The second fundamental form

Definition

Let S be the shape operator with respect to a unit normal vector field \mathbf{N} , the second fundamental form \mathbb{H}_p of M at p (with respect to \mathbf{N}) is the bilinear form $\mathbb{H}_p(\mathbf{v}, \mathbf{w}) = g(S_p(\mathbf{v}), \mathbf{w}) = \langle S_p(\mathbf{v}), \mathbf{w} \rangle$.

Proposition

 \mathbb{II}_p is a symmetric bilinear form on $T_p(M)$.

Proof:

$$\mathbb{II}_{\rho}(\mathsf{v},\mathsf{w}) = \langle \mathcal{S}_{\rho}(\mathsf{v}),\mathsf{w} \rangle = \langle \mathsf{v},\mathcal{S}_{\rho}(\mathsf{w}) \rangle = \mathbb{II}_{\rho}(\mathsf{w},\mathsf{v})$$

because S_p is self-adjoint.

Coefficients of the second fundamental form

With the same notation as in the previous section of M. Let $\mathbf{N} = \mathbf{X}_u \times \mathbf{X}_v / |\mathbf{X}_u \times \mathbf{X}_v|$.

Definition

The coefficients of the second fundamental form e, f, g at p are defined as:

$$e = \mathbb{II}_p(\mathbf{X}_u, \mathbf{X}_u); f = \mathbb{II}_p(\mathbf{X}_u, \mathbf{X}_v); g = \mathbb{II}_p(\mathbf{X}_v, \mathbf{X}_v).$$

Notation: Suppose we use (u^1, u^2) as coordinates, and $\mathbf{N} = \mathbf{X}_1 \times \mathbf{X}_2/|\mathbf{X}_1 \times \mathbf{X}_2|$, then the coefficients of the second fundamental form are denoted by

$$h_{11} = \mathbb{II}_p(\mathbf{X}_1, \mathbf{X}_1); h_{12} = \mathbb{II}_p(\mathbf{X}_1, \mathbf{X}_2) = h_{21}; h_{22} = \mathbb{II}_p(\mathbf{X}_2, \mathbf{X}_2).$$

Coefficients of the second fundamental form, cont.

$$\mathcal{S}_p(\mathbf{X}_u) = -\frac{\partial}{\partial u}\mathbf{N} = -\mathbf{N}_u$$
. Hence $e = \mathbb{H}_p(\mathbf{X}_u, \mathbf{X}_u) = \langle \mathcal{S}_p(\mathbf{X}_u), \mathbf{X}_u \rangle = -\langle \mathbf{N}_u, \mathbf{X}_u \rangle = \langle \mathbf{N}, \mathbf{X}_{uu} \rangle$. Similarly, $f = \langle \mathbf{N}, \mathbf{X}_{uv} \rangle$, $g = \langle \mathbf{N}, \mathbf{X}_{vv} \rangle$.

To compute e, f, g

Proposition

$$\begin{split} e = & \langle \mathbf{N}, \mathbf{X}_{uu} \rangle = \frac{\det \left(\mathbf{X}_{u}, \mathbf{X}_{v}, \mathbf{X}_{uu} \right)}{\sqrt{EG - F^2}} \\ f = & \langle \mathbf{N}, \mathbf{X}_{uv} \rangle = \frac{\det \left(\mathbf{X}_{u}, \mathbf{X}_{v}, \mathbf{X}_{uv} \right)}{\sqrt{EG - F^2}}; \\ g = & \langle \mathbf{N}, \mathbf{X}_{vv} \rangle = \frac{\det \left(\mathbf{X}_{u}, \mathbf{X}_{v}, \mathbf{X}_{vv} \right)}{\sqrt{EG - F^2}}. \end{split}$$

Examples

Consider the torus:

$$\mathbf{X}(u,v) = ((a+r\cos u)\cos v, (a+r\cos u)\sin v, r\sin u). \text{ Then}$$

$$\begin{cases}
\mathbf{X}_u = (-r\sin u\cos v, -r\sin u\sin v, r\cos u) \\
\mathbf{X}_v = (-(a+r\cos u)\sin v, (a+r\cos u)\cos v, 0) \\
\mathbf{X}_{uu} = (-r\cos u\cos v, -r\cos u\sin v, -r\sin u) \\
\mathbf{X}_{uv} = (r\sin u\sin v, -\sin u\cos v, 0) \\
\mathbf{X}_{vv} = (-(a+r\cos u)\cos v, -(a+r\cos u)\sin v, 0)
\end{cases}$$
So $E = r^2, F = 0, G = (a+r\cos u)^2.$
 $e = \det(\mathbf{X}_u, \mathbf{X}_v, \mathbf{X}_{uu})/r(a+r\cos u) = r.$
 $f = 0, g = \cos u(a+r\cos u).$

Matrix of S_p

Recall: suppose V^2 is vector space V^2 . Let $\beta = \{\mathbf{e}_1, \mathbf{e}_2\}$ be an ordered basis for V_2 . Let $\mathbf{v} \in V^2$, then $\mathbf{v} = c_1\mathbf{e}_1 + c_2\mathbf{e}_2$. Then $[c_1, c_2]^T$ as a column vector if called the coordinates of \mathbf{v} w.r.t. β , denoted by $[\mathbf{v}]_\beta$. Let T be a linear map on V^2 . Then $T(\mathbf{e}_i) = \sum_{j=1}^2 a_j^j \mathbf{e}_j$. Then the matrix of T w.r.t. β is $[T]_\beta = \begin{pmatrix} a_1^1 & a_2^1 \\ a_1^2 & a_2^2 \end{pmatrix}$. We have $[T(\mathbf{v})]_\beta = [T]_\beta [\mathbf{v}]_\beta$. E.g.

$$[T(\mathbf{e}_1)]_{\beta} = \left(egin{array}{cc} a_1^1 & a_2^1 \ a_1^2 & a_2^2 \end{array}
ight) \left(egin{array}{cc} 1 \ 0 \end{array}
ight) = \left(egin{array}{c} a_1^1 \ a_1^2 \end{array}
ight).$$

There are two invariants of T: its determinant and its trace. They are independent of the ordered basis chosen.

Gaussian curvature and mean curvature

Suppose $S_p(\mathbf{X}_u) = a_1^1 \mathbf{X}_u + a_1^2 \mathbf{X}_v$, $S_p(\mathbf{X}_v) = a_2^1 \mathbf{X}_u + a_2^2 \mathbf{X}_v$. Then the matrix of S_p with respect to the ordered basis $\beta = \{\mathbf{X}_u, \mathbf{X}_v\}$ is given by

$$[\mathcal{S}_p]_{eta}=\left(egin{array}{cc} a_1^1 & a_2^1\ a_1^2 & a_2^2 \end{array}
ight)$$

Definition

The Gaussian curvature K(p) of M at p is the determinant of S_p . The mean curvature H(p) of M at p is $1/2 \times$ the trace of S_p .

Gaussian curvature and mean curvature in local coordinates

Proposition

• The matrix of S_p with respect to the ordered basis $\{\mathbf{X}_u, \mathbf{X}_v\}$ is:

$$\left(\begin{array}{cc} a_1^1 & a_2^1 \\ a_1^2 & a_2^2 \end{array}\right) = \left(\begin{array}{cc} e & f \\ f & g \end{array}\right) \left(\begin{array}{cc} E & F \\ F & G \end{array}\right)^{-1}.$$

② The Gaussian curvature K(p) and the mean curvature H(p) of M at p are

$$K(p) = \frac{eg - f^2}{EG - F^2}; H(p) = \frac{1}{2} \frac{eG - 2fF + gE}{EG - F^2}.$$

If we use coordinates (u^1, u^2) and coefficients of the first and second fundamental forms are g_{ij} , h_{ij} , then

$$K(p) = \frac{h_{11}h_{22} - h_{12}^2}{g_{11}g_{22} - g_{12}^2},$$

and

$$H(p) = \frac{1}{2} \frac{h_{11}g_{22} - 2h_{12}g_{12} + h_{22}g_{11}}{g_{11}g_{22} - g_{12}^2}.$$

Two remarks

Remark: (i) Gaussian curvature is invariant under reparametrization. (ii) Mean curvature is invariant under *orientation preserving* reparametrization.

Proof of the proposition

Proof: It is more easy to use parametrization of the form $\mathbf{X}(u^1,u^2)$. Denote $\mathbf{X}_1=\mathbf{e}_1$, $\mathbf{X}_2=\mathbf{e}_2$. If the matrix of \mathcal{S}_p w.r.t. this ordered basis β is given above. Then $\mathcal{S}_p(\mathbf{e}_i)=\sum_{j=1}^2 a_j^j \mathbf{e}_j$. Let $g_{ij}=\langle e_i,e_j\rangle$ Now $h_{ij}=\langle \mathcal{S}_p(\mathbf{e}_i),\mathbf{e}_j\rangle=\langle \sum_k a_i^k \mathbf{e}_k,\mathbf{e}_j\rangle=\sum_k a_i^k g_{jk}$. Hence $[h_{ij}]=[\mathcal{S}]_\beta[g_{ij}]$. So

$$[\mathcal{S}]_{\beta} = [h_{ij}][g_{ij}]^{-1}.$$

Examples

- Let M be a plane. We know that $S_p = 0$ everywhere. So the Gaussian curvature is 0, the mean curvature is zero.
- Let M be the unit sphere. If we choose ${\bf N}$ as before, then ${\cal S}$ is negative of the identity. So Gaussian curvature is 1 and mean curvature is -1.
- For the torus, and the choice of normal vector as before, we have $E = r^2$, F = 0, $G = (a + r \cos u)^2$. $e = \det(\mathbf{X}_u, \mathbf{X}_v, \mathbf{X}_{uu})/r(a + r \cos u) = r$. f = 0, $g = \cos u(a + r \cos u)$. Hence

$$K = \frac{\cos u}{r(a + r\cos u)}.$$

So
$$K > 0$$
 for $-\frac{3}{2}\pi < u < \frac{1}{2}\pi$, $K = 0$ on $u = \frac{1}{2}\pi, -\frac{3}{2}\pi$, $K < 0$ for $\frac{1}{2}\pi < u < \frac{3}{2}\pi$.