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General information

• Tutor: Zhou Feng (zfeng@math.cuhk.edu.hk);

• Time and venue: Th. 11:30–12:15, ERB 804;

• Course webpage: https://www.math.cuhk.edu.hk/course/2223/math4010

• References:

– Lecture Notes of Prof. Leung (available on course webpage).

– Textbook: S. Ovchinnikov, Functional analysis, Springer, (2018).

– E. Kreyszig, Introductory functional analysis with applications, John Wiley & Thusns

(1978).

– W. Rudin, Functional analysis, McGraw-Hill, (1991).

Recall

A normed space is a vector space equipped with a compatible norm (1. non-degenerate positivity

2. scaling property 3. triangle inequality). A Banach space is a complete normed space. Besides

the definition by the convergence of Cauchy sequence, completeness can be characterized via

series.

Every normed space has a unique completion to a Banach space. Every Banach space with

Schauder basis is separable but the converse is false (P. Enflo 1973) (countering to the case in

Hilbert spaces).

Normed & Banach spaces

Example 1. Show that the space of bounded variation functions BV [a, b] is a normed space with

the norm

‖x‖ = |x(a)|+ V (x) for x ∈ BV [a, b],

where V (x) denotes the total variation of x on [a, b].

We first introduce the bounded variation functions. Let [a, b] be a bounded closed interval in R.

Let x : [a, b] → C be a complex-valued function. For any partition P = {a = t0 ≤ · · · ≤ tn = b},
define the variation of x with respect to P by

V (x, P ) :=
n∑

k=1

|x(tk)− x(tk−1)|.

Then the total variation of x is defined as

V (x) := sup{V (x, P ) : P is a partition of [a, b]}.

Finally the set of bounded variation functions is

BV [a, b] := {x : [a, b]→ C |V (x) <∞} .
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Proof. First we show BV [a, b] that is closed under addition and scalar product, thus making it a

vector space. Let P = {a = t0 ≤ · · · ≤ tn = b} be any partition of [a, b]. For any x, y ∈ BV [a, b]

and α ∈ C, the scaling property of |·| implies that

V (αx, P ) =
n∑

k=1

|αx(tk)− αx(tk−1)| = |α|
n∑

k=1

|x(tk)− x(tk−1)| = |α|V (x, P )

and the triangle inequality of |·| implies that

V (x+ y, P ) =
n∑

k=1

|x(tk) + y(tk)− x(tk−1)− y(tk−1)|

≤
n∑

k=1

|x(tk)− x(tk−1)|+ |y(tk)− y(tk−1)|

=
n∑

k=1

|x(tk)− x(tk−1)|+
n∑

k=1

|y(tk)− y(tk−1)| = V (x, P ) + V (y, P ).

Taking supremum with respect to partition P gives

V (αx) = sup
P
V (αx, P ) = sup

P

(
|α|V (x, P )

)
= |α| sup

P
V (x, P ) = |α|V (x) (1)

and
V (x+ y) = sup

P
V (x+ y, P )

≤ sup
P

(
V (x, P ) + V (y, P )

)
≤ sup

P
V (x, P ) + sup

P
V (y, P ) = V (x) + V (y).

(2)

Hence BV [a, b] is closed under addition and scalar product by (1) and (2), thus a vector space.

Next we check that ‖·‖ is indeed a norm.

• If ‖x‖ = |x(a)| + V (x) = 0, then x(a) = 0 and V (x) = 0. For any t ∈ [a, b], consider the

partition P = {a ≤ t ≤ b}, then

|x(t)− x(a)|+ |x(b)− x(t)| = V (x, P ) ≤ V (x) = 0,

which forces |x(t)− x(a)| = 0, that is x(t) = x(a) = 0. Hence x = 0 since t is arbitrary.

• Let x ∈ BV [a, b] and α ∈ C. By the scaling property of |·| and (1),

‖αx‖ = |αx(a)|+ V (αx) = |α||x(t)|+ |α|V (x) = |α|
(
|x(t)|+ V (x)

)
= |α|V (x).

• Let x, y ∈ BV [a, b]. By the triangle inequality of |·| and (2),

V (x+ y) = |x(a) + y(a)|+ V (x+ y) ≤ |x(a)|+ |y(a)|+ V (x) + V (y) = ‖x‖ + ‖y‖.

Together we conclude that (BV [a, b], ‖·‖) is a normed space.
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