Existence and uniqueness theorems in ODE

Ref: Ordinary differential equations, Birkoff and Rota

Let $A(t) = (a_{ij}(t))_{n \times n}$ be a smooth family $n \times n$ matrix, $t \in [a, b]$. Consider the following initial valued problem (IVP): Given A and a constant $\mathbf{x}_0 \in \mathbb{R}^n$, to find $\mathbf{x} : [a, b] \to \mathbb{R}^n$ satisfying:

$$\begin{cases} \mathbf{x}'(t) = A(t)\mathbf{x}(t), & t \in [a, b]; \\ \mathbf{x}(a) = \mathbf{x}_0. \end{cases}$$

Theorem

Given any $\mathbf{x}_0 \in \mathbb{R}^n$, the exists a unique solution of the above IVP.

[Proof.](Sketch) For simplicity let us assume a = 0.

Existence: Define inductively, with $\mathbf{x}_0(t) = \mathbf{x}_0$ for all t, and

$$\mathbf{x}_{k+1}(t) = \mathbf{x}_0 + \int_0^t A(\tau) \mathbf{x}_k(\tau) d\tau.$$

for $k \ge 0$.

Let $M = \sup_{t \in [a,b]} ||A||(t)$ and $||A(t)||^2 = \operatorname{tr}(AA^T(t))$. For $k \ge 1$, we have

$$|\mathbf{x}_{k+1}(t) - \mathbf{x}_k(t)| \leq M \int_0^t |\mathbf{x}_k(\tau) - \mathbf{x}_{k-1}(\tau)| d\tau.$$

Inductively, we have (why?)

$$|\mathbf{x}_{k+1}(t) - \mathbf{x}_{k}(t)| \leq M^{k} \int_{0}^{t} \int_{0}^{\tau_{k-1}} \dots \int_{0}^{\tau_{2}} \int_{0}^{\tau_{1}} |\mathbf{x}_{1}(\tau_{1}) - \mathbf{x}_{0}(\tau_{1})| d\tau_{1} d\tau_{2} \dots d\tau_{k-1} d\tau_{k} \leq \frac{M^{k} b^{k} S}{k!}$$

where integration is over the domain $t \geq \tau_k \geq \cdots \geq \tau_1$ and $S = \sup_{t \in [0,b]} |\mathbf{x}_1(t) - \mathbf{x}_0(t)|$. Hence $\sum_{k=1}^{\infty} |\mathbf{x}_{k+1}(t) - \mathbf{x}_k(t)| \leq C$ for some constant C for all

therefore $\sum_{k=1}^{\infty} |\mathbf{x}_{k+1}(\tau) - \mathbf{x}_k(\tau)| \le C$ for some constant C for all $t \in [0, b]$. This implies that $\mathbf{x}_k \to \mathbf{x}_{\infty}$ uniformly on [0, b] which satisfies:

$$\mathbf{x}_{\infty}(t) = \mathbf{x}_0 + \int_0^t A(\tau) \mathbf{x}_{\infty}(\tau) d\tau,$$

(why?) Now \mathbf{x}_{∞} is the solution of the above IVP.

Proof.

Uniquess: Sufficient to prove that if $x_0 = 0$, then any solution must be trivial. So let x be such a solution, then

$$\frac{d}{dt}||\mathbf{x}||^2 = 2\langle A\mathbf{x}, \mathbf{x}\rangle \le 2M||\mathbf{x}||^2.$$

Hence

$$\frac{d}{dt} \left(\exp(-2Mt) ||\mathbf{x}||^2 \right) \le 0.$$

This will imply that $||\mathbf{x}||^2 \equiv 0$. (Why?)

Fundamental theorem for curves in \mathbb{R}^3

Theorem

Let $\kappa(s)>0$ and $\tau(s)$ be smooth function on (a,b). There exists a regular curve $\alpha:(a,b)\to\mathbb{R}^3$ with $|\alpha'|=1$, such that the curvature and torsion of α are k, τ respectively. Moreover, α is unique in the sense: If β is another curve satisfying the above conditions, then $\beta(s)=\alpha(s)P+\vec{c}$ for some constant orthogonal matrix P and some constant vector \vec{c} . Here α,β are considered as row vectors.

Existence

Let

$$A(s) = \left(egin{array}{ccc} 0 & \kappa(s) & 0 \ -\kappa(s) & 0 & au(s) \ 0 & - au(s) & 0 \end{array}
ight).$$

Let X(s) be the 3 \times 3 matrix and fix s_0 which is the solution of:

$$\begin{cases} X' = AX & \text{in } (a, b); \\ X(s_0) = I. \end{cases}$$

The solution exists by a theorem in ODE.

$$(X^{t}X)' = (X^{t})'X + X^{t}X' = (AX)^{t}X + X^{t}AX = X^{t}A^{t}X + X^{t}AX = 0$$

because $A^t = -A$. Hence $X^tX = I$ because $X^t(s_0)X(s_0) = I$. (**Using** $(XX^t)'$ may be more involved.) Hence X(s) is orthogonal. Since $\det X(s) = 1$ or -1 and initially, $\det X(s_0) = 1$, we have $\det X(s) = 1$.

Write

$$X = \left(\begin{array}{c} \widetilde{T} \\ \widetilde{N} \\ \widetilde{B} \end{array} \right).$$

Define $\alpha(s) = \int_{s_0}^s \widetilde{T}(\sigma) d\sigma$. Let T, N, B be the tangent, principal normal and binormal of α , and let $\kappa_{\alpha}, \tau_{\alpha}$ be the curvature and torsion of α .

Arr $\alpha' = \widetilde{T}$ which has length 1. So $T = \widetilde{T}$.

$$\kappa_{\alpha} N = T' = \widetilde{T}' = \kappa \widetilde{N}.$$

we have $\kappa_{\alpha} = \kappa$ and $N = \widetilde{N}$.

■ Since \widetilde{T} , \widetilde{N} , \widetilde{B} are positively oriented, we conclude that

$$B = T \times N = \widetilde{T} \times \widetilde{N} = \widetilde{B},$$

and

$$-\tau_{\alpha}N = B' = \widetilde{B}' = -\tau\widetilde{N} = -\tau N.$$

Uniqueness

Lemma

Let α be a regular curve parametrized by arc length with Frenet frame $\{T, N, B\}$ and with curvature and torsion κ, τ . Let P be an orthogonal matrix with determinant 1 and let $\beta = \alpha P + \vec{c}$, where \vec{c} is a constant vector. Then the Frenet frame of β is TP, NP, BP with same curvature and torsion.

Proof: Exercise.

Proof of Uniqueness

Uniquess: Let α, β as in the theorem. Let $T_{\alpha}, N_{\alpha}, B_{\alpha}$ be the unit tangent, principal normal, binormal of α ; and let $T_{\beta}, N_{\beta}, B_{\beta}$ be the unit tangent, principal normal, binormal of β . Fix $s_0 \in (a, b)$. Let P be an orthogonal matrix with determinant 1 such that

$$\left(egin{array}{c} T_{eta}(s_0) \ N_{eta}(s_0) \ B_{eta}(s_0) \end{array}
ight) = \left(egin{array}{c} T_{lpha}(s_0) \ N_{lpha}(s_0) \ B_{lpha}(s_0) \end{array}
ight) P.$$

Here T_{α}, \ldots , etc are considered as row vectors. Let $\gamma(s) = \alpha(s)P$. Let T_{γ} , N_{γ} , B_{γ} be unit tangent, principal normal, binormal of γ .

Then

$$T_{\gamma} = \gamma' = \alpha' P = T_{\alpha} P,$$

 $\kappa N_{\gamma} = T'_{\gamma} = T'_{\alpha} P = \kappa N P.$

and so $T_{\gamma}=T_{\alpha}P, N_{\gamma}=N_{\alpha}P.$ Hence $B_{\gamma}=B_{\alpha}P.$ We have

$$\begin{pmatrix} T_{\gamma} \\ N_{\gamma} \\ B_{\gamma} \end{pmatrix}' = \begin{pmatrix} T_{\alpha} \\ N_{\alpha} \\ B_{\alpha} \end{pmatrix}' P = A \begin{pmatrix} T_{\alpha} \\ N_{\alpha} \\ B_{\alpha} \end{pmatrix} P = A \begin{pmatrix} T_{\gamma} \\ N_{\gamma} \\ B_{\gamma} \end{pmatrix}$$

where A is as above. Since

$$\begin{pmatrix} T_{\gamma}(s_0) \\ N_{\gamma}(s_0) \\ B_{\gamma}(s_0) \end{pmatrix} = \begin{pmatrix} T_{\alpha}(s_0) \\ N_{\alpha}(s_0) \\ B_{\alpha}(s_0) \end{pmatrix} P = \begin{pmatrix} T_{\beta}(s_0) \\ N_{\beta}(s_0) \\ B_{\beta}(s_0) \end{pmatrix}.$$

we have $T_{\gamma} = T_{\beta}$, by uniqueness theorem of ODE. So $\gamma(s) + \vec{c} = \beta(s)$ for some constant vector \vec{c} . That is: $\beta(s) = \alpha(s)P + \vec{c}$.

Geometric meaning of curvature

Proposition

Let $\alpha(s)$ be a plane curve parametrized by arc length defined on (a,b). Let $s_0 \in (a,b)$. Suppose $\kappa(s_0) > 0$. Then the following are true:

- (i) For any $s_1 < s_2 < s_3$ sufficiently close to $s_0, \alpha(s_1), \alpha(s_2), \alpha(s_3)$ are not collinear.
- (ii) For $s_1 < s_2 < s_3$ sufficiently close to s_0 so that $\alpha(s_1), \alpha(s_2), \alpha(s_3)$ are not collinear,
- (iii) Let $c(s_1, s_2, s_3)$ be the center of the unique circle $C(s_1, s_2, s_3)$ passing through $\alpha(s_1), \alpha(s_2), \alpha(s_3)$.
 - As $s_1, s_2, s_3 \rightarrow s_0$, $C(s_1, s_2, s_3)$ will converge to a circle passing through $\alpha(s_0)$ tangent to α at $\alpha(s_0)$ with radius $1/\kappa(s_0)$.

[Proof] (i) Suppose $\alpha(s_1), \alpha(s_2), \alpha(s_3)$ lie on a straight line. Then

$$\langle \alpha(\mathbf{s}_i) - \vec{\mathbf{v}}, \vec{\mathbf{n}} \rangle = 0$$

for some constant vectors \vec{v} , \vec{n} with $|\vec{n}|=1$, for i=1,2,3. Let $f(s)=\langle \alpha(s)-\vec{v},\vec{n}\rangle$. Then $f(s_i)=0$ for i=1,2,3. Hence $f'(\xi_1)=f'(\xi_2)=0$ for some $s_1<\xi_1< s_2<\xi_2< s_3$ and $f''(\eta)=0$ for some $\xi_1<\eta<\xi_2$. That is:

$$\begin{cases} \langle \alpha'(\xi_1), \vec{n} \rangle = \langle \alpha'(\xi_2), \vec{n} \rangle = 0; \\ \langle \alpha''(\eta), \vec{n} \rangle = 0. \end{cases}$$

As $s_1, s_2, s_3 \to s_0$, $\vec{n} \to N(s_0)$ and $\alpha''(\eta) = \kappa(s_0)N(s_0)$. This implies $\kappa(s_0) = 0$. Contradiction.

(ii) Let $C(s_1, s_2, s_3)$ be given by

$$||\mathbf{x}-c||=r.$$

where $c = c(s_1, s_2, s_3)$. Let $h(s) = ||\alpha(s) - c||^2$. Then $h(s_i) = r^2$ for i = 1, 2, 3. Hence $h'(\xi_1) = h'(\xi_2) = 0$ for some $s_1 < \xi_1 < s_2 < \xi_2 < s_3$ and $h''(\eta) = 0$ for some $\xi_1 < \eta < \xi_2$. Hence

$$\begin{cases} \langle \alpha'(\xi_1), \alpha(\xi_1) - c \rangle &= \langle \alpha'(\xi_2), \alpha(\xi_2) - c \rangle = 0; \\ \langle \alpha''(\eta), \alpha(\eta) - c \rangle + 1 &= 0. \end{cases}$$

If $c
ightarrow c_{\infty}$ for some sequence $s_1 < s_2 < s_3
ightarrow s_0$, then

$$\langle \alpha'(s_0), \alpha(s_0) - c_{\infty} \rangle = 0, \quad \langle \alpha''(s_0), \alpha(s_0) - c_{\infty} \rangle = -1$$

So $c_{\infty} - \alpha(s_0) = \frac{1}{\kappa(s_0)} N(s_0)$. From this the result follows. The limiting circle is called the *osculating circle*.

