2050 HW3A

- 1. Let YE(0,1). Show that
 - (i) Let $\delta > 0$ be such that $1+\delta = \frac{1}{r}$. Show that $(0 <) v^n < \frac{1}{1+n\sigma}$ (Hint: Binomial or Bernoulli).
 - (ii) Show that lim m = 0 (Hint: Squeeze).
- 2. Let $\gamma \in (0,1)$ and $S_n := 1 + \gamma + \gamma + \cdots + \gamma^n \quad (n \in \mathbb{N}).$ Show that $S_n = \frac{1-\gamma^{n+1}}{1-\gamma} \quad \forall n \in \mathbb{N} \text{ and}$ $\lim_{n \to \infty} S_n = \frac{1}{1-\gamma}$
- 3. Let $c\in(0,1)$, and let (x_n) be a c-condraction segmence, namely $|x_{n+1}-x_n| \leq c|x_n-x_{n-1}|$, $\forall n\in\mathbb{N}\setminus\{1\}$.

Show, by MI, that, YHEN

(i) $|x_{n+1} - x_n| \le c^{n-1} |x_2 - x_1|$ (convention: $c^n = |if = 0|$,

and

(iii)
$$|\chi_{n+j} - \chi_n| \le (C^{n+j-2} + C^{n+j-3} + ... + C^{n-1})|\chi_{2} - \chi_{1}|$$

 $\le \frac{C^{n-1}}{1-C}|\chi_{2} - \chi_{1}|$

Consequently, show further that (xn) to a Cauchy sequence.

4. Let

 $2C_{n+1} = 2 + \frac{\chi_n}{2} \forall n \in \mathbb{N}.$

Then, for each of the following cases, 8how that (Xn) converges (and find the value of the limit:

 $(i) \quad \chi_1 = 0 \quad ;$

(11) $\chi_1 = 10$.

(Itint: Can the MCT be applied?)

5. Show that $\lim_{n \to \infty} \frac{n^t}{(1+\delta)^n} = 0$ (where $\delta > 0$).

thirt (similar to QI but expand more terms when apply the Binomial).

6. Let x1>0 and $\chi_{n+1} = \chi_n + \frac{1}{\chi_1} \quad \forall \; \mathcal{N}.$

Use two methods below, show that (Xn) does not converge:

(a) Use Q6 of the 2 (2n) unbounded)
(b) Use (algebraic computation rules).

7. Suppose lim yn = y. Show

(1) If y>0 then there exists NEW such that (9, y < yn < 2y \ n > N. (1, y < yn).

(") If y = 0 then there exists NEW such that 0.9. |y| < 1yn | < 2|91, \tag{\tau} , \tau > \tau . (iii) Suppose $\lim_{n \to \infty} y_n = y$, $y \neq 0$ and $\delta \in (0, |y|)$. Then $\exists N \in \mathbb{N} :+ .$ $(1-\delta)|y| < |y_n| < \frac{1}{2\nu 2^2} + |y| \forall n > \mathbb{N}.$

3. Returning to Q3, show that $\sum_{n=1}^{\infty} |x_{n+1} - x_n| \leq \sum_{n=1}^{\infty} |x_{n} - x_n| = \frac{1}{1-c} |x_{n} - x_{n}|$ $\sum_{n=1}^{\infty} |x_{n+1} - x_n| \leq \sum_{n=1}^{\infty} |x_{n} - x_{n}| = \frac{1}{1-c} |x_{n} - x_{n}|$ and hence that $\sum_{n=1}^{\infty} (x_{n+1} - x_n) = x_n + x_n + x_n + x_n + x_n = x_n + x_n + x_n = x_n + x_n + x_n + x_n + x_n + x_n = x_n + x$