result for matrices.

Prove that similar matrices have the same trace. Hint: Use Exer-
cise 13 of Section 2.3.

How would you define the trace of a linear operator on a finite-
dimensional vector space? Justify that vour definition is well-
defined.

Let T be the linear operator on M., (R) defined by T(4) = A%

(a)
(b)
(c)

(d)

Show that +1 are the only eigenvalues of T.

Deseribe the eipenvectors corresponding to each eigenvalue of T.
Find an ordered basis 3 for Ma.2(R) such that [Tz is a diagonal
matrix.

Find an ordered basis 3 for Mp..(#) such that [T|z is a diagonal
matrix for n > 2.

Let A, B € Mpxn(C).

(a)

Prove that if B is invertible, then there exists a sealar ¢ £ C such
that A + B is not invertible. Hinf: Examine det(A + cB).



19.7

21.

221

23.

24,

25.

26.

(b} Find nonzero 2 x 2 matrices A and B such that both A and A+ cB
are invertible for all ¢ £ C.

Let A and B be similar n % n matrices. Prove that there exists an n-
dimensional vector space V, a linear operator T on V, and ordered bases
3 and « for V such that A = [T]5 and B = [T],. Hint: Use Exercise 14
of Section 2.5.

Let A be an n x n matrix with characteristic polynomial
FiB) = (1" + an_1#" L+ .. + ayt + ag.

Prove that f(0) = ap = det(A). Deduce that A is invertible if and only
if ag # 0.

Let A and f(#) be as in Exercise 20,

(a) Prove that f(¢) = (A —t)(Aza — £} --- (Ann — 1) +ql), where g(t)
is a polynomial of degree at most n—2. Hint: Apply mathematical
induetion to n.

(b) Show that tr(A) = (—1)" la,_;.

(a) Let T be a linear operator on a vector space V over the field F,
and let g(¢) be a polynomial with coefficients from F. Prove that
if r is an eigenvector of T with eorresponding eigenvalue A, then
g{T){x) = g{A)z. That is, x is an eigenvector of g(T) with corre-
sponding eigenvalue g(A).

(b) State and prove a comparable result for matrices.

(€) Verify (b) for the matrix A in Exereise 3(a) with polynomial g(t) =

242 — ¢+ 1, eigenvector = = (g) and corresponding eigenvalue
A=4
Use Exercise 22 to prove that it f(#) is the characteristic polynomial
of a diagonalizable linear operator T, then f{T) = Tg, the zero opera-

tor. {In Section 5.4 we prove that this result does not depend on the
diagonalizability of T.)

Use Exercise 21(a) to prove Theorem 5.3.
Prove Corollaries 1 and 2 of Theorem 5.3.

Determine the munber of distinet characteristic polynomials of matrices
in Maya(Za).



sec5.2 EXERCISES

1. Label the following statements as true or false.

(a)
(b)
(c)
(d)
(e)

(f)

(z)

Any linear operator on an n-dimensional vector space that has
fewer than n distinet eigenvalues is not diagonalizable.

Two distinet eigenvectors corresponding to the same eigenvalue
are always linearly dependent.

If A iz an eigenvalue of a linear operator T, then each vector in Ey
is an eigenveetor of T.

If Ay and A are distinet eigenvalues of a linear operator T, then
Ex MEx, = {0}

Let A € Myn(F) and 8 = {vy,va,...,vn} be an ordered basis for
F™ consisting of eigenveetors of A. If () is the n x n matrix whose
jth column is v; (1 < j < n), then Q' AQ is a diagonal matrix.
A linear operator T on a finite-dimensional vector space is diago-
nalizable if and only if the multiplicity of each eigenvalue A equals
the dimension of E,.

Every diagonalizable linear operator on a nonzero vector space has
at least one eigenvalue.

The following two items relate to the optional subsection on direct sums.

()
(1)

If a vector space is the direct sum of subspaces Wy, Wa, ... . W,
then W; nW; = {0} for i &£ 5.
If

k
V=YW, and W;nW;={0} fori#j,

i=1

then V=W, &aWa % .- & W

For each of the following matrices A € My (1), test A for diagonal-

izability, and if A is diagonalizable, find an invertible matrix ¢ and a
diagonal matrix D such that @—'AQ = D.

1 32 1 3 1 4
(a) (U 1) () (3 1) (©) (3 2)

T -4 0 0o 0 1 1 1 0
@ |8 -5 0 @10 -1 @ [0 1 2

6 —6 3 01 1 00 3



3 14
()| 2 42
-1 -1 1

For each of the following linear operators T on a vector space WV, test

T for diagonalizability, and if T is diagonalizable, find a basis 3 for V

such that [T]s is a diagonal matrix.

{a) V = P3(R) and T is defined by T{f(x)) = f'(x) + f"(z), respec-
tively.

(b) V =P3(R) and T is defined by T{az® + br +¢) = ex? + br + a.

(¢) V=R?®and T is defined by

(d) V =Ps(R) and T is defined by T(f(x)) = £(0) + f(1)(x + z2).
(€) V=C2and T is defined by T(z,w) = (z + iw, iz + w).
(f) V =Mayo(R) and T is defined by T(A4) = A*.

Prove the matrix version of the corollary to Theorem 5.5: If A €
Mpwn(F') has n distinet eigenvalues, then A is diagonalizable.

. State and prove the matrix version of Theorem 5.6.

{a) Justify the test for diagonalizability and the method for diagonal-
ization stated in this section.
(b) Formulate the results in (a) for matrices.

For
1 4
A= (2 3) = MQXQ{R]'.

find an expression for A™, where n is an arbitrary positive integer.

. Suppose that A £ My . (F) has two distinct eigenvalues, Ay and Ag,

and that dim(E,,) = n — 1. Prove that A is diagonalizable.

. Let T be a linear operator on a finite-dimensional veetor space V. and

suppose there exists an ordered basis 3 for V such that [T|s is an upper
triangular matrix.

(a) Prove that the characteristic polynomial for T splits.
(b} State and prove an analogous result for matrices.

The converse of (a) is treated in Exercise 32 of Section 5.4.



10.

11.

12.

13.

14.

15.

Let T be a linear operator on a finite-dimensional vector space V with
the distinet eigenvalues Ap, Aa, ..., Ap and corresponding multiplicities
my,ma,... ,mg. Suppose that 3 is a basis for V such that [T]s is an
upper triangular matrix. Prove that the diagonal entries of [T]; are
A1, A2, ..., Ap and that each A; oceurs my; times (1 < i < k). '

Let A be an n x n matrix that is similar to an upper triangular ma-
trix and has the distinet eigenvalues Ay, As, ..., Ay with corresponding
multiplicities my, ma, ..., mg. Prove the following statements.

ke
(a) tr(4) =) mX
i=1
(b) det(A) = (A)™(Ag)™2 - (M),

Let T be an invertible linear operator on a finite-dimensional vector

space V.

(a) Reeall that for any eigenvalue X of T, A~! is an eigenvalue of T—!
(Exercise 8 of Section 5.1). Prove that the eigenspace of T corre-
sponding to A is the same as the eigenspace of T—! corresponding
o %=L

{(b) Prove that if T is diagonalizable, then T~! is diagonalizahle.

Let A € M, »(F). Reeall from Exercise 14 of Section 5.1 that A and

A! have the same characteristic polvnomial and hence share the same

elgenvalues with the same multiplicities. For any eigenvalue A of A and

A, let E and E) denote the corresponding eigenspaces for A and A,

respectively.

(a) Show by way of example that for a given common eigenvalue, these
two eigenspaces need not be the same.

(b) Prove that for any eigenvalue A, dim(E,) = dim(E} ).

(¢) Prove that if 4 is diagonalizable, then A' is also diagonalizable.

Find the general solution to each system of differential equations.

= r+y )y = 8ry +10xs
=) y=3r—-y (9 Th = —bzry — Tx3
Tp =Ty + 3
() 5= T2+ 13
Ty = 2zq
Let
4y 4z - din
Gog. “Og5 =t Oan
A=

anl @n2 -+ Opp



16.

be the coefficient matrix of the system of differential equations

Ty = anTy + ajaTs + -+ + Gy

I5 = asyry + aseTs + - -- + asgTp

Ty =Ty + BT + -0 BppTa.

Suppose that A is diagonalizable and that the distinet eigenvalues of 4
are Aq,As,...., Ar. Prove that a differentiable function =: R — R® is a
solution to the system if and only if = is of the form

At

2g + -+ + eMely

z(t) = eMbzy 4 e Zk,

where z; € Ey, for i =1,2,..., k. Use this result to prove that the set
of solutions to the system is an n-dimensional real vector space.

Let € £ Mpxn(R), and let ¥ be an n x p matrix of differentiable
functions. Prove (CY)" = CY’, where (Y');; = Y3 for all ¢ 5.

Exercises 17 through 19 are concerned with simultaneous diagonalization.

Definitions. Two linear operators T and U on a finfte-dimensional vector

space V' are called simultaneously diagonalizable if there exists an ordered
basis 3 for V such that both [T|s and [U]z are diagonal matrices. Similarly,
A B € My F) are called simultaneously diagonalizable if there exists
an invertible matrix @ € My .q(F) such that both Q—'AQ and Q' BQ are
diagonal matrices.

17.

18.

19.

(a) Prove that if T and U are simultaneously diagonalizable linear
operators on a finite-dimensional vector space V, then the matrices
[T]z and [U]z are simultaneously diagonalizable for any ordered
basis 3.

(b} Prove that if A and B are simultaneously diagonalizable matrices,
then Ly and Lg are simultaneously diagonalizable linear operators.

(a) Prove that if T and U are simultaneously diagonalizable operators,
then T and U commute (ie., TU = UT).

(b} Show that if A and B are simultaneously diagonalizable matrices,
then A and B commnte.

The converses of (a) and (b) are established in Exercise 25 of Section 5.4.
Let T be a diagonalizable linear operator on a finite-dimensional vector

space, and let m be any positive integer. Prove that T and T™ are
simultaneously diagonalizable.

Exercises 20 through 23 are concerned with direet sums.



20.

21,

22,

23.

Let Wy, Wa, ..., Wy be subspaces of a finite-dimensional vector space V
such that

k
> W=V
i=1
Prove that V is the direct sum of W, W,, ..., W}, if and only if

E
dim(V) = dim(W;).
i=1

Let V be a finite-dimensional vector space with a basis 4, and let
31, 82,..., 9 be a partition of 3 (i.e., 51,3,..., 5 are subsets of @
such that §=A UG U.--U e and 3 N3 = @ if i # 7). Prove that
V = span(j3,) @ span(8s) & - - - & span(Fy).

Let T be a linear operator on a finite-dimensional vector space V, and
suppose that the distinet eigenvalues of T are Ay, Aa, ..., Ap. Prove that

span({x € V: x is an eigenvector of T}) = Ey, ® By, @ --- @ Ex.

Let Wi, Wa, Ky, Ka, ..., Kg, My, Mz, ... .M, be subspaces of a vector
S}JB.EEVSlel thatwl = K[E"‘KQ"'E‘E“K?) Ell]dWQ = M1"1’}M3@‘£“Mq
Prove that if Wy W = {0}, then

W, +w1=W1!PWQ=K|’.'E."KQ"EZ""%KPEBM|"'I;IM;]$"'\"BM'I_



secb.3 EXERCISES

1. Label the following statements as true or false.

(a)

(b)
(c)

(d)
(e)

IfA e My n(C)and mI.i_m A™ = L, then, for any invertible matrix

Q) € My n(C), we have lim QA™Q!'=QLQ™ L.
TM— o
If 2 is an eigenvalue of 4 € My,n(C), then lim A™ does not
m—oo
exist.
Any vector

such that =y + s +---+ x, = 1 is a probability vector.

The sum of the entries of each row of a transition matrix equals 1.
The product of a transition matrix and a probability vector is a
probability vector.



(f) Let z be any complex number such that [z] = 1. Then the matrix

E -1
z 1
-1 z

does not have 3 as an eigenvalue.
(g) Ewvery transition matrix has 1 as an eigenvalue.
(h) No transition matrix can have —1 as an eigenvalue.
(i) If A is a transition matrix, then I'.I'}EII\L; A™ exists.

0

(j) If A is a regular transition matrix, then 1_j_}].imm A™ exists and has
rank 1.

. Determine whether lim A™ exists for each of the following matrices
Th— 0

A, and compute the limit if it exists.
01 07 14 08 04 07
) (0,? 0_1) ) (—2,4 1,3) () (0_6 0_3)

@) @(iE) o )

~14 34 —02 08
a8 my| 39 18 13
2.4 ~165 —20 —45

32 4i L+45i
M1 1420 -3 -1-4
—1-2% 4 1+5i
—-26+i —28—4i

—
m
el
|

—
[l = e ]
-0

3 3 28
. —7+ 2i —5+1
) + 241 3% v o
3
—134+6i 546 3520
& 5 &

. Prove that if Ay, A5, ... is a sequence of n x p matrices with complex

entries such that lim A, = L, then lim (An,)" = L.
m—oo m— a0

Prove that if 4 £ My () is diagonalizable and L = lim A™ exists,
TI— o0
then either L = I, or rank(L) < n.



5.

Find 2 x 2 matrices A and B having real entries such that lim A™,
M—s o0
lim B™, and ml.i_mm(AB)m all exist, but

m—od

Jim (AB)™ # ( lim A™)( lim B™).

A hospital trauma unit has determined that 30% of its patients are
ambulatory and 70% are bedridden at the time of arrival at the hospital.
A month after arrival, 60% of the ambulatory patients have recovered,
20% remain ambulatory, and 20% have become bedridden. After the
same amount of time, 10% of the bedridden patients have recovered,
20% have become ambulatory, 50% remain bedridden, and 20% have
died. Determine the percentages of patients who have recovered, are
ambulatory, are bedridden, and have died 1 month after arrival. Also
determine the eventual percentages of patients of each type.

A player begins a game of chance by placing a marker in box 2, marked
Start. (See Figure 5.5.) A die is rolled, and the marker is moved one
square to the left if a 1 or a 2 is rolled and one square to the right if a
3, 4, 5, or 6 is rolled. This process continues until the marker lands in
square 1, in which case the player wins the game, or in square 4, in which
case the player loses the game. What is the probability of winning this
game? Hint: Instead of diagonalizing the appropriate transition matrix

Win | Start Lose
1 2 3 4
Figure 5.5

A, it is easier to represent es as a linear combination of eigenvectors of
A and then apply A™ to the result.

Which of the following transition matrices are regular?

02 03 05 05 0 1 05 0 0
(a) (03 02 05 (b) (05 0 0 (c) {05 1
05 05 0 010 010

0.5 0 1 1 0 0
(d |os 1 0 (e) (|0 07 02
00 0 0 0.3 08

-

] e e
=R
- o 92
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11.

12.

0 F 00 T+ Loo

1 " S

3 000 S

2 4 4
() (h)

i3l0 T 110

1 2 2. 2 0A

Compute lim A™ if it exists, for each matrix A in Exercise 8.
M—s o0

Each of the matrices that follow is a regular transition matrix for a
three-state Markov chain. In all cases, the initial probability vector is

0.3
P=103].
0.4

For each transition matrix, compute the proportions of objects in each
state after two stages and the eventual proportions of objects in each
state by determining the fixed probahility vector.

0.6 01 0.1 0.8 0.1 02 09 01 0.1
(a) (01 09 02) () [01 08 02] () [0 06 01

a3 M 0x 0.1 01 06 0 03 08
0.4 02 02 05 03 02 06 0 04
(@ (01 07 02) (e) |02 05 03] (f) (02 08 02
05 0.1 06 03 02 05 02 02 04

In 1940, a eounty land-use survey showed that 10% of the county land
was urban, 50% was unused, and 40% was agricultural. Five vears later,
a follow-up survey revealed that 70% of the urban land had remained
urban, 10% had become unused, and 20% had become agricultural.
Likewise, 20% of the unused land had become urban, 60% had remained
unused, and 20% had become agricultural. Finally, the 1945 survey
showed that 20% of the agricultural land had become unused while
80% remained agricultural. Assuming that the trends indicated by the
1945 survey continue, compute the percentages of urban, unused, and
agricultural land in the eounty in 1950 and the corresponding eventual
percentages,

A diaper liner is placed in each diaper worn by a baby. If, after a
diaper change, the liner is soiled, then it is disearded and replaced by a
new liner. Otherwise, the liner is washed with the diapers and reused,
except that each liner is discarded and replaced after its third use (even
if it has never been soiled). The probability that the baby will soil any
diaper liner is one-third. If there are only new diaper liners at first,
eventually what proportions of the diaper liners being used will be new,



13.

14.

15.

16.
17.
18.
19.

once used, and twice used? Hint: Assume that a diaper liner ready for
use is in one of three states: new, once used, and twice used. After its
use, it then transforms into one of the three states deseribed.

In 1975, the automobile industry determined that 40% of American car
owners drove large cars, 20% drove intermediate-sized cars, and 40%
drove small cars. A second survey in 1985 showed that 70% of the large-
car owners in 1975 still owned large cars in 1985, but 30% had changed
to an intermediate-sized car. Of those who owned intermediate-sized
cars in 1975, 10% had switched to large cars, 70% continued to drive
intermediate-sized cars, and 20% had changed to small cars in 1985.
Finally, of the small-car owners in 1975, 10% owned intermediate-sized
cars and 90% owned small cars in 1985, Assuming that these trends
eontinue, determine the percentages of Americans who own ears of each
size in 1995 and the corresponding eventual percentages.

Show that if A and P are as in Example 5, then

Tm Tmtl Tmil
A= Tm+1 Tm Tmtl | 3
m+1 Tm+l Tm

where
1 ="
T'm=§|:].+ 2!‘I‘l—|:|‘
Deduce that
_qym
- 200 + ( 211_3 (100)
600(A™P) = A™ (QDU) = 200
100 (_1)m+1

Prove that if a 1-dimensional subspace W of R™ contains a nonzero vec-
tor with all nonnegative entries, then W contains a unique probability
VECtor.

Prove Theorem 5.15 and its corollary.
Prove the two corollaries of Theorem 5.18.
Prove the corollary of Theorem 5.19.

Suppose that M and M’ are n x n transition matrices.



{a) Prove that if M is regular, N is any n x n transition matrix, and
c 15 a real number such that 0 < ¢ < 1, then eM 4+ (1 —c)N is a
regular transition matrix.

(b) Suppose that for all i, j, we have that M; > 0 whenever M;; > 0.
Prove that there exists a transition matrix N and a real number c
with 0 < ¢ < 1 such that M’ =M + (1 — c}N.

(c) Deduce that if the nonzero entries of M and M’ oceur in the same
positions, then M is regular if and only if M” is regular.

The following definition is used in Exercises 20-24.

Definition. For A € My,.n(C), define e lim By,. where

M— o0

A? A™
Bn=T4+A4 5+t
N m!

(see Exercise 22). Thus e* is the sum of the infinite series

A2 AT
I+ A+ —+—

TR T

and B, is the mth partial sum of this series. (Note the analogy with the
power series
2 3
a_ a a
e —1+G+E+ﬁ+*",

which is valid for all complex munbers a.)

20. Compute 2 and ef, where O and T denate the n % n zero and identity
matrices, respectively.

21. Let P~'AP = D be a diagonal matrix. Prove that e* = PeP P!,

22, Let A € Mp.n(C) be diagonalizable. Use the result of Exercise 21 to
show that e* exists. (Exercise 21 of Section 7.2 shows that e exists
for every A € Mpyn(C).)

23, Find A, B € Ma,a(R) such that ede? £ A+E,

24. Prove that a differentiable funetion x: £ — R™ is a solution to the
system of differential equations defined in Exercise 15 of Section 5.2 if
and only if z(#) = e"'v for some v € R”, where A is defined in that
exercise.



secb5.4 EXERCISES

1. Label the following statements as true or false.

(a)
(b)

(c)

(d)

(e)
(f)
(z)

There exists a linear operator T with no T-invariant subspace.

If T is a linear operator on a finite-dimensional vector space V and
W is a T-invariant subspace of V, then the characteristie polyno-
mial of Ty divides the characteristic polynomial of T.

Let T be a linear operator on a finite-dimensional vector space V,
and let v and w be in V. If W is the T-eyclic subspace generated
by v. W’ is the T-evelic subspace generated by w, and W = W',
then v = w.

If T is a linear operator on a finite-dimensional vector space V,
then for any v € V the T-cyclic subspace generated by v is the
same as the T-eyelic subspace generated by T(v).

Let T be a linear operator on an n-dimensional vector space. Then
there exists a polynomial g(t) of degree n such that g(T) = T,
Any polynomial of degree n with leading coefficient (—1)" is the
characteristic polynomial of some linear operator.

If T is a linear operator on a finite-dimensional vector space V, and
if V is the direct sum of & T-invariant subspaces, then there is an
ordered basis 3 for V such that [T|s is a direct sum of & matrices.



For each of the following linear operators T on the vector space V,
determine whether the given subspace W is a T-invariant subspace of
V.
(a) V =Pa(R), T(f(x)) = f'(z), and W = P3(R)
(b) V=P(R), T(f(zx)) = zf(c), and W = P3(R)
(c) V=R T{a,be)=(a+b+cat+bteatbitc) and
W={(t,t,t):t € R}
(d) V=C([0,1)), T((8) = [J; f(x)dz|¢, and
W= {feV: f(t) =at+ b for some a and b}

(e) V=Ma.a(R), T(A) = (? é) AandW={AsV: A" = A}

Let T be a linear operator on a finite-dimensional vector space V. Prove
that the following subspaces are T-invariant.

(a) {0}andV

(b) N(T) and R(T)

(c) E., for any eigenvalue A of T

Let T be a linear operator on a veetor space V., and let W be a T-
invariant subspace of V. Prove that W is g(T}-invariant for any poly-
nomial g(t}.

Let T be a linear operator on a vector space V. Prove that the inter-
section of any collection of T-invariant subspaces of V is a T-invariant
subspace of V.

For each linear operator T on the vector space V. find an ordered basis
for the T-eyelic subspace generated by the vector .

(a) V=R, T{a,be,d)=(a+bb—rcatcat+d), and z=e.

(b) V=Pa(R), T(f(x)) = f"(z), and z = z°.

(€) V=Maua(R), T(4)= A% and 2 = (7 7).

(d) V= Maa(R), T(A4) G ;) A, and z = (‘:;' é)

Prove that the restriction of a linear operator T to a T-invariant sub-
space is a linear operator on that subspace.

Let T be a linear operator on a vector space with a T-invariant subspace
W. Prove that if v is an eigenvector of Ty with corresponding eigenvalue
A, then the same is true for T.

For each linear operator T and eyelic subspace W in Exercise 6, compute
the characteristic polynomial of Ty in two ways, as in Example 6.



10.

11.

12.

13.

14.

15,

16.

17.

18.

For each linear operator in Exercise 6, find the characteristic polynomial
fit) of T, and verify that the characteristic polynomial of Ty (computed
in Exercise 9) divides f(t).

Let T be a linear operator on a vector space V, let v be a nonzero vector
in V, and let W be the T-cyelic subspace of V generated by v. Prove
that

{a) W is T-invariant.

(b) Any T-invariant subspace of V econtaining v also contains W.

B, By

‘) in the proof of Theorem 5.21.

Prove that A = (C" B

Let T be a linear operator on a vector space V, let v be a nonzero vector
in V, and let W be the T-cyelie subspace of V generated by v. For any
w £ V, prove that w € W if and only if there exists a polynomial g(#)
such that w = g(T)(v).

Prove that the polynomial g(t) of Exercise 13 ecan always be chosen so
that its degree is less than or equal to dim(W).

Use the Cayley-Hamilton theorem (Theorem 5.23) to prove its corol-
lary for matriees. Warning: If fit) = det(A — ¢I) is the characteristic
polynomial of A, it is tempting to “prove” that f{A) = O by sayving
“flA) = det(A — AT) = det(0) = 0." But this argument is nonsense.
Why?

Let T be a linear operator on a finite-dimensional vector space V.

(a) Prove that if the characteristic polynomial of T splits, then so
does the characteristic polynomial of the restriction of T to any
T-invariant subspace of V.

(b) Deduce that if the characteristic polynomial of T splits, then any
nontrivial T-invariant subspace of V contains an eigenvector of T.

Let A be an n x n matrix. Prove that

dim{span({l,, A4, 4%,.. 1)) £ n.

Let A be an n % n matrix with charaeteristic polynomial
O = (1" 4 an " .-+ art +ap.

{a) Prove that A is invertible if and only if ag £ 0.
(b} Prove that if A is invertible, then

A7 = (~1/an)[(-1)" A" + an 1 A" 4 andn).



19.

21.

22.

23.

(c) Use (b) to compute A~ for

-2 1
A=40 2 3].
0 0 -1

Let A denote the & x k matrix

00 --- 0 —ag
i0 .- 0 —-a
01 0 —as
00 -~ 0 —apa
00 -+ 1 —ap,
where ag,aj....,ax_y are arbitrary scalars. Prove that the character-

istic polynomial of A is
(—I:lk[a.u +agt+ - +ak_|tk_1 +fk}l.

Hint: Use mathematieal induction on k, expanding the determinant
along the first row.

Let T be a linear operator on a vector space V, and suppose that V is
a T-cyelic subspace of itself. Prove that if U is a linear operator on V,
then UT = TU if and only if U = g(T) for some polynomial g(t). Hint:
Suppose that V is generated by ». Choose g(t} according to Exercise 13
so that g(T)(v) = U(v).

Let T be a linear operator on a two-dimensional vector space V. Prove
that either V is a T-eyelie subspace of itself or T = ¢l for some sealar e.

Let T be a linear operator on a two-dimensional vector space V and
suppose that T # ¢l for any sealar . Show that if U is any linear
operator on V such that UT = TU, then U = g(T) for some polynomial

glt).

Let T be a linear operator on a finite-dimensional vector space V, and
let W be a T-invariant subspace of V. Suppose that vy, ve,..., v are
eigenvectors of T corresponding to distinet eigenvalues. Prove that if
t +va4---+u isin W, then v; € W for all i. Hint: Use mathematical

induction on k.

Prove that the restriction of a diagonalizable linear operator T to any
nontrivial T-invariant subspace is also diagonalizable. Hint: Use the
result of Exercise 23.



25. (a) Prove the converse to Exercise 18(a) of Section 5.2: If T and U
are diagonalizable linear operators on a finite-dimensional vector
space V such that UT = TU, then T and U are simultaneously
diagonalizable. (See the definitions in the exercises of Section 5.2.)
Hint: For any eigenvalue A of T, show that E, is U-invariant, and
apply Exercise 24 to obtain a basis for E, of eigenvectors of U.

(b) State and prove a matrix version of (a).

26. Let T be a linear operator on an n-dimensional vector space V such that
T has n distinet eigenvalues. Prove that V is a T-cyclic subspaee of itself.
Hint: Use Exercise 23 to find a vector v such that {v, T(v), ..., T" )}
is linearly independent.

Exercises 27 through 32 require familiarity with quotient spaces as defined
in Exercise 31 of Section 1.3. Before attempting these exercises, the reader
should first review the other exercises treating quotient spaces: Exercise 35
of Section 1.6, Exercise 40 of Section 2.1, and Exercise 24 of Section 2.4.

For the purposes of Exercises 27 through 32, T is a fixed linear operator on
a finite-dimensional vector space V, and W is a nonzero T-invariant subspace
of V. We require the following definition.

Definition. Let T be a linear operator on a vector space V, and let W
be a T-invariant subspace of V. Define T: V/W — V/W by

Tiv+W)=T(v)+W for any v+ W € V/W.

27. (a) Prove that T is well defined. That is, show that T(v + W) =
T(v' + W) whenever v + W = v" + W.
(b) Prove that T is a linear operator on V/W.
(c) Let 5: V — V/W be the linear transformation defined in Exer-
cise 40 of Section 2.1 by n{v) = v + W. Show that the diagram of
Figure 5.6 commutes; that is, prove that T = Ty. (This exercise
does not require the assumption that V is finite-dimensional.)

v Ty N
| |
VW —— VW
Figure 5.6

28. Let fi#), g(t), and h(t) be the characteristic polynomials of T, Tw,
and T, respectively. Prove that f(t) = g(t)h(t). Hint: Extend an
ordered basis v = {vy,ve,...,v} for W to an ordered basis 7 =
{vi,va,... v Uet1,. .. vn} for V. Then show that the collection of



cosets a = {ups) + W, vgpo + W, ... vy + W} is an ordered basis for
V /W, and prove that

- (B Ba
T]S == (O -BS) ]
where B) = [T]y and B; = [T}a.

20. Use the hint in Exercise 28 to prove that if T is diagonalizable, then so
isT.

30. Prove that if both Ty, and T are diagonalizable and have no eommon
eigenvalues, then T is diagonalizable.

The results of Theorem 5.22 and Exercise 28 are useful in devising methods
for computing characteristic polynomials without the use of determinants.
This is illustrated in the next exercise.

1 1 -3
31. Let A= (2 3 4), let T = L, and let W he the evelie subspace
1. 2 1

of R* generated by e;.

{a) Use Theorem 5.22 to compute the characteristic polynomial of Ty

(b) Show that {es + W} is a basis for R*/W, and use this fact to
compute the charaeteristic polynomial of T.

(€) Use the results of (a) and (b) to find the characteristic polynomial
of A.

32. Prove the converse to Exercise 9(a) of Section 5.2: If the characteristic
polynomial of T splits, then there is an ordered basis 5 for V such
that [T|z is an upper triangular matrix. Hints: Apply mathematical
induction to dim(V). First prove that T has an eigenvector v, let W =
span({v}), and apply the induction hypothesis to T: V/W — V/W.
Exercise 35(b) of Section 1.6 is helpful here.

Exercises 33 through 40 are concerned with direct sums.

33. Let T be a linear operator on a vector space V, and let Wy, Wa, ... W,
be T-invariant subspaces of V. Prove that Wy +Wa + - - + W;, is also
a T-invariant subspace of V.

34. Give a direct proof of Theorem 5.25 for the ecase k = 2. (This result is
used in the proof of Theorem 5.24.)

35. Prove Theorem 5.25. Hint: Begin with Exercise 34 and extend it using
mathematical induetion on k., the number of subspaces.



36.

a7.

38,

39.

40.

41.

42,

Let T be a linear operator on a finite-dimensional vector space V.
Prove that T is diagonalizable if and only if V is the direct sum of
one-dimensional T-invariant subspaces.

Let T be a linear operator on a finite-dimensional vector space V,
and let Wy, Wa, ... W, be T-invariant subspaces of V such that V =
Wy £ Ws @ - .. & Wy, Prove that

det(T) = det(Tw, ) det(Tw,) - - - det(Tw, ).

Let T be a linear operator on a finite-dimensional vector space V,
and let Wy, Wa, ..., W, be T-invariant subspaces of V such that V =
Wi @ Ws & - @W,.. Prove that T is diagonalizable if and only if Tw,
is diagonalizable for all 4.

Let C be a collection of diagonalizable linear operators on a finite-
dimensional vector space V. Prove that there is an ordered basis 3
such that [Tz is a diagonal matrix for all T € C if and only if the
operators of C commute under composition. (This is an extension of
Exercise 25.) Hints for the case that the operators commute: The result
is trivial if each operator has only one eigenvalue. Otherwise, establish
the general result by mathematical induction on dim(V), using the fact
that V is the direct sum of the eigenspaces of some operator in C that
has more than one eigenvalue.

Let By, B,, ..., By be square matrices with entries in the same field, and
let A= By & Ba& .- & By. Prove that the characteristic polynomial
of A is the product of the characteristic polynomials of the B;’s.

Let
1 ) -
n+1 n+2 cer 2
A= s : p
n?—-n-i-l n?—-n-i-i 7';2

Find the characteristic polynomial of A. Hint: First prove that A has
rank 2 and that span({(1,1,...,1),(1,2,...,n)}) is Ls-invariant.

Let A € Myxn(R) be the matrix defined by 4;; = 1 for all ¢ and j.
Find the characteristic polynomial of A.



secB.1 EXERCISES

Label the following statements as true or false.

(a)
(b)
(c)
(d)
(e)

(f)
()

(h)

An inner produet is a sealar-valued funetion on the set of ordered
pairs of vectors,

An inner produet space must be over the field of real or complex
numbers.

An inner produet is linear in both components.

There is exactly one inner produet on the vector space R™.

The triangle inequality only holds in finite-dimensional inner prod-
uct spaces.

Ounly square matriees have a conjugate-transpose.

If r, y, and =z are vectors in an inner produet space such that
{z,y} = {z,z), then y = 2.

If {z,y) = 0 for all x in an inner product space, then y = 0.

. Let x = (2,1+4,4) and y = (2 —,2,1 4+ 2) be vectors in C*. Compute
{x,yys Izl llvll, and ||z + y||. Then verify both the Cauchy-Schwarz
inequality and the triangle inequality.

In C([0.1]), let f(t) = ¢ and g(t) = &*. Compute {f,g) (as defined in
Example 3), ||fll, llgll, and || f + g||. Then verify both the Cauchy-
Schwarz inequality and the triangle inequality.

(a)
(b)

Complete the proof in Example 5 that {-, -} is an inner produet
{the Frobenius inner produet) on My (F).
Use the Frobenius inner product to compute ||A|l, || B, and (A, B)

for
A=(1 QJ_“) and B=(1Jf* O_).
3 1 1 —1

. In C2, show that {r,y) = zAy* is an inner product, where

A=(_‘15 ;)

Compute {z,y) for £ =(1—¢,243i) and y = (2 44,3 — 2§).



10

11.

12

13.

14.

15.

Complete the proof of Theorem 6.1.
Complete the proof of Theorem 6.2,
Provide reasons why each of the following is not an inner produet on

the given vector spaces.

(a) ((a.b),(e,d)) =ac—bd on R%.

(b) (A, B)=1tr{A+ B)on Ma.s(R).

(c) {(f(x),g(z)} = fol fiit)g(t) dt on P(R), where ' denotes differentia-
tion.

Let 3 be a basis for a finite-dimensional inner product space.
(a) Prove that if {z,z) =0for all = £ 3, then = = 0.
(b) Prove that if {x,z) = (y,2) for all z € 3, then £ =y.

.T Let V be an inner produet space, and suppose that o and y are orthog-
onal vectors in V. Prove that |z + g = |l=]|® + |ly||*. Deduce the
Pythagorean theorem in R2.

Prove the parallelogram low on an inner product space V; that is, show
that

lz+ gl + ||z —y)? = 2l=|? + 2||y|* forall z,y € V.
What does this equation state about parallelograms in R??

.1 Let {wy,v9,...,15) be an orthogonal set in V, and let ay,as,...,ax be
scalars. Prove that
E -

= Z?Gifgl-‘.t?f||?~

i=1

k
E a4y
i=1

Suppose that {-, -}, and (-, -}, are two inner products on a vector space
V. Prove that {-, -} = (-, +); + {-, -} is another inner produect on V.

Let A and B be n ¥ n matrices, and let ¢ be a sealar. Prove that
(A+cB)* = A* +cB*.

(a) Prove that if V is an inner produet space, then | {z,y} | = |=||-|lv||
if and only if one of the vectors = or y is 8 multiple of the other.
Hint: If the identity holds and y # 0, let

T
llyll?




16.

17.

18.

19.

21.

and let z = r — ay. Prove that y and = are orthogonal and

|a[ — M
Sl
Then apply Exercise 10 to ||z]|? = [lay + z||* to obtain ||z] = 0.
(b) Derive a similar result for the equality ||z + y|| = ||z|| + |y, and

generalize it to the case of n vectors.

{a) Show that the vector space H with (-, -} defined on page 332 is an
inner produet space.
(b) Let V= C{[0,1]), and define

1/2

{fig)= ! fltyg(t) dt.

Is this an inner produect on V7

Let T be a linear operator on an inner produect space V, and suppose
that ||T{z)|| = ||z| for all z. Prove that T is one-to-one.

Let V be a vector space over F, where F' = R or F = C, and let W be
an inner produet space over F with inner product (-,-). ET: V— W
is linear, prove that {z,y}" = (T(z), T(y)} defines an inner produect on
WV if and only if T is one-to-one.

Let V be an inner produect space. Prove that

(a) |lzxy)?=z? £ 2R {z,y) + ||v||? for all z,y €V, where R (x, 1)
denotes the real part of the complex number (x,y).
(®) [l —liyll| < llz—y| forall z,y € V.

Let V be an inner product space over F. Prove the polar identities: For
all o,y €V,

(@ Dy =ilz+yl?—flz—ul® EF=R

() (z.y) =14 i¥llz+i*yl? i F =0, wherei® = -1

Let A be an n x n matrix. Define

Ay = %(A+A‘} and As = %[A — A*).

(a) Prove that A} = A,, A3 = Ao, and A = A; +iA,. Would it be
reasonable to define 4, and As to be the real and imaginary parts,
respectively, of the matrix A?

(b) Let A be an n x n matrix. Prove that the representation in (a) is
unique. That is, prove that if A = By + iBa, where By = B and
B} = B, then By = A and By = As.



22,

23.

Let V be a real or complex vector space (possibly infinite-dimensional),
and let 7 be a basis for V. For =,y € V there exist vy, vo,...,un € 3
such that

n n
Ti= Z ajv; and y= Z biv.
i=1

i=1

Define
e p—
T,y = Zaibi.
i=1

(a) Prove that (-, -} is an inner product on V and that 3 is an or-
thonormal basis for V. Thus every real or complex vector space
may be regarded as an inner product space.

{b) Prove that if V = R™ or V = C" and 3 is the standard ordered
basis, then the inner product defined above is the standard inner
product.

Let V = F*, and let A £ My n(F).

(a) Prove that {x, Ay) = (A*z,y) for all =,y € V.

(b) Suppose that for some B € My . (F), we have (x, Ay} = (Br,y)
for all =,y € V. Prove that B = A*.

{c) Let a be the standard ordered basis for V. For any orthonormal
basis 3 for V, let @) be the n x n matrix whose columns are the
vectors in 4. Prove that Q* = QL.

{d) Define linear operators T and U on V by T(x} = Ar and U(x) =
A*z. Show that [U]z = [T]3 for any orthonormal basis 3 for V.

The following definition is used in Exercises 24-27.

C.

Definition. Let V be a vector space over F', where F Is either R or
Regardless of whether V' is or is not an inner product space, we may still

define a norm || +|| as a real-valued function on V satisfying the following three
conditions for all r,y eV anda € F:

(1) ||z|| = 0, and ||z|| = 0 if and only if = 0.
(2) |lax|| = |a]- |||l
(3) Iz +wll = l|l=l + |lzil-

24. Prove that the following are norms on the given vector spaces V.

(8) V=Mmn(F); [l =max|dy| forall AV

(b) V=C([0,1]); IIfl = m[gﬂg] |f(t)] forall feV



25.

26.

27.

1
(e) V=C([o,1)); |'f||=f |f(e)|dt  forall feV

il
(d) V=R% |(a b} = max{|al,|b|} forall (a,b) eV
Use Exercise 20 to show that there is no inner produect (-, -} on R?

such that ||z||* = {z,z) for all = € R® if the norm is defined as in
Exercise 24(d).

Let |||l be a norm on a vector space V', and define, for each ordered pair
of vectors, the scalar d{x,y) = || — y||, called the distance between x
and y. Prove the following results for all =z, y,z € V.

(a) d(x,y)=0.
(b) diz,y) = dly, ).

(c) dlz. y}<de 2) + d(z,y).
(d) d{z,z)=0.

(e) dix,y) #0ifr+#y.

Let ||-|| be a norm on a real vector space V satisfying the parallelogram
law given in Exercise 11. Define

1 i
(@) = g [l=+3l* ~ ll= - o] .
Prove that (-, -) defines an inner product on V such that ||z = (r,z)
forall € V.
Hints:

{(a) Prove (r,2y} =2{z,y) forall z,y € V.
(b) Prove (r+u,y) =(z,y) +{u,y) forall c,u,y e V.
(c) Prove (nz, y} = n{r,y) for every positive integer n and every

T,y € V.

(d) Prove m {%L y) = {z,y) for every positive integer m and every
T, ¥ € v

(e) Prove {(rr,y) = r{r,y} for every rational number r and every
o,y V.

(£} Prove |{z,y}| < |lzll|ly|| for every =,y € V. Hint: Condition (3) in
the definition of norm ean be helpful.

(g) Prove that for every ¢ £ R, every rational number r, and every
T,yeV,

le{z, y) — ez, 9) | = |(e—7) {z,4) — ((e—7)z, 9} | < 2le—r|||=]lly]l-

(h) Use the fact that for any ¢ € R, |c — r| ean be made arbitrarily
small, where + varies over the set of rational numbers, to establish
itemn (b) of the definition of inner product.



28,

29,

30.

Let V be a complex inner product space with an inner produet (-, -}.
Let |-, -] be the real-valued funetion such that [x,y] is the real part of
the complex number {z, y} for all =,y € V. Prove that [+, -] is an inner
product for V, where V is regarded as a vector space over R. Prove,
furthermore, that [r,iz] = 0 for all £ £ V.

Let V be a vector space over C, and suppose that [-, -] is a real inner
produet on V, where V is regarded as a veetor space over R, such that
[r,ix] = 0 for all x € V. Let {-,-) be the complex-valued function
defined by

{x,y) = [z, y] + iz, iy] for z,y e V.
Prove that (-, -} is a complex inner produet on V.

Let ||+|| be a norm (as defined in Exercise 24) on a complex veetor
space V satisfying the parallelogram law given in Exercise 11. Prove
that there is an inner product (-, -} on V such that |z|* = (r.z} for
all z € V.

Hint: Apply Exercise 27 to V regarded as a vector space over 2. Then
apply Exercise 29.



sec6.2 EXERCISES

1. Label the following statements as true or false.

{a) The Gram-Schmidt orthogonalization process allows us to con-
struct an orthonormal set from an arbitrary set of veetors.



(b)

(c)
(d)

(e)
(f)
(z)

Every nonzero finite-dimensional inner produet space has an or-
thonormal basis.

The orthogonal complement of any set is a subspace.

If {wry 09500, v, } 15 a basis for an inner produect space V, then for
any = £ V the scalars (z, v;) are the Fourier coefficients of .

An orthonormal basis must be an ordered basis.

Every orthogonal set is linearly independent.

Every orthonormal set is linearly independent.

In each part, apply the Gram-Schmidt process o the given subset S of
the inner product space V to obtain an orthogonal basis for span(s).
Then normalize the vectors in this basis to obtain an orthonormal basis
{3 for span(S), and compute the Fourier coefficients of the given vector
relative to 3. Finally, use Theorem 6.5 to verify your result.

(a)
(b)
(c)
(d)
(e)

()

(=)

()

V=R3 8§ ={(1,0,1),(0,1,1),{1,3,2)}, and = = (1, ,2]

V= R3 8 =1{(1,1,1),(0,1,1),(0,0,1)}, a.nd:={ 0,

V = P3(R) with the inner product {f(x),g(z)) = {1 f{t]g(t}dt_.
S={l,r.?},and hiz) =14 =

V = span(S), where S = {(1,:,0).(1 —¢,2,4i}}, and

T =(3+14,4,-4)

V=R, S={(2-1,-2,4),(-2,1,-5,5),(-1,3,7,11)}, and = =
(—11,8,—4,18)

V= Ri‘. 5= '{(1‘. _2‘. _1:3}'1 (3:61 3‘. —1}.-(1:4.-233)}:

and r=(-1,2,1,1)

s (319G 6 )
(19

V = Ma,s(R), § = {(g i*) ] (lé g) ] (g :}g)} il A-
(= %)

®
V = span(S)} with the inner product (f,g) = f flt)glt)dt,
S5 = {sint,cost, 1,t}, and ki) =2t + 1 !

V==C4 8S={(1,i2—i,-1),(2+ 3,30, 1 —4,2i),

(—1+7i, 64108, 11 —43, 3+42) }, and = = (2471, 649,931, 4+44)
V=04 8={(—4,3-2i:1—4),

(—1-54,5—4i, —345i, 7—2i), (—27—4, —7T—6i, — 154+ 25i, —T—6i) },
and © = (—13 — 7i, —12 4 3, -39 — 114, —26 4 5i)



3.

10.

11.

12.

j G ) . 8i 1
() V_MM(CJ*S_{(Q% 4+i )’(—3—3:‘ —4+4;‘)‘-

_95 38 —2—13 _ =B —18e
(12—?3;‘ —?+24x)}-‘a“d’d‘_(1u-1m 9—9:')

B s = e
(=) V_MM[CLS_{(Q—;' l+3t')’(1+1[3i —6—?;()"

_11-13% 3431 _(-T+5i 3418
(7—125:' —?I—Bi)}’&ndA_(Q—ﬁf —3+7:’)

In R2, let

o~ () oA}

Find the Fourier coefficients of (3, 4) relative to 3.
Let § = {(1,0.4),{1,2,1)} in C*. Compute S+.

Let Sp = {xp}, where xg is a nonzero vector in R*. Describe Si ge-
ometrically. Now suppose that § = {xy, r2} is a linearly independent
subset of R?. Describe 54 geometrieally.

Let V be an inner product space, and let W be a finite-dimensional
subspace of V. If r ¢ W, prove that there exists y € V such that
y € WL, but {r, y) # 0. Hint: Use Theorem 6.6.

Let 3 be a basis for a subspace W of an inner product space V, and let
z € V. Prove that z £ W' if and only if {z,v) = 0 for every v € 4.

Prove that if {wy,wa,...,wn} is an orthogonal set of nonzero vectors,
then the vectors vy, va, ..., vy derived from the Gram-Schmidt process
satisfy v; = w; for i = 1,2,... ,n. Hint: Use mathematieal induetion.

Let W = span{{(#,0,1)}) in C*. Find orthonormal hases for W and W+,

Let W be a finite-dimensional subspace of an inner produet space V.
Prove that there exists a projection T on W along W+ that satisfies
N(T) = WL, In addition, prove that ||T{(z}|| < ||z| for all z € V.
Hint: Use Theorem 6.6 and Exercise 10 of Section 6.1. (Projections are
defined in the exercises of Section 2.1.)

Let A be an n x n matrix with complex entries. Prove that AA® =T if
and only if the rows of A form an orthonormal basis for C*.

Prove that for any matrix A € My.n(F), {F-!(L,;.})J' = N{La).



13.

14.

15.

16.

17.

18.

Let V be an inner product space, § and Sp be subsets of V, and W be
a finite-dimensional subspace of V. Prove the following results.

(a) So C S implies that S+ C S7.

(b) §C(5*)*; s0span(S) C (S*)*.

(e) W= (W)t Hint: Use Exercise 6.

(d) V=WaoWL, (See the exercises of Section 1.3.)

Let Wy and Ws be subspaces of a finite-dimensional inner product space.
Prove that (W;+Ws)t = Wi nWi and (W, nWa)t = Wi + W3, (See
the definition of the sum of subsets of a vector space on page 22.) Hint
for the second equation: Apply Exercise 13(c) to the first equation.

Let V be a finite-dimensional inner product space over F.

(a) Parseval's Identity. Let {vy,va,..., vy} be an orthonormal basis
for V. For any =,y € V prove that

n

{z,4) =3 (z,0) [y, m5).

i=1

(b) Use (a) to prove that if 3 is an orthonormal basis for V with inner
product (-, -}, then for any =,y € V

(gs(x). daly)) = {[z]s. [y]a) = (=, ),
where (-, -}’ is the standard inner produet on F".

(a) Bessel's Inequality. Let V be an inner produet space, and let § =
{v1,va,...,vn} be an orthonormal subset of V. Prove that for any

€V we have
n
ll® = X 16z, u) .
i=1

Hint: Apply Theorem 6.6 to z € V and W = span(5). Then use
Exercise 10 of Section 6.1.

{b) In the context of (a), prove that Bessel's inequality is an equality
if and only if = £ span(5).

Let T be a linear operator on an inner produet space V. If (T{x),y) =0
for all ,y € V, prove that T = Ty. In faet, prove this result if the
equality holds for all = and y in some basis for V.

Let V = C(|-1,1]). Suppose that W, and W, denote the subspaces of V
consisting of the even and odd funetions, respectively. (See Exercise 22



19.

20.

21.

22,

23.

of Section 1.3.) Prove that W} = W, where the inner product on V is
defined by

1
Uil f FOECL

In each of the following parts, find the orthogonal projection of the

given vector on the given subspace W of the inner product space V.

(a) V=R% u=(2,6),and W= {(z,y): y = 4z}.

(b) V=R% u=(2,1,3), and W = {(z,y,2): =+ 3y — 2= = 0O}

(c) V =P(R) with the inner produet {f(z),g(z)) = fc: Flt)g(t) dt,
h(z) =4+ 3z — 272, and W = Py(R).

In each part of Exercise 19, find the distance from the given vector to
the subspace W.

Let V = C([-1, 1]) with the inner product (f, g) I|"_ (t)g(t) dt, and
let W be the subspaee Pa(R), viewed as a space of funetions. Use
the orthonormal basis obtained in Example 5 to compute the “best”
(closest) second-degree polynomial approximation of the funetion hit) =
' on the interval [—1,1].

Let V = C([0,1]) with the inner produet {f, g} = ru (t)g(t) dt. Let W
be the subspace spanned by the linearly independent set {t,v/¥}.

(a) Find an orthonormal basis for W.
(b) Let h(t) = £2. Use the orthonormal basis obtained in (a) to obtain
the “best” (closest) approximation of k in W.

Let V be the vector space defined in Example 5 of Section 1.2, the

space of all sequences o in F (where F = R or F = () such that

o(n) # 0 for only finitely many positive integers n. For o.p € V., we
(= <)

define (o, p) = Z o{n)p(n). Since all but a finite number of terms of

the series are z;ro,_l the series converges.

{a) Prove that (-, -) is an inner produet on V. and hence V is an inner
produet space.

(b) For each positive integer n, let e; be the sequence defined by
en(k) = dng, where 8y is the Kronecker delta. Prove that
{e1.ea,...} is an orthonormal hasis for V.

(c) Let on =€) +ep and W = spani{o,: n > 2}

(i) Prove that e; & W, so W # V.
(ii) Prove that W- = {0}, and conclude that W # (W)~



Thus the assumption in Exercise 13(c) that W is finite-dimensional
is essential.



$ec6.3  EXERCISES

1. Label the following statements as true or false. Assume that the under-
lyving inner product spaces are finite-dimensional.

(a)
(b)
(c)

(d)
(e)

(f)
(=)

Every linear operator has an adjoint.

Every linear operator on V has the form r — (r, ) for some y € V.
For every linear operator T on V and every ordered basis 3 for V,
we have [T*|g = ([T]z)*.

The adjoint of a linear operator is unique.

For any linear operators T and U and sealars a and b,

(aT + BU)* = aT* + BU".

For any n x n matrix A, we have (La)* = La-.
For any linear operator T, we have (T*)* =T.

2. For each of the following inner product spaces V {over F') and linear
transformations g: V — F', find a vector y such that g(z) = (r,y) for
all z € V.



10.

11.

12.

{a) V= RS, g(a1,ag,a3} = a1 — 2as + daz
(b) V=02 glz1,22) =21 — 222

(e) V=Pa(R) with (f k) ff t)dt, g(f) = F(0) + f'(1)

For each of the following inner product spaces V and linear operators T
on V, evaluate T* at the given vector in V.

(a) V=R2 T{a,b)=(2a+ba—3b), z=(3,5).
(b) V=0C2 T{z1,22) = (221 +1~2, (l—é)z), z=(3—4,14+2).

(c) V=Py(R)with (f,g) = f f(tlg(t) dt, T(f) = f"+3f,
Fit) =4 9% B
Complete the proof of Theorem 6.11.

(a) Complete the proof of the corollary to Theorem 6.11 by using
Theorem 6.11, as in the proof of (e).

(b) State a result for nonsquare matrices that is analogous to the corol-
lary to Theorem 6.11, and prove it using a matrix argument.

Let T be a linear operator on an inner produet space V. Let Uy = T+T*
and Uz = TT*. Prove that U; = U] and Us = U3,

Give an example of a linear operator T on an inner product space VW
such that N(T) £ N(T*).

Let V be a finite-dimensional inner produet space, and let T be a linear
operator on V. Prove that if T is invertible, then T* is invertible and
(To)—l — {T_I)°.

Prove that if V. = W @ W= and T is the projection on W along W+,
then T = T*. Hint: Recall that N(T) = W*. {For definitions, see the
exercises of Sections 1.3 and 2.1.)

Let T be a linear operator on an inner produet space V. Prove that
|Tiz)]| = ||=|| for all z € V if and only if {T(z), T(y)) = {(z,y) for all
x,y € V. Hint: Use Exercise 20 of Section 6.1.

For a linear operator T on an inner product space V, prove that T*T =
Tp implies T = Ty. Is the same result true if we assume that TT* = Ty?

Let V be an inner product space, and let T be a linear operator on V.

Prove the following results.

(a) R(T*)* =N(T).

(b) If V is finite-dimensional, then R(T*) = N(T)*. Hint: Use Exer-
cise 13(c) of Section 6.2.



13.

14.

Let T be a linear operator on a finite-dimensional vector space V. Prove
the following results.

(a) N{T*T) = N(T). Deduce that rank(T*T) = rank(T).

(b) rank(T) =rank(T*). Deduce from (a) that rank(TT*) = rank(T).
(c) For any n x n matrix A, rank(A”A) = rank(AA*") = rank(A).

Let V be an inner product space, and let y,z € V. Define T: V — V by
T{z) = {z,y}z for all £ € V. First prove that T is linear. Then show
that T* exists, and find an explicit expression for it.

The following definition is used in Exercises 15-17 and is an extension of the
definition of the adjoint of a linear operator.

Deflnition. Let T: V — W be a linear transformation, where V and W

are finite-dimensional inner product spaces with inner products (-, -}, and
{+, *}qa: respectively. A function T*: W — V is called an adjoint of T if
(T(x), I,,l}2 =z T‘l:y]}l forallz eV and y e W.

15,

16.

17.

Let T: V — W be a linear transformation, where V and W are finite-
dimensional inner product spaces with inner produets (-, -}, and (-, -},,
respectively. Prove the following results.

(a) There is a unique adjoint T* of T, and T* is linear.

(b} If 3 and ~ are orthonormal bases for V and W, respectively, then
[T = ((T13)*-

() rank(T*)=rank(T).

(d) (T*(z),y}y={z. T(y)}oforall c e Wand y e V.

(e) ForalzeV, T*T(x) = 0 if and only if T(x) = 0.

State and prove a result that extends the first four parts of Theorem 6.11
using the preceding definition.

Let T: V — W be a linear transformarion, where WV and W are finite-
dimensional inner product spaces. Prove that (R(T*})* = N(T), using
the preceding definition.

18.f Let A be an n x n matrix. Prove that det{A*) = det(4).

19.

20.

Suppose that A is an mxn matrix in which no two columns are identieal.
Prove that A® A is a diagonal matrix if and only if every pair of columns
of A is orthogonal.

For each of the sets of data that follows, use the least squares approx-
imation to find the best fits with both (i) a linear funetion and (i) a
quadratic function. Compute the error E in both cases.

(a) {(-3,9),(-2,6),(0,2),(1,1)}



(b) {(1,2),(3,4),(5,7),(7,9),(9,12)}
(e) {(-2,4), ( 13),(0,1), (1, —1), (2, -3)}

In physics, Hooke's law states that (within certain limits) there is a
linear relationship between the length = of a spring and the foree y
applied to (or exerted by) the spring. That is, y = cx + d, where ¢ is
called the spring constant. Use the following data to estimate the
spring constant (the length is given in inches and the foree is given in
pounds).

Length Force
T u
358 1.0
4.0 232
4.5 23
5.0 43

Find the minimal sclution to each of the following systems of linear
equations.

42y —z=1
(a) z+2y—=z=12 (b) 2x+4+3y+2=2
dr4+ Ty —z=4

r+y—z=0
. +ytz—w=1
(€) 2z—pytz=3 ) T -
I A 2r —y +w=1

Consider the problem of finding the least squares line y = ot 4 d corre-
sponding to the m observations ({1, y1), (fa,92), . o, (tms Ym ).

{a) Show that the equation (A*A)xg = A*y of Theorem 6.12 takes the
form of the normal equations:

@, t?) c+ (é :,-) g g i
and
(g’“l fe) e+ md = gyf.

These equations may also be obtained from the error E by setting

the partial derivatives of E' with respect to both ¢ and d equal to
LETO,



24.

(b) Use the second normal equation of (a) to show that the least
squares line must pass through the center of mass, (£,5), where

- 1
g and T= =

Let V and {e;, €2,...} be defined as in Exercise 21 of Section 6.2. Define
T:V—=Vhy

Wi

."[ng

QIH

i=1

o
Tio)(k) = Z a(i} for every positive integer k.
i=k

Notice that the infinite series in the definition of T converges becanse

o(i) # 0 for only finitely many 1.

(a) Prove that T is a linear operator on ‘u‘

{(b) Prove that for any positive integer n, T(en) = Y1, €.

(c) Prove that T has no adjoint. Hint: By way of contradiction,
suppose that T* exists. Prove that for any positive integer n,
T*{eqn)(k) # 0 for infinitely many k.



sec6.4  EXERCISES

1. Label the following statements as true or false. Assume that the under-
lying inner product spaces are finite-dimensional.

(a) Ewvery self-adjoint operator is normal.

{b) Operators and their adjoints have the same eigenvectors.

{(€) IfT is an operator on an inner product space V, then T is normal
if and only if [T]z is normal, where 3 is any ordered basis for V.

(d) A real or complex matrix A is normal if and only if L4 is normal.

(e) The eigenvalues of a self-adjoint operator must all be real.



(f) The identity and zero operators are self-adjoint.
(g) Every normal operator is diagonalizable.
{h) Every self-adjoint operator is diagonalizable.

For each linear operator T on an inner product space V, determine
whether T is normal, self-adjoint, or neither. If possible, produce an
orthonormal basis of eigenvectors of T for V and list the eorresponding
elgenvalues.

(a) V=R?and T is defined by T(a,b) = (2a — 2b, —2a + 5b).

(b) V=R?and T is defined by T(a,b,c) = (—a + b,5b,4a — 2b + 5¢).
{c) V=C? and T is defined by T(a,b) = (2a + ib,a + 2b).

(d) V=Pa(R)and T is defined by T(f) = f', where

1
(Fid) = j; F(Dg(t)at.
(€) V = Maya(R) and T is defined by T(A) — At.

: b d
(F) V =Maya(R) and T is defined by T (‘: d) g (z b)_

Give an example of a linear operator T on R? and an ordered basis for
R? that provides a counterexample to the statement in Exercise 1(c).

Let T and U be self-adjoint operators on an inner produet space V.
Prove that TU is self-adjoint if and only if TU = UT.

Prove (b) of Theorem 6.15.

Let V be a complex inner product space, and let T be a linear operator
on V. Define

1 - 1 -
Ty = E[T-ﬁ-T ) and Ta= E(T_T }-
(a) Prove that Ty and Ts are self-adjoint and that T =Ty +i Ta.
(b) Suppose also that T = Uy +iUa, where Uy and Us are self-adjoint.
Prove that U; =T, and Uy = Ta.
(c) Prove that T is normal if and only if Ty Ta =TaTy.

Let T be a linear operator on an inner product space V, and let W be

a T-invariant subspace of V. Prove the following results.

(a) If T is self-adjoint, then Ty is self-adjoint.

(b) W+ is T*-invariant.

(c) If Wis both T- and T*-invariant, then (Tw)* = (T* w.

(d) If W is both T- and T*-invariant and T is normal, then Tw is
normal.



8.

10.

11.

12.

13.

14.

Let T be a normal operator on a finite-dimensional complex inner
product space V, and let W be a subspace of V. Prove that if W is
T-invariant, then W is also T*-invariant. Hint: Use Exercise 24 of Sec-
tion 5.4.

Let T be a normal operator on a finite-dimensional inner produet space
V. Prove that N(T) = N(T*) and R(T) = R(T*). Hint: Use Theo-
rem 6.15 and Exercise 12 of Section 6.3.

Let T be a self-adjoint operator on a finite-dimensional inner produet
space V. Prove that for all r e V

IT(=) £ i) = TP + [|=]1*.
Deduce that T — il is invertible and that [(T —il)=!]* = (T +il)~*.

Assume that T is a linear operator on a complex (not necessarily finite-
dimensional) inner produect space V with an adjoint T*. Prove the
following results.

(a) If T is self-adjoint, then {T(x), ) is real for all = £ V.

(b) If T satisfies (T{z),z) = 0forall z € V, then T = Tp. Hint:
Replace © by = + y and then by = + iy, and expand the resulting
inner produets.

(c) IF(T(z),r)isrealforall r €V, then T =T*.

Let T be a normal operator on a finite-dimensional real inner produet
space WV whose characteristic polynomial splits. Prove that V has an
orthonormal basis of eigenvectors of T. Hence prove that T is self-
adjoint.

An n x n real matrix A is said to be a Gramian matrix if there exists a
real (square) matrix B such that A = B'B. Prove that A is a Gramian
matrix if and only if A is symmetric and all of its eigenvalues are non-
negative. Hint: Apply Theorem 6.17 to T = L4 to obtain an orthonor-
mal basis {vy,va,. .., vy } of eigenvectors with the associated eigenvalues
A1, Az, ..., An. Define the linear operator U by Ulv) = /A,

Simultaneous Dingonalization. Let V be a finite-dimensional real inner
product space, and let U and T be self-adjoint linear operators on V
such that UT = TU. Prove that there exists an orthonormal basis for
V' eonsisting of vectors that are eigenveetors of both U and T. (The
complex version of this result appears as Exercise 10 of Section 6.6.)
Hint: For any eigenspace W = E, of T, we have that W is both T- and
U-invariant. By Exercise 7, we have that W' is both T- and U-invariant.
Apply Theorem 6.17 and Theorem 6.6 (p. 350).



15. Let A and B be symmetric n % n matrices such that AB = BA. Use
Exercise 14 vo prove that there exists an orthogonal matrix P such that
PtAP and P'BP are both diagonal matrices.

16. Prove the Cayley—Hamilton theorem for a complex n xn matrix A. That
is, if f(t} is the characteristic polynomial of A, prove that f(A4) = O.
Hint: Use Schur’s theorem to show that A may be assumed to be upper
triangular, in which case

£) = JJ(4a - o).

i=1

Now if T = L4, we have (A;;l — T)(e;) € span({ey,es,...,e5-1}) for

= 2, where {ey, ea,...,ep} is the standard ordered basis for C". (The
general case is proved in Section 5.4.)

The following definitions are used in Exercises 17 through 23.

Definitions. A linear operator T on a finite-dimensional inner product
space is called positive definite |positive semidefinite] if T is self-adjoint
and (T(x),z} > 0 [{T(z),z} = 0] for all £ # 0.

An n x n matrix A with entries from R or C is called positive definite
|positive semidefinite| if Ly is positive definite |positive semidefinite].

17. Let T and U be a self-adjoint linear operators on an n-dimensional inner
product space V, and let A = [Tz, where 4 is an orthonormal basis for
V. Prove the following results.

(a) T is positive definite [semidefinite] if and only if all of its eigenval-
ues are positive [nonnegative].
(b) T is positive definite if and only if

z Ajjagm; = 0 for all nonzero n-tuples (aj, as, ... ,agn).
ij

() T is positive semidefinite if and only if 4 = B* B for some square
matrix B.

(d) If T and U are positive semidefinite operators such that T2 = U?,
then T = U.

{e) If TandU are positive definite operators such that TU = UT, then
TU is positive definite.

(f) T is positive definite [semidefinite| if and only if A is positive def-
inite [semidefinite].

Because of (f), results analogous to items (a) through (d) hold for ma-

trices as well as operators.



18.

19.

21.

22,

23.

Let T:V — W be a linear transformation, where V and W are finite-
dimensional inner product spaces. Prove the following results.

{a) T*T and TT* are positive semidefinite. (See Exercise 15 of Sec-
tion 6.3.)
(b) rank(T*T) =rank(TT") = rank(T).

Let T and U be positive definite operators on an inner product space
V. Prove the following results.

(a) T+ U is positive definite.
(b) If ¢ = 0, then T is positive definite.
(c) T~!is positive definite.

Let V be an inner produet space with inner produet (-, -}, and let T be
a positive definite linear operator on V. Prove that (z,y)" = (T{x), )
defines another inner product on V.

Let V be a finite-dimensional inner product space, and let T and U be
self-adjoint operators on V such that T is positive definite. Prove that
both TU and UT are diagonalizable linear operators that have only real
eigenvalues. Hint: Show that UT is self-adjoint with respect to the inner
product {x,)" = {T(x),y}). To show that TU is self-adjoint, repeat the
argument with T—! in place of T.

This exercise provides a converse to Exercise 20. Let V be a finite-
dimensional inner product space with inner produet {-, -}, and let (-, -}’
be any other inner product on V.

(a) Prove that there exists a unique linear operator T on V such
that {z,4) = (T(z),y) for all = and y in V. Hint: Let 3 =
{v1,v9,...,vn} be an orthonormal basis for V with respect to
{+,-), and define a matrix 4 by Ay = (vj,v;) for all i and j.
Let T be the unique linear operator on V such that [T]s = A.

(b) Prove that the operator T of (a) is positive definite with respect
to both inner products.

Let U be a diagonalizable linear operator on a finite-dimensional inner
product space V such that all of the eigenvalues of U are real. Prove that
there exist positive definite linear operators Ty and T} and self-adjoint
linear operators To and Th such that U = ToTy = T{Th. Hint: Let (-, )
be the inner product associated with V, 7 a basis of eigenvectors for U,
{-, -} the inmer product on V with respect to which 2 is orthonormal
(see Exercise 22(a) of Section 6.1), and T the positive definite operator
according to Exercise 22. Show that U is self-adjoint with respect to
{-,=)" and U = T7'U*T; (the adjoint is with respect to (-,-)). Let
Ta=Ty 0%



24. This argument gives another proof of Schur’s theorem. Let T be a linear
operator on a finite dimensional inner produet space V.

(a) Suppose that 3 is an ordered basis for V such that [T is an upper
triangular matrix. Let ~ be the orthonormal basis for V obtained
by applying the Gram-Schmidt orthogonalization process to 4 and
then normalizing the resulting vectors. Prove that [T|, is an upper
triangular matrix.

(b) Use Exercise 32 of Section 5.4 and (a) to obtain an alternate proot
of Schur’s theorem.
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secb6.5 EXERCISES

Label the following statements as true or false. Assume that the under-
lying inner product spaces are finite-dimensional.

(a) Every unitary operator is normal.

(b) Every orthogonal operator is diagonalizable.

(c) A matrix is unitary if and only if it is invertible.

(d) If two matrices are unitarily equivalent, then they are also similar.

(e) The sum of unitary matrices is unitary.

(f) The adjoint of a unitary operator is unitary.

(g) If T is an orthogonal operator on V. then [T]z is an orthogonal
matrix for any ordered basis 3 for V.

(h) If all the eigenvalues of a linear operator are 1, then the operator
must be unitary or orthogonal.

(i) A linear operator may preserve the norm, but not the inner prod-
uet.

For each of the following matrices A, find an orthogonal or unitary
matrix P and a diagonal matrix D such that P*AP = D.

(a) G ?) (b) ([1} _.13) (c) (3+?3=' 3_53:)
02 9 2 1
(d) (g 0 g) (e) (% 3)

Prove that the composite of unitary [orthogonal] operators is unitary
[orthogonal].

— b =



10.

For z € C, define T.: € — C by T.(u) = zu. Characterize those » for
which T. is normal, self-adjoint, or unitary.

Which of the following pairs of matrices are unitarily equivalent?
0 1
1 0 01 a1 I
@(F) m 0 @ (1 m ( u)
0 2 00
(c) - 0 and 0 -1 0
1 o 00
0 10 0
(d) |- 0 and g «: 0
1 00 —
1 10 1 0 0
{e) |0 2 2 and 020
g 0 3 g 8 3

Let V be the inner product space of complex-valued continuous fune-
tions on [0, 1] with the inner produet

Lo B I e Y =
(= = = =R

1 LALFL ST,
f.a) =]; FlE)glt) dt.

Let h € V, and define T: V — V by T(f) = hf. Prove that T is a
unitary operator if and only if |h(t)| =1for 0 < ¢ < 1.

Prove that if T is a unitary operator on a finite-dimensional inner prod-
uet space V, then T has a unitary square root; that is, there exists a
unitary operator U such that T = U2,

Let T be a self-adjoint linear operator on a finite-dimensional inner
produet space. Prove that (T +il)(T —l)~" is unitary using Exercise 10
of Section 6.4.

Let U be a linear operator on a finite-dimensional inner product space
V. If ||U(z)|| = ||z| for all = in some orthonormal basis for V, must U
be unitary? Justify your answer with a proof or a counterexample.

Let A be an n % n real symmetrie or complex normal matrix. Prove
that

tr(A) =D A and tr(A%4) = |A\[%
i=1

i=1

where the A;’s are the (not necessarily distinet) eigenvalues of A.



11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

Find an orthogonal matrix whose first row is (1,2, 2).
Let A be an n x n real symmetric or complex normal matrix. Prove

that

det(A) = fp..-._

i=1
where the A;’s are the (not necessarily distinet) eigenvalues of A.

Suppose that A4 and B are diagonalizable matrices. Prove or disprove
that A is similar to B if and only if A and B are unitarily equivalent.

Prove that if A and B are unitarily equivalent matrices, then A is pos-
itive definite [semidefinite] if and only if B is positive definite [semidef-
inite]. (See the definitions in the exercises in Section 6.4.)

Let U be a unitary operator on an inner product space V, and let W be
a finite-dimensional U-invariant subspace of V. Prove that

(a) U(W)=W;

(b) W+ is U-invariant.

Contrast (b) with Exercise 16.

Find an example of a unitary operator U on an inner product space and
a U-invariant subspace W such that W+ is not U-invariant.

Prove that a matrix that is both unitary and upper triangular must be
a diagonal matrix.

Show that “is unitarily equivalent to” is an equivalence relation on
Mnxn(cj-

Let W be a finite-dimensional subspace of an inner product space V.
By Theorem 6.7 (p. 352) and the exercises of Section 1.3, V = Wa WL,
Define U: V — V by U{vy + va2) = v1 — w9, where vy € W and vs € W,
Prove that U is a self-adjoint unitary operator.

Let V be a finite-dimensional inner product space. A linear operator U
on V is called a partial isometry if there exists a subspace W of V
such that [|U(z)|| = ||| for all £ € W and U{z) = 0 for all = € W+,
Observe that W need not be U-invariant. Suppose that U is such an
operator and {vy,ve, ..., v} is an orthonormal basis for W. Prove the
following results.

(a) (U{z),U(y)) = (z,y) for all z,y € W. Hini: Use Exercise 20 of
Section 6.1.
(b) {U{vy),U{wa),... ,U(we)} is an orthonormal basis for R{U).



21,

22,

23.

24.

(c) There exists an orthonormal basis ~ for V such that the first
k eolimns of [U], form an orthonormal set and the remaining
columns are zZero.

(d) Let {wy,ws,...,w;} be an orthonormal basis for R(U)- and 8 =
{U{vy), U(wa), ..., U{w),wn,...,w;}. Then 3 is an orthonormal
basis for V.

(e) Let T be the linear operator on V that satisfies T(U{v)) = o
(1<i<k)and T(w;) =0 (1< i< 35). Then T is well defined,
and T = U*. Hint: Show that (U(z),y) = (z, T(y)) forall o,y € 3.
There are four cases.

(f) U* is a partial isometry.

This exercise is continued in Exercise @ of Section 6.6.

Let A and B be n x n matrices that are unitarily equivalent.

(a) Prove that tr{A*A) = wr(B*B).
(b) Use (a) to prove that

n n
Z :A,'J'l‘z = Z '-B;'_]'F.
1

ij=1 ij=

{c) Use (b) to show that the matrices

1 22 L |
(2 ;') s (1 1)
are not unitarily equivalent.

Let V be a real inner product space.

(a) Prove that any translation on V is a rigid motion.
(b) Prove that the composite of any two rigid motions on V is a rigid
motion on V.

Prove the following variation of Theorem 6.22: If f: V — V is a rigid
motion on a finite-dimensional real inner product space V, then there
exists a unique orthogonal operator T on V and a unique translation g
on V such that f =T o g.

Let T and U be orthogonal operators on R?. Use Theorem 6.23 to prove
the following results.

(a) If T and U are both reflections about lines through the origin, then
UT is a rotation.

{b) If T is a rotation and U is a reflection abont a line through the
origin, then both UT and TU are reflections about lines through
the origin.



25.

27.

290.

Suppose that T and U are reflections of R? about the respective lines
L and L' through the origin and that ¢ and ' are the angles from
the positive r-axis to L and L', respectively. By Exercise 24, UT is a
rotation. Find its angle of rotation.

Suppose that T and U are orthogonal operators on R? such that T is
the rotation by the angle ¢ and U is the reflection about the line L
through the origin. Let v be the angle from the positive r-axis to L.
By Exercise 24, both UT and TU are reflections about lines Ly and La,
respectively, through the origin.

{a) Find the angle & from the positive r-axis to L.

(b) Find the angle # from the positive r-axis to La.

Find new coordinates =°, ¢ so that the following quadratic forms can
be written as A ()2 + Aa(y’)2.

(a) =*+dzy+y?°

(b) 212 + 2y + 2y?

(c) 2 —12zy — 4y

(d) 3z + 2y + 3y°

(e) =" —2xy +9°

Consider the expression X*AX, where X* = (r,y, z) and A is as defined
in Exercise 2{(e). Find a change of coordinates =, 4", 2" so that the
preceding expression is of the form A ()% + la(y')® + Aa(2)2

QR-Factorization. Let wy, wa,...,w, be linearly independent vectors
in F*, and let wy,va,..., v be the orthogonal vectors obtained from

wy, wa,...,uwy by the Gram-Schmidt process. Let wy,ua, ..., uy be the

orthonormal basis obtained by normalizing the v;'s.
(a) Solving (1) in Seetion 6.2 for wy in terms of u;, show that
k-1

wp = [loglfug + Y (wp,usdu; (1 <k <n).
=1

(b) Let A and ) denote the n x n matrices in which the Eth columns
are wy and ug, respectively. Define B € My .n(F) by

flsll ifj=Fk
RJ';,- = i:wk,ﬂ.j} lfj <k
0 if § > k.

Prove A = QR.
(c) Compute  and R as in (b) for the 3 x 3 matrix whose columns are
the vectors wy, ws, ws, respectively, in Example 4 of Section 6.2.



30.

(d) Since @ is unitary [orthogonal] and R is upper triangular in (b),
we have shown that every invertible matrix is the produet of a uni-
tary [orthogonal| matrix and an upper triangular matrix. Suppose
that A € M, (F) is invertible and A = @Ry = Q3R,, where
(1,0 & Mp.pn(F) are unitary and By, Rs € My .n(F) are upper
triangular. Prove that D = RQR;I is a unitary diagonal matrix.
Hint: Use Exercise 17.

{e) The QR factorization described in (b) provides an orthogonaliza-
tion method for solving a linear system Ar = b when A is in-
vertible. Decompose A to QR, by the Gram-Schmidt process or
other means, where () is unitary and R is upper triangular. Then
(QRx = b, and hence Rxr = Q*b. This last system can be easily
solved since R is upper triangular. !

Use the orthogonalization method and (e) to solve the system

T1+ 219+ 233 = 1
Iy +?I3= 11
s+ I3=-—L

Suppose that 3 and ~ are ordered bases for an n-dimensional real [com-
plex| inner product space V. Prove that if ¢} is an orthogonal [unitary]
n x n matrix that changes y-coordinates into F-coordinates, then 3 is
orthonormal if and only if  is orthonormal.

The following definition is used in Exercises 31 and 32.

Definition. Let V be a finite-dimensional complex [real] inner product

space, and let w be a unit vector in V. Define the Householder operator

Hu
31

1V =V by Hy(z) =z — 2{z,u) u for all = € V.

. Let H, be a Householder operator on a finite-dimensional inner product
space V. Prove the following results.
(a) H, is linear.
(b) Hy(x) =z if and only if x is orthogonal to u.
(c) Haylu) = —u.
(d) H; = H, and HZ = |, and henece H, is a unitary [orthogonal|
operator on V.
(Note: If V is a real inner product space, then in the language of Sec-
tion 6.11, Hy, is a reflection.)

LAt one time, because of its great stability, this method for solving large sys-
tems of linear equations with a computer was being advocated as a better method
than Gaussian elimination even though it requires about three times as much work.
(Later, however, J. H. Wilkinson showed that if Gaussian elimination is done “prop-
erly,” then it iz nearly as stable as the orthogonalization method. )



32. Let V be a finite-dimensional inner produet space over F. Let = and y
be linearly independent vectors in V such that ||z|| = ||y/.

(a) If F =C, prove that there exists a unit veetor » in V and a complex
number # with |#| = 1 such that Hyi(z) = #y. Hint: Choose # so

1
———{x — fdy).
|l — Byl

(b) If FF = R, prove that there exists a unit vector « in V such that
Hu(z) = 3.

that (x, 8y} is real, and set u =



secB.6 EXERCISES

1. Label the following statements as true or false. Assume that the under-
lying inner product spaces are finite-dimensional.
(a) All projections are self-adjoint.
{(b) An orthogonal projection is uniquely determined by its range.
(c) Every self-adjoint operator is a linear combination of orthogonal
projections.



(d) If T is a projection on W, then T(x) is the vector in W that is
closest to r.
{e) Ewvery orthogonal projection is a unitary operator.

. Let V = R%, W = span({(1,2)}), and 3 be the standard ordered basis
for V. Compute [T]s, where T is the orthogonal projection of V on W.
Do the same for V = R®* and W = span({{1,0,1)}).

For each of the matrices A in Exercise 2 of Section 6.5:

(1) Verify that Ly possesses a spectral decomposition.

(2) For each eigenvalue of Ls, explicitly define the orthogonal projec-
tion on the corresponding eigenspace.

(3) Verify your results using the spectral theorem.

Let W be a finite-dimensional subspace of an inner produet space V.
Show that if T is the orthogonal projection of V on W, then | —T is the
orthogonal projection of V on W+,

Let T be a linear operator on a finite-dimensional inner product space
V.

{a) If T is an orthogonal projection, prove that ||T(x)|| < |l=|| for all
€ V. Give an example of a projection for which this inequality
does not hold. What can be concluded about a projeection for
which the inequality is actually an equality for all z € V7

(b) Suppose that T is a projection such that || T(z)|| < ||z|| for = £ V.
Prove that T is an orthogonal projection.

Let T be a normal operator on a finite-dimensional inner product space.
Prove that if T is a projection, then T is also an orthogonal projection.

. Let T be a normal operator on a finite-dimensional complex inner prod-

uet space V. Use the spectral decomposition Ay Ty + AaTo + -+ ATy
of T to prove the following results.

(a) If g is a polynomial, then

13
(M) = g(M)Ts.
i=1

(b) If T" =T, for some n, then T = Tj.

{c) Let U be a linear operator on V. Then U commutes with T if and
only if U commutes with each T,;.

(d) There exists a normal operator U on V such that U2 = T.

{e) T isinvertible if and only if A; #0for 1 <i{ < k.

(f) T is a projection if and only if every eigenvalue of T is 1 or 0.



10.

11.

(g) T=—T¢if and only if every A; is an imaginary number.

Use Corollary 1 of the spectral theorem to show that if T is a normal
operator on a complex finite-dimensional inner product space and U is
a linear operator that eommutes with T, then U commutes with T*.

Referring to Exercise 20 of Section 6.5, prove the following facts about
a partial isometry U.

(a) U*U is an orthogonal projection on W.
(b) UU*U=LU

Simultaneous diagonalization. Let U and T be normal operators on a
finite-dimensional complex inner produet space V such that TU = UT.
Prove that there exists an orthonormal basis for V consisting of vectors
that are eigenvectors of both T and U. Hint: Use the hint of Exercise 14
of Section 6.4 along with Exercise 8.

Prove (¢) of the spectral theorem.



secB.7 EXERCISES

Label the following statements as true or false.

(a)

(b)
(c)

(d)
(e)

(f)
(g)

The singular values of any linear operator on a finite-dimensional
vector space are also eigenvalues of the operator.

The singular values of any matrix A are the eigenvalues of 4*A.
For any matrix A and any secalar ¢, if & is a singular value of A,
then |c|o is a singular value of cA.

The singular values of any linear operator are nonnegative,

If A is an eigenvalue of a self-adjoint matrix A, then A is a singular
value of 4.

For any mxn matrix A and any b £ F®, the vector Ah is a solution
to Ax = b

The pseudoinverse of any linear operator exists even if the operator
is not invertible.

Let T: V — W be a linear transformation of rank r, where V and W
are finite-dimensional inner product spaces. In each of the following,
find orthonormal bases {wvy,va,...,vg} for V and {uy, us, ..., up} for
W, and the nonzero singular values oy > g2 = --- = o of T such that
T(vi) =cjujfor 1 <1 <r.

(a)
(b)

(c)

(d)

T: R? — R® defined by T{xy,z2) = (z1, 1 + T2, T1 — x2)

T: Pa(R) — Py(R), where T(f(x)) = f"(x}, and the inner prod-
uets are defined as in Example 1

Let V = W = span({1,sin =, cos £ }} with the inner product defined
by {f,g) = 02“ f(t)g(#) dt, and T is defined by T{f) = f' + 2f
T:C? — C? defined by T(zy,22) = ({1 — i)z, (1 +1)z1 + 23)

Find a singular value decompaosition for each of the following matrices.

1 1
(a) ( 1 1) CHEE AR
-1 -1 11

|

t 4 1 ) 1 1 11
(d) (1 q u) (e) Gf: _1:) (f) (1 0 -2 1)
1 0 -1 1 L . #

Find a polar decomposition for each of the following matrices.

(a)

0 4 0

11
b [0 01
(2 ‘2) ”(4 20 n)

Find an explicit formula for each of the following expressions.



(a) T(zxi,z2,x3), where T is the linear transformation of Exercise 2(a)

(b} T'(a + br + cr?), where T is the linear transformation of Exer-
cise 2(h)

(¢) Tfla +bsinz + ccosx), where T is the linear transformation of
Exercise 2(c)

(d) TT(z1,22), where T is the linear transformation of Exercise 2(d)

Use the results of Exercise 3 to find the psendoinverse of each of the
following matrices.

£ o 1 0 1 é
(@) | 1 1 (b) (<)
) oD el

1 1 1 : 1 1 1 3
(d)y §1 -1 ] (e) (i t:. _1) (fy |1 0 -2 1
) S| | v R e |

For each of the given linear transformations T: V — W,

(i) Describe the subspace Z; of V such that T'T is the orthogonal
projection of V on Z.

{ii) Desecribe the subspace Zs of W such that TTT is the orthogonal
projection of W on Zs.

— o= =

(a) T is the linear transformarion of Exercise 2(a)
(b) T is the linear transformation of Exercise 2(b)
() T is the linear transformation of Exercise 2(¢)
(d) T is the linear transformation of Exercise 2(d)

For each of the given systems of linear equations,
(1) If the system is consistent, find the unique solution having mini-
T OTTL.
(ii) If the system is inconsistent, find the “best approximation o a
solution” having minimum norm, as deseribed in Theorem 6.30(b}.
(Use your answers to parts (a) and (f) of Exercise 6.)

1+ zI2=1 1+ T+ Tatog= 2
(a) T+ Ta=12 (b) =y — 213 + 14 =-1
—ry + —za =0 ry—Ta+ Tztog= 2

Let V and W be finite-dimensional inner product spaces over F, and sup-
pose that {vy,ve,...,vn} and {uy,us,...,uy} are orthonormal bases
for V and W, respectively. Let T: V — W is a linear transformation of
rank r, and suppose that oy > o3 > .- 2 7, = [ are such that

oy fl<i<r
T(e:) =
(1) {a i< i
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11.

12.

13.

14.

15.

16.

(a) Prove that {uy, us,..., um } is a set of eigenvectors of TT* with

corresponding eigenvalues Ay, Aa, ..., Ay, where

g o} fl<i<r
10 ifr<i

(b) Let A be an m x n matrix with real or complex entries. Prove that
the nonzero singular values of A are the positive square roots of
the nonzero eigenvalues of A A*, including repetitions.

(c) Prove that TT* and T*T have the same nonzero eigenvalues, in-
cluding repetitions.

(d) State and prove a result for matrices analogous to (e).

Use Exercise § of Section 2.5 to obtain another proof of Theorem 6.27,
the singular value decomposition theorem for matrices.

This exercise relates the singular values of a well-behaved linear operator
Or marrix to its eigenvalues.

{a) Let T be a normal linear operator on an n-dimensional inner prod-
uet space with eigenvalues Aq, Aa, ..., Ay. Prove that the singular
values of T are |A¢|, |Aal,..., 1 Aal.

(b) State and prove a result for matrices analogous to (a).

Let A be a normal matrix with an orthonormal basis of eigenvectors
3 = {v1,ve,...,va} and corresponding eigenvalues Ay, Ag,..., Ay, Let
V' be the n x n matrix whose columns are the vectors in 4. Prove that
for each ¢ there is a secalar #; of absolute value 1 such that if U is the
n x n matrix with &;; as column ¢ and ¥ is the diagonal matrix such
that £;; = |A;| for each i, then UXV™* is a singular value decomposition
of A.

Prove that if A is a positive semidefinite matrix, then the singular values
of A are the same as the eigenvalues of A.

Prove that if A is a positive definite matrix and A = UXV* is a singular
value decomposition of 4, then UV = V.

Let A be a square matrix with a polar decomposition 4 = WP.

(a) Prove that A is normal if and only if WP? = P2W.
(b) Use (a) to prove that A is normal if and only if WP = PW.

Let A be a square matrix. Prove an alternate form of the polar de-
composition for A: There exists a unitary matrix W and a positive
semidefinite matrix P such that A = PW.



17.

18.

19.

20.
21.

22,

23.

24.

25.

Let T and U he linear operators on R? defined for all (xy, ) £ R hy
T(zx1,x2) = (71,0} and U(zxy,x2) = (x1 + 2,0).

(a) Prove that (UT)! & TTUT,
(b) Exhibit matrices A and B such that AB is defined, but (ARB)7 <
BiAl

Let A be an m x n matrix. Prove the following results.

(a) For any m x m unitary matrix G, (GA)T = ATG*.
(b) For any n x n unitary matrix H, (AH)T = H*Af,

Let A be a matrix with real or complex entries. Prove the following
results.

(a) The nonzero singular values of A are the same as the nonzero
singular values of A*, which are the same as the nonzero singular
values of AL

(b) (Ah)* = (At

(c) (A= (491

Let A be a square matrix such that A% = 0. Prove that (AT)2 = 0.

Let V and W be finite-dimensional inner product spaces, and let
T:V — W be linear. Prove the following results.

(a) TTIT=T.

(b) TiTTF = TH.

(¢) Both T7T and TTT are self-adjoint.

The preceding three statements are called the Penrose conditions,

and they characterize the pseudoinverse of a linear transformation as
shown in Exercise 22.

Let V and W be finite-dimensional inner product spaces. Let T: V — W
and U: W — V be linear transformations such that TUT =T, UTU = U,
and both UT and TU are self-adjoint. Prove that U =TT,

State and prove a result for matrices that is analogous to the result of
Exercise 21.

State and prove a result for matrices that is analogous to the result of
Exercise 22.

Let V and W be finite-dimensional inner produet spaces, and let
T: V — W be linear. Prove the following results.

(a) If T is one-to-one, then T*T is invertible and TT = (T*T)~!T*.
(b) If T is onto, then TT* is invertible and TT = T*(TT*)~L



26.

27.

Let V and W be finite-dimensional inner product spaces with orthonor-
mal bases 3 and ~, respectively, and let T: V — W be linear. Prove
that ([T[})! = [T14.

Let V and W be finite-dimensional inner product spaces, and let
T:V — W be a linear transformation. Prove part (b) of the lemma
to Theorem 6.30: TTT is the orthogonal projection of W on R(T).



sec6.8 EXERCISES

1. Label the following statements as true or false.

{a) Every quadratic form is a bilinear form.

(b) If two matrices are congruent, they have the same eigenvalues.

(e) Symmetric bilinear forms have symmetric matrix representations.

(d) Any symmetric matrix is eongruent to a diagonal matrix.

{e) The sum of two symmetric bilinear forms is a symmetric bilinear
form.

(f) Two symmetric matrices with the same characteristic polynomial
are matrix representations of the same bilinear form.

(g) There exists a bilinear form H such that H(x,y) # 0 for all = and
Y.

(h) If Vis a vector space of dimension n, then dim(B(V')) = 2n.

(i) Let H be a bilinear form on a finite-dimensional veetor space V
with dim(V} = 1. For any = € V, there exists y £ V such that
y# 0, but Hx,y)=10.

(j) If H is any bilinear form on a finite-dimensional real inner product
space V, then there exists an ordered basis 3 for V such that ¢z (H)
is a diagonal matrix.

2. Prove properties 1, 2, 3, and 4 on page 423.
3. (a) Prove that the sum of two bilinear forms is a bilinear form.
(b) Prove that the product of a sealar and a bilinear form is a bilinear

form.
(¢} Prove Theorem 6.31.

4. Determine which of the mappings that follow are bilinear forms. Justify
VOUT answers.

{a) LetV = C[0.1] be the space of continnous real-valued funetions on
the closed interval [0, 1]. For f.g € V. define

1
H(f,g) = fﬂ F(Bg(t)dt.

(b) Let V be a vector space over F, and let J £ B(V) be nonzero.
Define H: V xV — F by

H(z,y) = [J(z,y)]? forallz,yeV.



(c) Define H: R x R — R by H(t,t2) =t + 2#a.

(d) Consider the vectors of R? as columm vectors, and let H: R® — R
be the function defined by H{x, y) = det(x, y), the determinant of
the 2 x 2 matrix with columns = and y.

{e) Let V be a real inner produect space, and let H: V xV — R be the
function defined by H(x,y) = {z,y) for z,y € V.

(f) Let V be a complex inner produet space, and let H: V x V — '
be the funetion defined by Hiz,y) = {z,y) for z,y € V.

Verify that each of the given mappings is a bilinear form. Then compute
its matrix representation with respeect to the given ordered basis 3.

(a) H:R?xR® - R, where

() )
B0

(b) Let V =Mays(R) and

G D0 B0 LD

Define H: ¥V xV — R by H{A, B) = tr(A)- tr(B).

(c) Let 3 = {cost,sint,cos2t,sin2¢}. Then 7 is an ordered basis
for V = span(d}, a four-dimensional subspaee of the space of all
continuous functions on B. Let H: V «x V — R be the function
defined by H(f,g) = £(0) - g"(0).

. Let H: R? — R be the function defined by

[+ 8] by - oy by 2
((2).(2)) om0 (). ()
(a) Prove that H is a bilinear form.

(b) Find the 2 x 2 matrix A such that H{x,y) = * Ay for all z,y € R%.

For a 2 x 2 matrix M with columns = and y, the bilinear form H{M ) =
H(x,y) is called the permanent of M.

and

Let V and W be vector spaces over the same field, and let T: V — W be
a linear transformation. For any H € BiW), define T(H): VxV —= F
by :I:(H}(_r,y} = H(T(x), T(y)) for all z,y € V. Prove the following
results.



10.
11.
12.
13.

14.

15.

16.

(a) If H € B(W}, then 'T'(H) = B(V).
{b) T:B(W)— B(V) is a linear transformation.
(c) If T is an isomorphism, then so is T.

Assume the notation of Theorem 6.32.

(a) Prove that for any ordered basis (3, 13 is linear.

(b) Let 3 be an ordered basis for an n-dimensional space V over F, and
let ¢3: V — F" be the standard representation of V with respect
to 3. For A € Mpun(F), define H: V xV — F by H(z,y) =
[#5(x)|* Aldaly)]. Prove that H € (V). Can you establish this as
a corollary to Exercise 77

(c) Prove the converse of (b): Let H be a bilinear form on V. If
A =s(H), then H(z,y) = [¢5(x)]* Algs(y)]-

(a) Prove Corollary 1 to Theorem 6.32.
(b) For a finite-dimensional vector space V, describe a method for
finding an ordered basis for B{V).

Prove Corollary 2 to Theorem 6.32.
Prove Corollary 3 to Theorem 6.32.
Prove that the relation of congruence is an equivalence relation.

The following outline provides an alternative proof to Theorem 6.33.

(a) Suppose that 5 and ~+ are ordered bases for a finite-dimensional
vector space V., and let ) be the change of coordinate matrix
changing ~-coordinates to F-coordinates. Prove that ¢5 = Lgg,,
where g5 and ¢, are the standard representations of V with respect
to 3 and +, respectively.

(b) Apply Corollary 2 to Theorem 6.32 to (a) to obtain an alternative
proof of Theorem 6.33.

Let V be a finite-dimensional vector space and H £ B{V). Prove that,
for any ordered bases 3 and ~ of V. rank{yz(H)) = rank(« (H)).
Prove the following results.

(a) Any square diagonal matrix is symmetrie.

{b) Any matrix congruent to a diagonal matrix is symmetric.

(c) the corollary to Theorem 6.35

Let V be a vector space over a field F not of characteristic two, and let
H be a symmetrie bilinear form on V. Prove that if K(x) = H(x,z) is
the quadratie form associated with H, then, for all z,y € V,

1.
H(z,y) = 5lK(z +y) - K(z) - K(y)]-



17.

18.

19.

20.

21.

For each of the given quadratic forms K on a real inner product space
V. find a symmetric bilinear form H such that K {x) = H(x,z) for all
z € V. Then find an orthonormal basis 3 for V such that ¢¥3(H) is a
diagonal matrix.

(a) K:R?— R defined by K (:;) — 2 4ty + £

(b) K:R?— R defined by K (:;) =T —8tita + 3

ty
(c) K:R®— R defined by K (!:2) =317 + 313 + 313 — 201t
ta

Let & be the set of all (t;,#2,t2) € R® for which
T4+ 368 + 383 — 2t + 224 + 1) + 1 =0

Find an orthonormal basis 3 for R® for which the equation relating
the eoordinates of points of § relative to 3 is simpler. Describe &
geometrically.

Prove the following refinement of Theorem 6.37(d).

(a) If0 < rank(A) < n and A has no negative eigenvalues, then f has
no loecal maximum at p.

(b) If0 < rank(A) < n and A has no positive eigenvalues, then f has
no loecal minimum at p.

Prove the following variation of the second-derivative test for the case
n = 21 Define

g [aﬂf{p}] [aﬂﬁpq B {a?fcp}r
185 3 Gt 8t |

(a) If D = 0and & f(p)/8t7 = 0, then f has a local minimum at p.
(b) If I =0and & f(p)/6t; < 0, then f has a loeal maximmum at p.
(c) If D < 0, then f has no local extremum at p.

(d) If D =10, then the test is inconelusive.

Hint: Observe that, as in Theorem 6.37, D) = det(A) = A A, where A
and As are the eigenvalues of A.

Let A and F be in My.n(F), with E an elementary matrix. In Sec-
tion 3.1, it was shown that AE ean be obtained from A by means of
an elementary column operation. Prove that E*A ean be obtained by
means of the same elementary operation performed on the rows rather
than on the columns of A. Hint: Note that E'A = (A"E)".



22,

23.

24.

25.

26.

For each of the following matrices A with entries from K, find a diagonal
matrix D and an invertible matrix @ such that Q*AQ = D.

(a) G 3) (b) (E 3) () G é jj)

Hint for (b): Use an elementary operation other than interchanging
columns.

Prove that if the diagonal entries of a diagonal matrix are permuted,
then the resulting diagonal matrix is congruent to the original one.

Let T be a linear operator on a real inner product space V, and define

H:VxV - Rby H(z,y) = {z, T(y)) forall z,y € V.

(a) Prove that H is a bilinear form.

(b) Prove that H is symmetrie if and only if T is self-adjoint.

(¢) What properties must T have for H to be an inner produet on V7

{d) Explain why H may fail to be a bilinear form if V is a complex
inner product space.

Prove the converse to Exercise 24(a): Let V be a finite-dimensional real
inner product space, and let H be a bilinear form on V. Then there
exists a unique linear operator T on V such that Hix, y) = {x, T(y)) for
all 4 € V. Hint: Choose an orthonormal basis 7 for V, let A = ¢z(H),
and let T be the linear operator on V such that [T|z = A. Apply
Exercise 8(c) of this section and Exercise 15 of Section 6.2 (p. 355).

Prove that the number of distinet equivalence classes of congruent n x n
real symmetric matrices is

(n+1)(n+2)
——



Sec6.9 EXERCISES
Prove (b), (e}, and (d) of Theorem 6.39.
Complete the proof of Theorem 6.40 for the case ¢ < .
For

uy = and wa =

(==
= =

show that

(a) {wy,wa} is an orthogonal basis for span({e;, es});
(b} span{{eg,eq}) is Tyl 4 Ty-invariant.

Prove the corollary to Theorem 6.41.

Hints:

(a) Prove that

p 00 g4
i 1 B ED O
Bdbh=1 p g 1
=g A Ay =g
where
a+b a—b
=—5 and 9=-—5—



{b) Show that ¢ = 0 by using the fact that Bj AL, is self-adjoint.
{c) Apply Theorem 6.40 to

0
_— 1
|0
1
to show that p = 1.
Derive (24), and prove that
—v
0 1—w
0 0 .
Eilsl =] @ (25)
1 1
1-v

Hint: Use a technique similar to the derivation of (22).

Consider three eoordinate systems S, §°, and S with the corresponding
axes (r,.z'.x"; yu'y"; and z,2',z") parallel and such that the z-, ='-,
and c"-axes coincide. Suppose that 5" is moving past S at a velocity
vy = 0 (as measured on 5), 5" is moving past S at a veloecity ve = 0
{as measured on 5'), and S is moving past S at a veloeity vy = 0 (as
measured on S}, and that there are three clocks ¢, ', and C" such
that ' is stationary relative to S, €' is stationary relative to 5§, and
€ is stationary relative to 5. Suppose that when measured on any
of the three clocks, all the origins of 5, 5, and 5" coineide at time 0.
Assuming that Ty, = Ty, Ty, (ie., By, = By, By, ), prove that

v +vo

vg = 3
14 wvvs

Note that substituting vs = 1 in this equation vields v3 = 1. This tells
us that the speed of light as measured in S or 5’ is the same. Why
would we be surprised if this were not the case?

Compute (B,)~t. Show (By,)~! = B(_,,. Conclude that if §" moves at
a negative veloeity » relative to S, then [T,|; = B,, where B, is of the
form given in Theorem 6.42.

Suppose that an astronaut left Earth in the year 2000 and traveled to
a star 99 light years away from Earth at 99% of the speed of light and
that upon reaching the star immediately turned around and returned
to Earth at the same speed. Assuming Einstein's special theory of



relativity, show that if the astronaut was 20 years old at the time of
departure, then he or she would return to Earth at age 48.2 in the year
2200. Explain the use of Exercise 7 in solving this problem.

Recall the moving space vehicle considered in the study of time contrae-
tion. Suppose that the vehicle is moving toward a fixed star located on
the r-axis of S at a distance b units from the origin of 5. If the space
vehicle moves toward the star at veloeity v, Earthlings (who remain “al-
most” stationary relative to 5) compute the time it takes for the vehicle
to reach the star as f = b/v. Due to the phenomenon of time contraction,
the astronaut perceives a time span of ¢’ = #4/T — 12 = (b/v)/T — v2.
A paradox appears in that the astronaut perceives a time span incon-
sistent with a distanee of b and a veloeity of v. The paradox is resolved
by observing that the distance from the solar system to the star as
measured by the astronaut is less than b,

Assuming that the coordinate systems S and S and clocks © and O
are as in the discussion of time contraction, prove the following results.

(a) At time ¢ {as measured on ), the space—time coordinates of star
relative to § and C are

==~}

(b) At time { (as measured on '), the space-time coordinates of the
star relative to §' and C' are

b— vt
i
0
t—bw
V1—?
(c}) For

4 b—tu 2 g t— by
Ti= = ——
V1 —w? V1 —u?

we have ' = by/1 — 02 — t'v.

This result may be interpreted to mean that at time ¢ as measured hy
the astronaut, the distanee from the astronaut to the star as measured
by the astronaut (see Figure 6.9) is

b1 —w? -t



(=!,0,0)
] coordinates
relative to S

% (star)

(b,0.0)

E coordinates
Figure 6.9 relative to 5§

(d) Conclude from the preceding equation that
(1) the speed of the space vehicle relative to the star, as measured
by the astronaut, is v;
(2) the distance from Earth to the star, as measured by the astro-
naut, is by'l — 2.
Thus distances along the line of motion of the space vehicle appear
to be contracted by a factor of /1T — 2.



sec6.10 EXERCISES

1. Label the following statements as true or false.
(a) If Axr = b is well-conditioned, then cond(A4) is small.
(b) If cond(A) is large, then Ax = b is ill-conditioned.
{c) If cond(A) is small, then Ar = b is well-conditioned.

{d) The norm of A equals the Rayleigh quotient.
(@) The norm of A always equals the largest eigenvalue of 4.



Compute the norms of the following matriees.

I%U
wiiy =m[3] ® 04 2
Vi

Prove that if B is symmetric, then || 5| is the largest eigenvalue of B.

Let A and A~" he as follows:

6 13 —17 6 -4 1
A=| 13 20 38| and A'=[-4 11 7).
17 -38 50 U

The eigenvalues of A are approximately 84.74, 0.2007, and 0.0588.

(a) Appraximate ||A|, [|[A~!||, and eond(A). (Note Exercise 3.)

{(b) Suppose that we have vectors r and r such that Ar = b and
[[b — Az|| < 0.001. Use (a) to determine upper bounds for
|l £ — A='b|| (the absolute error) and ||z — A—'8||/||A~"b|| (the rel-
ative error).

Suppose that r is the actual solution of Axr = b and that a computer
arrives at an approximate solution =. If cond(A) = 100, ||b|| = 1, and
||b— Azx|| = 0.1, obtain upper and lower bounds for ||z — || /||z]i-

o I
B={1 2 1}y
1. T 2

1
R(—?), |Bll, and cond(B).
3

Let B be a symmetric matrix. Prove that m;irr} R(x) equals the smallest
r

Let

Compute

elgenvalue of B.

Prove that if A is an eigenvalue of AA4*, then A is an eigenvalue of A*A.
This eompletes the proof of the lemma to Corollary 2 to Theorem 6.43.

Prove that if 4 is an invertible matrix and Ax = b, then

! (Ilﬂbll) < loz||
Al A=A Bl /=l



10. Prove the left inequality of (a) in Theorem 6.44.

11. Prove that cond{A) = 1 if and only if A is a sealar multiple of a unitary
or orthogonal matrix.

12, (a) Let A and B be square matrices that are unitarily equivalent.
Prove that [|A]| = || B||.
(b) Let T be a linear operator on a finite-dimensional inner product

space V. Define
T = T
S = 2 |F
Prove that ||T|| = ||[T]z]l, where 3 is any orthonormal basis for V.

{c) Let V be an infinite-dimensional inner produect space with an or-
thonormal basis {vy,vs,...}. Let T be the linear operator on V
such that T(vg) = kve. Prove that ||T|| (defined in (b)) does not
exist.

The next exercise assumes the definitions of singular value and pseudoinverse
and the results of Section 6.7.

13. Let A be an n x n matrix of rank r with the nonzero singular values
T = ga = -+ = op. Prove each of the following results.

(a) |l4] =o1.
(b) |4t =‘j—r.

(c) If A is invertible (and hence r = n), then cond(A4) = ;.
T



sec6.11 EXERCISES

1. Label the following statements as true or false. Assume that the under-
lving vector spaces are finite-dimensional real inner produet spaces.

(a)
(b)

(c)
(d)
ie)
(f)
(g)
(h)

(1)
(1)

Any orthogonal operator is either a rotation or a reflection.

The composite of any two rotations on a two-dimensional space is
a rotation.

The composite of any two rotations on a three-dimensional space
is a rotation.

The composite of any two rotations on a four-dimensional space is
a rotation.

The identity operator is a rotation.

The composite of two reflections is a reflection.

Any orthogonal operator is a composite of rotations.

For any orthogonal operator T, if det(T) = —1, then T is a reflec-
tion.

Reflections always have eigenvalues.

Rotations always have eigenvalues.

2. Prove that rotations, reflections, and composites of rotations and re-
flections are orthogonal operators.



=]

Lk
1 V3
g 2 2] e B=(1 G).
ﬁ 1 0 -1
o T

(a) Prove that L, is a reflection.

(b) Find the axis in R? about which L 4 reflects, that is, the subspace
of R? on which L, acts as the identity.

(c) Prove that Lyp and Ly are rotations.

For any real number ¢, let

o 08 @ sin g
~ \sing —cosgd)”

(a) Prove that L, is a reflection.
(b) Find the axis in R? about which L4 reflects.

For any real number ¢, define T, = L4, where
s cosg —sing
~ \sing cosg/”
(a) Prove that any rotation on R? is of the form T for some ¢.

(b) Prove that TyTy = T 44y for any ¢,¢ € K
(¢) Deduce that any two rotations on R? commnute.

Prove that the composite of any two rotations on R® is a rotation on
R3,

Given real numbers ¢ and «, define matrices
1 0 0 cose —siny 0
A= 1|0 cos¢g —sing and B = | siny ecosyr 0.
0 sing COS 0 0 1

(a) Prove that Ly and Lp are rotations.
(b) Prove that Lag is a rotation.
(c) Find the axis of rotation for Ly p.

Prove Theorem 6.45 using the hints preceding the statement of the
theorem.

Prove that no orthogonal operator can be both a rotation and a reflec-
tion.



10.

11.

12.

13.

14.

15.

16.
17.

18.

Prove that if V is a two- or three-dimensional real inner produet space,
then the composite of two reflections on V is a rotation of V.

Give an example of an orthogonal operator that is neither a reflection
nor a rotation.

Let V be a finite-dimensional real inner produet space. Define T: V — V
by T{x) = —z. Prove that T is a product of rotations if and only if
dim(V) is even.

Complete the proof of the lemma to Theorem 6.46 by showing that
W =¢y 1(Z) satisfies the required conditions.

Let T be an orthogonal [unitary| operator on a finite-dimensional real
[complex| inner product space V. If W is a T-invariant subspace of V,
prove the following results.

(a) Tw is an orthogonal [unitary| operator on W.

(b) W+ is a T-invariant subspace of V. Hint: Use the fact that Ty
is one-to-one and onto to conclude that, for any y € W, T*(y) =
T-Hy) e W.

(c) Ty is an orthogonal [unitary| operator on W.

Let T be a linear operator on a finite-dimensional vector space V, where
V is a direct sum of T-invariant subspaces, say, V =W, @Ws@&-. .aW,.
Prove that det(T) = det(Tw, ) - det(Tw, )~ --- - det(Tw,).

Complete the proof of the corollary to Theorem 6.47.

Let T be a linear operator on an n-dimensional real inner product space
V. Suppose that T is not the identity. Prove the following results.

{a) If n is odd, then T ean be expressed as the composite of at most
one reflection and at most %{n — 1) rotations.

(b) If n is even, then T can be expressed as the composite of at most
1n rotations or as the composite of one reflection and at most

1{n — 2) rotations.

Let V be a real inner produet space of dimension 2. For any =,y € V
such that = # y and ||z|| = ||ly|| = 1, show that there exists a unique
rotation T on V such that T(z) = y.



sec7.1 EXERCISES

1. Label the following statements as true or false.

(a)
(b)
(c)
(d)
(e)

(f)

()
(h)

Eigenvectors of a linear operator T are also generalized eigenvec-
tors of T.

It is possible for a generalized eigenvector of a linear operator T
to correspond to a sealar that is not an eigenvalue of T.

Any linear operator on a finite-dimensional vector space has a Jor-
dan canonical form.

A eyele of peneralized eigenvectors is linearly independent.

There is exactly one eyvele of generalized eigenvectors correspond-
ing to each eigenvalue of a linear operator on a finite-dimensional
VeCtor Space.

Let T be a linear operator on a finite-dimensional vector space
whose characteristic polynomial splits, and let Ay, As,.... A be
the distinet eigenvalues of T. If, for each i, 5; is a basis for Kj,,
then 3, U 35 U--- U &, is a Jordan eanonical basis for T.

For any Jordan block J, the operator L; has Jordan canonical
form J.

Let T be a linear operator on an n-dimensional vector space whose
characteristic polynomial splits. Then, for any eigenvalue A of T,
Ka=N{(T - Al)").



2. For each matrix A, find a basis for each generalized eigenspace of Ly
consisting of a union of disjoint eyeles of generalized eigenvectors. Then
find a Jordan canonical form J of A.

wa-(1)  wa()

11 -4 -5
() A={21 -8 -11 (d) A=
3 21 @

o e e Y
(I == - T
e R
wmo oo

3. For each linear operator T, find a basis for each generalized eigenspace
of T consisting of a union of disjoint cycles of generalized eigenvectors.
Then find a Jordan eanoniecal form J of T.

(a) T is the linear operator on Pa(R) defined by T(f(x)) = 2f(z) —
f'(=)

(b) V is the real vector space of functions spanned by the set of real
valued funetions {1, £, £2, ", te'}, and T is the linear operator on V
defined by T(f) = f".

(c) T is the linear operator on Ma,.a( R) defined by T(A) = (é 1) -A
for all A € Ma..a(R).
(d) T(A) =24+ A" for all A £ Maxa(R).
4.7 Let T be a linear operator on a vector space V, and let + be a cycle

of generalized eigenvectors that corresponds to the eigenvalue A. Prove
that span(~) is a T-invariant subspace of V.

5. Let vy, 7a,...,7, be cycles of generalized eigenvectors of a linear op-
erator T ecorresponding to an eigenvalue A. Prove that if the initial
elgenvectors are distinet, then the eyeles are disjoint.

6. Let T: V — W be a linear transformation. Prove the following results.
(a) N(T)=N(-T).
(b) N(T*) = N((-T)*).

(¢) If V=W (sothat T is a linear operator on V) and A is an eigen-
value of T, then for any positive integer k

N((T — Al)*) = N((Aly — T)*).

7. Let U be a linear operator on a finite-dimensional vector space V. Prove
the following results.

(a) N(U) S N(U%)cC... C N(U*) C N(Us)C ...,




10.

11.

(b) If rank(U™) = rank{U™"!) for some positive integer m, then
rank(U™) = rank(U*) for any positive integer k > m.

(c) If rank{U™) = rank(U™*!} for some positive integer m, then
N{U™) = N{U*) for any positive integer k = m.

(d) Let T be a linear operator on V, and let A be an eigenvalue of T.
Prove that if rank((T — A)™) = rank((T — Al)™*!) for some integer
m, then K, = N((T — A)™).

(e) Second Test for Diagonalizability. Let T be a linear operator on
V whose characteristic polynomial splits, and let Ay, As, ..., Ap be
the distinet eigenvalues of T. Then T is diagonalizable if and only
if rank(T — M) =rank((T- M) for 1 <i< k.

(f) Use (&) to obtain a simpler proof of Exercise 24 of Section 5.4: If
T is a diagonalizable linear operator on a finite-dimensional vec-
tor space V and W is a T-invariant subspace of V, then Ty is
diagonalizable.

Use Theorem 7.4 to prove that the vectors vy, va, ..., v in the statement
of Theorem 7.3 are unique.

Let T be a linear operator on a finite-dimensional vector space V whose

characteristic polynomial splits.

(a) Prove Theorem 7.5(b).

(b) Suppose that § is a Jordan canonieal basis for T, and let A be an
eigenvalue of T. Let @ = gNK,. Prove that 3" is a basis for K,.

Let T be a linear operator on a finite-dimensional vector space whose

characteristic polynomial splits, and let A be an eigenvalue of T.

(a) Suppose that + is a basis for K, consisting of the union of g disjoint
cyeles of generalized eigenvectors. Prove that g < dim(Ey ).

(b) Let 3 be a Jordan eanonical hasis for T, and suppose that .J = [T|z
has ¢ Jordan blocks with A in the diagonal positions. Prove that
g < dim(Ey).

Prove Corollary 2 to Theorem 7.7.

Exercises 12 and 13 are concerned with direct sums of matrices, defined in
Section 5.4 on page 320.

12.
13.

Prove Theorem 7.8,

Let T be a linear operator on a finite-dimensional vector space V such
that the charaeteristic polynomial of T splits, and let Ay, As, ... . Ap be
the distinet eigenvalues of T. For each 4, let J; be the Jordan eanonical
form of the restriction of T to K,,,. Prove that

J=dvald - -&d

is the Jordan canonical form of J.



sec7.2 EXERCISES

1. Label the following statements as true or false. Assume that the char-
acteristic polynomial of the matrix or linear operator splits.

(a)
(b)
(c)
(d)
(e)
(f)
(g)

(h)

The Jordan canonieal form of a diagonal matrix is the matrix itself.
Let T be a linear operator on a finite-dimensional vector space V
that has a Jordan canonical form J. If 5 is any basis for V, then
the Jordan ecanonieal form of [T|z is J.

Linear operators having the same characteristic polynomial are
similar.

Matrices having the same Jordan canonical form are similar.
Every matrix is similar to its Jordan canonieal form.

Every linear operator with the -characteristic polynomial
{—1)"(t — A)™ has the same Jordan canonical form.

Every linear operator on a finite-dimensional vector space has a
unique Jordan canonical basis.

The dot diagrams of a linear operator on a finite-dimensional vee-
tor space are unigue.



2. Let T be a linear operator on a finite-dimensional vector space V such
that the characteristic polynomial of T splits. Suppose that A\ = 2,
As =4, and Az = —3 are the distinet eigenvalues of T and that the dot
diagrams for the restriction of T to K, (i = 1,2, 3) are as follows:

A =2 Ap =4 Az =-13
- L ) L - L L] L ]
L ] L] -
L ] -

Find the Jordan canonical form J of T.

3. Let T be a linear operator on a finite-dimensional vector space V' with
Jordan eanonieal form

oo oo o
[ [ e R - | e B LR
[ o= e R | e e

=]l =R L e Y e e
ool o oo

wooo oo
wooooo o

0 0

(a) Find the characteristic polynomial of T.
{(b) Find the dot diagram corresponding to each eigenvalue of T.
(c) For which eigenvalues A;, if any, does E), = K).?
(d) For each eigenvalue A;, find the smallest positive integer p; for
which K, = N[{T — Al)).
(e) Compute the following numbers for each ¢, where U; denotes the
restrietion of T — Al to K, .
(i) rank{U;)
(ii) rank(U3)
(iil) nullity(U;)
(iv) nullity(UZ)
4. For each of the matrices A that follow, find a Jordan eanonical form
J and an invertible matrix @ such that J = Q' A(Q. Notice that the
matriees in (a), (b), and (e) are those used in Example 5.

A § i 3

(@) A=|-7 6 -3 b) A=|-4 4 -2
g 8 g 3

5

i 0 1

© A=[-3 -1 —2 o o e S

s TE e A §oed
J a

[ I S



5. For each linear operator T, find a Jordan canoniecal form J of T and a
Jordan canonical basis 3 for T.

(a) WV is the real vector space of functions spanned by the set of real-
valued functions {e!, tet, 426, €2}, and T is the linear operator on
V defined by T(f) = f'.

(b) T is the linear operator on Pg( R) defined by T{ f(x)) = = f"(z).

() T is the linear operator on Py R) defined by
T(f(x)) = f*(=) +2f().

(d) T is the linear operator on Ma,o(R) defined by

T(4) = (g é) st

{e) T is the linear operator on Ma . o(R) defined by

T(4) = (g ;) (A—AY).

(f) V is the vector space of polynomial funetions in two real variables
x and y of degree at most 2, as defined in Example 4, and T is the
linear operator on V defined by

a a
T(f(z.y)) = 5o flzu) + Ef(f:y)‘
6. Let A be an n x n matrix whose characteristic polynomial splits. Prove
that A and A" have the same Jordan canonieal form, and conclude that
A and A® are similar. Hint: For any eigenvalue A of A and A® and any
positive integer r, show that rank({4 — Al)") = rank({4® — AI)T).

7. Let A be an n x n matrix whose characteristic polynomial splits, ~ be
a eycle of generalized eigenvectors corresponding to an eigenvalue A,
and W be the subspace spanned by ~. Define +* to be the ordered set
obtained from «+ by reversing the order of the vectors in .

(a) Prove that [Twly = ([Twly)"

(b) Let J be the Jordan canonieal form of A. Use (a) to prove that J
and J* are similar.

(¢) Use (b) to prove that A and A® are similar.

8. Let T be a linear operator on a finite-dimensional veetor space, and
suppose that the characteristic polynomial of T splits. Let J be a Jordan
canonical basis for T.

(a) Prove that for any nonzero sealar ¢, {cr: r € 3} is a Jordan canon-
ical basis for T.



10.

(b} Suppose that + is one of the cyeles of generalized eigenvectors that
forms 3, and suppose that + corresponds to the eigenvalue A and
has length greater than 1. Let x be the end vector of ~, and let y
be a nonzero vector in Ey. Let +" be the ordered set obtained from
~ by replacing « by = + y. Prove that +' is a cyele of generalized
eigenvectors corresponding to A, and that if +" replaces v in the
union that defines 4, then the new union is also a Jordan canonical
basis for T.

(€) Apply (b) to obtain a Jordan eanonical basis for Ly, where A is the
matrix given in Example 2, that is different from the basis given
in the example.

Suppose that a dot diagram has k columns and m rows with p; dots in

column j and r; dots in row 1. Prove the following results.

(a) m=p and k= ry.

(b) pj=max{i:r; > jiforl<j<kandr=max{j:p; =i} for
1 <1 < m. Hint: Use mathematical induction on m.

(€) mzrm2.. Zrm:

(d) Deduce that the number of dots in each column of a dot diagram
is completely determined by the number of dots in the rows.

Let T be a linear operator whose characteristic polynomial splits, and
let A be an eigenvalue of T.

(a) Prove that dim(K,) is the sum of the lengths of all the blocks
corresponding to A in the Jordan eanonieal form of T.

(b) Deduce that Ey = K, if and only if all the Jordan blocks corre-
sponding to A are 1 x 1 matrices.

The following definitions are used in Exercises 11-19.

Definitions. A linear operator T on a vector space V' is called nilpotent

if TP = Ty for some positive integer p. Ann x n matrix A is called nilpotent
if AF = O for some positive integer p.

11.

12,

13.

Let T be a linear operator on a finite-dimensional vector space V. and
let 3 be an ordered basis for V. Prove that T is nilpotent if and only if
[T]s is nilpotent.

Prove that any square upper triangular matrix with each diagonal entry
equal to zero is nilpotent.

Let T be a nilpotent operator on an n-dimensional vector space V, and
suppose that p is the smallest positive integer for which TP = Ty. Prove
the following results.

(a) N(T") C N{T*!) for every positive integer i.



14.

15,

16.

17.

18.

(b) There is a sequence of ordered bases 3, Fa, ..., Fp such that j; is
a hasis for N[Ti) and ;1 contains Ffor 1 <i<p-—1.

(c) Let 3= 3, be the ordered basis for N(T?) =V in (b). Then [T]s
is an upper triangular matrix with each diagonal entry equal to
ZETO.

(d) The characteristic polynomial of T is (—1)"". Henee the charac-

teristic polynomial of T splits, and 0 is the only eigenvalue of T.

Prove the converse of Exercise 13(d): If T is a linear operator on an n-
dimensional vector space V and (—1)™t" is the characteristic polynomial
of T, then T is nilpotent.

Give an example of a linear operator T on a finite-dimensional vector
space such that T is not nilpotent, but zero is the only eigenvalue of T.
Characterize all such operators.

Let T be a nilpotent linear operator on a finite-dimensional vector space
V. Recall from Exercise 13 that A = 0 is the only eigenvalue of T, and
hence V' = K. Let 3 be a Jordan canonical basis for T. Prove that for
any positive integer ¢, if we delete from 3 the vectors corresponding to
the last ¢ dots in each column of a dot diagram of 3, the resulting set is
a basis for R(T?). (If a column of the dot diagram contains fewer than 2
dots, all the vectors associated with that column are removed from 3.)

Let T be a linear operator on a finite-dimensional vector space V such
that the characteristic polynomial of T splits, and let Ay, Aa, ..., Ag be
the distinct eigenvalues of T. Let S: V — V be the mapping defined by

S{x) = My + dave + -+ - + Ao,

where, for each 4, v; is the unique veetor in K,, such that = = vy +
va +- - -+wvg. (This unique representation is guaranteed by Theorem 7.3
(p. 486) and Exercise 8 of Section 7.1.)

{a) Prove that S is a diagonalizable linear operator on V.
(b) Let U=T —5. Prove that U is nilpotent and commutes with S,
that is, SU = US.

Let T be a linear operator on a finite-dimensional vector space V, and
let J be the Jordan canonical form of T. Let D be the diagonal matrix
whose diagonal entries are the diagonal entries of J, and let M = J—D.
Prove the following results.

{a) M is nilpotent.
(b} MD=DM.



(c) If p is the smallest positive integer for which MP = O, then, for
any positive integer r < p,

r(r—

ST =D 4D M+ 5 l).Dl""zf'd"? 4o+ rDMT™ 4 M7

and, for any positive integer r = p,

)
T D +rD'M + %D"?M? i
r! )
— __prPHppL
(r—p+1)i(p—1}!
19. Let
A 10 0
0 A1 0
00 A 0
e _
00 0 1
00 0 A

be the m x m Jordan block corresponding to A, and let N =J — Al,.
Prove the following results:

(a) N™=0,andfor 1 < r < m,

ye _ [1 ifi=itr
T 10 otherwise.

(b) For any integer r > m,

rir—1) rir—1)---(r—m+2)

AT .{\r—l —Af'—'z Ar—m—l
i o (m—1)!
) rr—1)-ilr—m+4+3) s
w16 S (m—(2)! L yr-m+2
0 0 B e ar

(c) 1_Iira_]_ J" exists if and only if one of the following holds:

(i) Al < 1.
(i) A=1and m = 1.



{Note that lim A" exists under these conditions. See the discus-

r—o0

sion preceding Theorem 5.13 on page 285.) Furthermore, rlim_ %

is the zero matrix if condition (i) holds and is the 1 x 1 matrix (1)
if condition (ii) holds.
(d} Prove Theorem 5.13 on page 285.

The following definition is used in Exercises 20 and 21.

20

21.

Deflnition. For any A € Mu.n(C), define the norm of A by

[[Al| = max {|Ai;]: 1 <4, 7 <n}.

. Let A B £ My..n(C). Prove the following results.

(2} |l4|| =0 and ||A|| =0 if and only if A = O.
(b) |lcA| = |c|+||4] for any sealar c.

(c) ll4+B| < |Al+|B].

(d) [lAB|| < n|lAll|B]].

Let A € Mpxn(C) be a transition matrix. (See Section 5.3.) Since C is
an algebraically elosed field, 4 has a Jordan canonieal form J to which
A is similar. Let P be an invertible matrix such that P~'AP = J.
Prove the following results.

(1) [|A™| < 1 for every positive integer m.

(b) There exists a positive number ¢ such that [|J™| < ¢ for every
positive integer m.

(c) Each Jordan block of J corresponding to the eigenvalue A =1isa
1 x 1 matrix.

(d) lim A™ exists if and only if 1 is the only eigenvalue of A with

m—as
absolute value 1.
{e) Theorem 5.20(a) using (c¢) and Theorem 5.19.

The next exercise requires knowledge of absolutely convergent series as well
as the definition of e for a matrix A. (See page 312.)

22,
23.

Use Exercise 20(d) to prove that e* exists for every A € My,.,(C).

Let " = Ax be a system of n linear differential equations, where = is
an n-tuple of differentiable functions =((£), za(t), ..., za(t) of the real
variable +, and A is an n x n coefficient matrix as in Exercise 15 of
Section 5.2. In contrast to that exercise, however, do not assume that
A is diagonalizable, but assume that the characteristic polynomial of A
splits. Let Aq, Aa, ..., Az be the distinet eigenvalues of A.



(a) Prove that if u is the end vector of a eycle of generalized eigenvee-
tors of L4 of length p and u eorresponds to the eigenvalue A;, then
for any polynomial f(t) of degree less than p, the funetion

e FE)A = NPT+ (A = AP 4 4 FP(B)]u

is a solution to the system x' = Arx.

(b} Prove that the general solution to ©* = Ax is a sum of the functions
of the form given in (a), where the vectors u are the end vectors of
the distinet cycles that constitute a fixed Jordan canonical basis
for LA.

Use Exercise 23 to find the general solution to each of the following syvs-
tems of linear equations, where ., y, and » are real-valued differentiable
functions of the real variable ¢.

=2+ y =24 y
(a) o= y— =z (b) o = y+ =
= 3z 2= 2z



EXERCISES
sec7.3

Label the following statements as true or false. Assume that all vector
spaces are finite-dimensional.

(a) Every linear operator T has a polynomial p(t) of largest degree for
which p(T) = Tp.

(b) Every linear operator has a unique minimal polvnomial.

(c) The characteristic polynomial of a linear operator divides the min-
imal polynomial of that operator.

{d) The minimal and the characteristic polynomials of any diagonal-
izable operator are equal.

(e) Let T be a linear operator on an n-dimensional vector space V, p(t)
be the minimal polynomial of T, and f(¢) be the characteristic
polynomial of T. Suppose that f(t} splits. Then f{#) divides
[p(t)".

{(f) The minimal polynomial of a linear operator always has the same
degree as the characteristie polynomial of the operator.

(g) A linear operator is diagonalizable if its minimal polynomial splits.

(h) Let T be a linear operator on a vector space V such that V is a
T-eyelic subspace of itself. Then the degree of the minimal poly-
nomial of T equals dim(V).

(i) Let T be a linear operator on a vector space V such that T has n
distinet eigenvalues, where n = dim({V). Then the degree of the
minimal polynomial of T equals n.

Find the minimal polynomial of each of the following matrices.

2 1 1 1
(a) (1 2) (b) (0 I)

4 —14 & < S I |
(c)f1 -4 2 (d| 2 2 2

1 -6 4 -1 0 1

For each linear operator T on V, find the minimal polynomial of T.
(a) V=R?and T(a,b) = (a+ba—5

(b) V =Pa(R) and T(g(x}) = g'(x) + 2g(x)

(c) V=Ps(R)and T(f(z)) = —=f"(z) + f'{z) + 2f(x)

(d) V=M,,n(R)and T(A) = A*. Hint: Note that T2 =1.

Determine which of the matrices and operators in Exercises 2 and 3 are
diagonalizable.

Describe all linear operators T on R? such that T is diagonalizable and
T —IT24+T =T



6. Prove Theorem 7.13 and its corollary.
7. Prove the corollary to Theorem 7.14.

8. Let T be a linear operator on a finite-dimensional veetor space, and let
p(t) be the minimal polynomial of T. Prove the following results.
(a) T is invertible if and only if p(0) # 0.
(b) If T is invertible and p(t) = t" + ap_1#""* + .- + ayt + ag, then

T = —l (Tﬂ_l +an_|T"_2 + -t asT+ ﬂ||:} .
ag
9. Let T be a diagonalizable linear operator on a finite-dimensional veetor
space V. Prove that V is a T-eyelic subspace if and only if each of the
elgenspaces of T is one-dimensional.

10. Let T be a linear operator on a finite-dimensional vector space V, and
suppose that W is a T-invariant subspace of V. Prove that the minimal
polynomial of Ty divides the minimal polynomial of T.

11. Let git) be the anxiliary polynomial associated with a homogeneous lin-
ear differential equation with constant coefficients (as defined in Section
2.7), and let V denote the solution space of this differential equation.
Prove the following results.

(a) Vis a D-invariant subspace, where D is the differentiation operator
on C™.

{b) The minimal polynomial of Dy (the restriction of D to V) is g().

(c) If the degree of g(t) is n, then the characteristic polynomial of Dy
is (—1)"g(f).

Hint: Use Theorem 2.32 (p. 135) for (b) and (c).

12. Let D be the differentiation operator on P{ R}, the space of polynomials
over . Prove that there exists no polynomial g(t) for which g(D} = Tp.
Hence D has no minimal polynomial.

13. Let T be a linear operator on a finite-dimensional vector space, and
suppose that the characteristic polynomial of T splits. Let Ay, Aa, ..., Mg
be the distinet eigenvalues of T, and for each i let p; be the order of the
largest Jordan block corresponding to A; in a Jordan canonical form of
T. Prove that the minimal polynomial of T is

(£ — )Pt — Ag)P2 -+« (£ — Ag)Pe.

The following exercise requires knowledge of direct sums (see Section 5.2).



14. Let T be linear operator on a finite-dimensional vector space V, and
let Wy and Ws be T-invariant subspaces of V such that V = Wy & Wa.
Suppose that py(t) and pa(t) are the minimal polynomials of Tw, and
Tw,. respectively. Prove or disprove that p,(f)ps(t) is the minimal
polynomial of T.

Exercise 15 uses the following definition.

Definition. Let T be a linear operator on a finite-dimensional vector

space V, and let x© be a nonzero vector in V. The polynomial p(t) is called
a T-annihilator of x if p(t) is a monic polynomial of least degree for which
p(T)(z) = 0.

15.7 Let T he a linear operator on a finite-dimensional vector space V, and
let = be a nonzero vector in V. Prove the following results.

16.

(a)
(b)

(c)

(d)

The vector x has a unique T-annihilator.

The T-annihilator of r divides any polynomial g(f) for which
g(T) = To.

If pit) is the T-annihilator of = and W is the T-eyclic subspace
generated by o, then p(t) is the minimal polynomial of Tw, and
dim(W) equals the degree of p(f).

The degree of the T-annihilator of « is 1 if and only if = is an
eigenvector of T.

T be a linear operator on a finite-dimensional veector space V, and let
Wy be a T-invariant subspace of V. Let = € V such that = ¢ Wy. Prove
the following results.

(a)
(b)

(c)
(d)

There exists a unique monic polynomial g (f) of least positive de-
gree such that g(T)(x) € Wy.

If h(t) is a polynomial for which h(T)}{x) € Wy, then g(t) divides
hit).

gf{i) divides the minimal and the characteristic polynomials of T.
Let W2 be a T-invariant subspace of V such that Wa C W, and
let go(t) be the unique monie polynomial of least degree such that
ga(T)(x) € Wa. Then g (t) divides ga(t).



sec7.4 EXERCISES

1. Label the following statements as true or false.

(a) Every rational canonical basis for a linear operator T is the union
of T-cyelic bases.



(b) If a basis is the union of T-cyelic bases for a linear operator T,
then it is a rational canonical basis for T.

(c) There exist square matrices having no rational eanonical form.

{(d) A square matrix is similar to its rational canonical form.

(e) For any linear operator T on a finite-dimensional vector space, any
irreducible factor of the characteristic polynomial of T divides the
minimal polynomial of T.

(f) Let ¢(f) be an irreduecible monic divisor of the characteristie poly-
nomial of a linear operator T. The dots in the diagram used to
compute the rational canoniecal form of the restriction of T to Ky
are in one-to-one correspondence with the vectors in a basis for
K¢..

(g) If a matrix has a Jordan canonieal form, then its Jordan canonieal
form and rational eanonical form are similar.

For each of the following matrices A € Mp.n(F), find the rational
canonical form C of A and a matrix @ € My . (F) such that Q—'AQ =
[

21 I =]
(a) 4=(0 3 1| F=n (b) A=(1 _1) F-R
00 3
0 -1
(c) A=(1 _1) F=cC
0 -7 14 -6
1 -4 6.3
W) d=4F & g ] F=F
0 -4 11 -5
0 -4 12 -7
i -1 3.4
ok A=ly 45 g q) B8
) i &%

For each of the following linear operators T, find the elementary divisors,
the rational canonieal form €, and a rational eanonieal basis 3.

(a) T is the linear operator on Pg(R) defined by
T(f(x)) = f(O)= — f(1).

(b) Let § = {sinz,cosr,rsinr, reosc}, a subset of F(R, R), and let
V = span(5). Define T to be the linear operator on V such that

T(f)=f"

{c) T is the linear operator on Ma,o(R) defined hy



T(4) = (_E" }) A,

(d) Let § = {sinzsiny,sinreosy, cos rsiny, cosreosy}, a subset of
F(R x R, R), and let V = span(5). Define T to be the linear
operator on V such that

8f(z,y)  Bf(z,y)
T Nzy) =——5—+ oy
Let T be a linear operator on a finite-dimensional vector space V' with
minimal polynomial {$(#))™ for some positive integer m.

(a) Prove that R(¢(T)) C N((¢(T))™ ).

(b} Give an example to show that the subspaces in (a) need not be
equal.

(c} Prove that the minimal polynomial of the restriction of T to
R(#(T)) equals (4(¢))™ "

Let T be a linear operator on a finite-dimensional vector space. Prove
that the rational canonieal form of T is a diagonal matrix if and only if
T is diagonalizable.

Let T be a linear operator on a finite-dimensional veetor space V' with
characteristic polynomial f{t) = (—1)"g1(f)da(t), where &, (t) and da(t)
are distinct irreducible monic polynomials and n = dim(V).

(a) Prove that there exist vy,va € V such that vy has T-annihilator
o1 (t), vo has T-annihilator ¢(t), and 5y, U Gy, is a basis for V.

(b} Prove that there is a veetor vy £ V with T-annihilator ¢, ()aa(t)
such that 3,, is a basis for V.

(¢} Deseribe the difference between the matrix representation of T
with respeet to 3y, U Fy, and the matrix representation of T with
respect to 3, .

Thus, to assure the uniqueness of the rational canoniecal form, we re-

quire that the generators of the T-eyelic bases that constitute a rational

eanonical hasis have T-annihilators equal to powers of irredueible monic

factors of the characteristic polynomial of T.

Let T be a linear operator on a finite-dimensional vector space with
minimal polynomial

F@) = (G ()™ ($2(2)™ - - - (delt))™,

where the &;(t)'s are distinet irreducible monic factors of f{t). Prove
that for each ¢, m; is the number of entries in the first column of the
dot diagram for ¢;(2).



8. Let T be a linear operator on a finite-dimensional vector space V. Prove
that for any irreducible polynomial ¢(t), if ¢(T) is not one-to-one, then
@(t) divides the characteristic polynomial of T. Hint: Apply Exercise 15
of Section 7.3.

9. Let V be a vector space and 3y, Fa, ..., 8¢ be disjoint subsets of V whose
union is a basis for V. Now suppose that ~y,72,...,v are linearly

independent subsets of V such that span(+;) = span(3;) for all i. Prove
that v U~a U -+ U~y is also a basis for V.

10. Let T be a linear operator on a finite-dimensional vector space, and
suppose that ¢(t) is an irreducible monie factor of the characteristic
polynomial of T. Prove that if ¢{f) is the T-annihilator of vectors x and
y, then x € C, if and only if C; = C.

Exercises 11 and 12 are concerned with direct sums.

11. Prove Theorem 7.25.

12. Prove Theorem 7.26.



	sec1.1_1
	sec1.1_2
	sec1.2_1
	sec1.2_2
	sec1.2_3
	sec1.2_4
	sec1.2_5
	sec1.3_1
	sec1.3_2
	sec1.3_3
	sec1.3_4
	sec1.3_5
	sec1.4_1
	sec1.4_2
	sec1.4_3
	sec1.4_4
	sec1.5_1
	sec1.5_2
	sec1.5_3
	sec1.6_1
	sec1.6_2
	sec1.6_3
	sec1.6_4
	sec1.6_5
	sec1.6_6
	sec1.7_1
	sec1.7_2
	sec2.1_1
	sec2.1_2
	sec2.1_3
	sec2.1_4
	sec2.1_5
	sec2.1_6
	sec2.2_1
	sec2.2_2
	sec2.2_3
	sec2.3_1
	sec2.3_2
	sec2.3_3
	sec2.3_4
	sec2.4_1
	sec2.4_2
	sec2.4_3
	sec2.4_4
	sec2.4_5
	sec2.5_1
	sec2.5_2
	sec2.5_3
	sec2.6_1
	sec2.6_2
	sec2.6_3
	sec2.6_4
	sec2.6_5
	sec2.7_1
	sec2.7_2
	sec2.7_3
	sec2.7_4
	sec2.7_5
	sec2.7_6
	sec3.1_1
	sec3.1_2
	sec3.2_1
	sec3.2_2
	sec3.2_3
	sec3.2_4
	sec3.3_1
	sec3.3_2
	sec3.3_3
	sec3.3_4
	sec3.4_1
	sec3.4_2
	sec3.4_3
	sec3.4_4
	sec3.4_5
	sec4.1_1
	sec4.1_2
	sec4.1_3
	sec4.2_1
	sec4.2_2
	sec4.2_3
	sec4.3_1
	sec4.3_2
	sec4.3_3
	sec4.3_4
	sec4.3_5
	sec4.4_1
	sec4.4_2
	sec4.4_3
	sec4.5_1
	sec4.5_2
	sec5.1_1
	sec5.1_2
	sec5.1_3
	sec5.1_4
	sec5.1_5
	sec5.2_1
	sec5.2_2
	sec5.2_3
	sec5.2_4
	sec5.2_5
	sec5.3_1
	sec5.3_2
	sec5.3_3
	sec5.3_4
	sec5.3_5
	sec5.3_6
	sec5.4_1
	sec5.4_2
	sec5.4_3
	sec5.4_4
	sec5.4_5
	sec5.4_6
	sec5.4_7
	sec6.1_1
	sec6.1_2
	sec6.1_3
	sec6.1_4
	sec6.1_5
	sec6.1_6
	sec6.2_1
	sec6.2_2
	sec6.2_3
	sec6.2_4
	sec6.2_5
	sec6.2_6
	sec6.3_1
	sec6.3_2
	sec6.3_3
	sec6.3_4
	sec6.3_5
	sec6.4_1
	sec6.4_2
	sec6.4_3
	sec6.4_4
	sec6.4_5
	sec6.4_6
	sec6.5_1
	sec6.5_2
	sec6.5_3
	sec6.5_4
	sec6.5_5
	sec6.5_6
	sec6.5_7
	sec6.6_1
	sec6.6_2
	sec6.6_3
	sec6.7_1
	sec6.7_2
	sec6.7_3
	sec6.7_4
	sec6.7_5
	sec6.8_1
	sec6.8_2
	sec6.8_3
	sec6.8_4
	sec6.8_5
	sec6.9_1
	sec6.9_2
	sec6.9_3
	sec6.9_4
	sec6.10_1
	sec6.10_2
	sec6.10_3
	sec6.11_1
	sec6.11_2
	sec6.11_3
	sec7.1_1
	sec7.1_2
	sec7.1_3
	sec7.2_1
	sec7.2_2
	sec7.2_3
	sec7.2_4
	sec7.2_5
	sec7.2_6
	sec7.2_7
	sec7.2_8
	sec7.3_1
	sec7.3_2
	sec7.3_3
	sec7.4_1
	sec7.4_2
	sec7.4_3
	sec7.4_4

