Simple closed curves

Definition

Let $\alpha: [a,b] \to M$ be a curve. α is said to be piecewise smooth if there exist $a=t_0 < t_1 < \cdots < t_k = b$ such that

- (i) α is continuous;
- (ii) α is regular and is smooth on each $[t_i, t_{i+1}]$.

- α is said to be *simple* if $\alpha(t) \neq \alpha(t')$ for $t \neq t'$.
- α is said to be *closed* if $\alpha(a) = \alpha(b)$.
- α is said to be *simple closed* if α is closed and is simple on (a, b].
- α is said to be *smooth and simple closed* if α is simple closed and $\alpha(a) = \alpha(b)$ and $\alpha'(b) = \alpha'(a)$.
- α is said to be a *closed geodesic* if α is a geodesic and is smooth simple closed, so that $\alpha(b) = \alpha(a)$ and $\alpha'(b) = \alpha'(a)$.

Definition

Let M be an oriented regular surface and $\mathcal{R} \subset M$ is a bounded domain in M which is bounded by some piecewise smooth simple closed curve $\alpha_1, \ldots, \alpha_n$. Then α_i is said to be positively oriented if the unit normal $\mathbf{n} \perp \alpha'$ is such that

- (i) α' , **n** are positively oriented; and
- (ii) **n** is pointing to the interior of \mathcal{R} .

Facts about isothermal parametrization

Let $\mathbf{X}: U \subset \mathbb{R}^2 \to M$ be an isothermal parametrization. Namely $\langle \mathbf{X}_u, \mathbf{X}_u \rangle = \langle \mathbf{X}_v, \mathbf{X}_v \rangle = e^{2f}, \langle \mathbf{X}_u, \mathbf{X}_v \rangle = 0.$

Lemma

Let $\alpha_1(t) = \mathbf{X}(\beta_1(t))$ and $\alpha_2(t) = \mathbf{X}(\beta_2(t))$ where $\beta_i(t)$ are curves in U. Then

$$\langle \alpha_1', \alpha_2' \rangle = e^{2f} \langle \beta_1', \beta_2' \rangle.$$

at a point of intersection of α_1, α_2 . (RHS is the standard inner product in $U \subset \mathbb{R}^2$.)

Proof

: Let
$$\beta_i = (u_i, v_i)$$
 for $i = 1, 2$. Then

$$\begin{split} \langle \alpha_1', \alpha_2' \rangle = & \langle \mathbf{X}_u u_1' + \mathbf{X}_v v_1', \langle \mathbf{X}_u u_2' + \mathbf{X}_v v_2' \rangle \\ = & e^{2f} (u_1' u_2' + v_1' v_2') = e^{2f} \langle \beta_1', \beta_2' \rangle. \end{split}$$

Facts about isothermal parametrization, cont.

Let

$$\mathbf{e}_1 = rac{\mathbf{X}_u}{|\mathbf{X}_u|} = e^{-f}\mathbf{X}_u, \ \mathbf{e}_2 = rac{\mathbf{X}_v}{|\mathbf{X}_v|} = e^{-f}\mathbf{X}_v.$$

Let $\widetilde{\mathbf{e}}_1=(1,0), \widetilde{\mathbf{e}}_2=(0,1)$ be the standard orhonormal basis in $U\subset\mathbb{R}^2.$

Lemma

Let $\alpha(s)$ be a regular curve on $\mathbf{X}(U) \subset M$ parametrized by arc length and let β be such that $\mathbf{X}(\beta) = \alpha$. Suppose $\theta(s)$ be smooth so that

$$\alpha'(s) = \cos \theta(s) \mathbf{e}_1 + \sin \theta(s) \mathbf{e}_2.$$

Then

$$\frac{\beta'(s)}{|\beta'(s)|} = \cos\theta(s)\widetilde{\mathbf{e}}_1 + \sin\theta(s)\widetilde{\mathbf{e}}_2.$$

Proof.

$$\cos \theta(s) = \langle \alpha', \mathbf{e}_1 \rangle = \langle \frac{\beta'(s)}{|\beta'(s)|}, \widetilde{\mathbf{e}}_1 \rangle$$
 etc.

Facts about isothermal parametrization, cont.

Lemma

Let α be a piecewise smooth simple closed curve bounded a region \mathcal{R} in M so that $\alpha = \mathbf{X}(\beta)$, which bounded a region in U. If α is positively oriented w.r.t. to the orientation $\mathbf{N} = \mathbf{e}_1 \times \mathbf{e}_2$, then β is positively oriented with respect to the standard orientation in U.

$\iint_{\mathcal{R}} KdA$ for \mathcal{R} inside an isothermal coordinate chart

Consider the following:

- Let $X: U \to M$ be an isothermal local parametrization of an oriented surface M (i.e. $E = G = e^{2f}$, F = 0).
- Let $\alpha = \alpha(s) = \mathbf{X}(u(s), v(s))$ ($0 \le s \le I$), be a simple closed piecewise smooth curve parametrized by arc length in M so that $\beta(s) = (u(s), v(s))$ is a piecewise smooth curved in U which bounds a region D in U. Let $\mathcal{R} = \mathbf{X}(D)$. Assume α is positively oriented.
- Let L be the length of β in U and let τ be the arc length of β as a curve in $U \subset \mathbb{R}^2$. Then $\beta(s) = \beta(s(\tau))$, $0 \le \tau \le L$.

Lemma

In the above setting, we have:

$$\iint_{\mathcal{R}} K dA = -\int_{0}^{L} \langle \nabla_{0} f, \nu_{0} \rangle d\tau$$

where $\nabla_0 f = (\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v})$. Here τ is the arc length of β as a curve in $U \subset \mathbb{R}^2$ and ν_0 is the unit outward normal of D.

Recall that in the above settings, if ϕ is a function defined on ${\it M}$ then

$$\iint_{\mathcal{R}} \phi dA = \iint_{U} \phi \sqrt{\textit{EG} - \textit{F}^2} \textit{dudv}.$$

Here
$$\phi = \phi(u, v) = \phi(\mathbf{X}(u, v))$$
.

Green's theorem

In order to prove the lemma, we need the following Green's theorem (divergence theorem):

Theorem

Let Ω be a bounded domain if \mathbb{R}^2 and let $\gamma=\gamma(\tau)$ parametrized by arc length, $0\leq \tau\leq I$ be the boundary curve of Ω , positively oriented. Assume that γ is piecewise smooth and connected. Let ν be the unit outward normal of Ω . Suppose P and Q are two smooth functions defined on Ω , and let $\mathbf{w}=(P,Q)$. Then

$$\iint_{\Omega} \left(\frac{\partial P}{\partial u} + \frac{\partial Q}{\partial v} \right) du dv = \int_{0}^{l} \langle \mathbf{w}, \nu \rangle d\tau.$$

• Note that div $\mathbf{w} = \frac{\partial P}{\partial u} + \frac{\partial Q}{\partial v}$. Hence the theorem is equivalent to say:

$$\iint_{\Omega} \operatorname{div} \mathbf{w} \ du dv = \int_{0}^{l} \langle \mathbf{w}, \nu \rangle d\tau.$$

- The theorem is still true if the boundary consists of finitely many piecewise smooth closed curves. We have to assume that all are positively oriented.
- The theorem is still true in higher dimensions.

Sketch of proof of the Divergence Theorem for domains in \mathbb{R}^2

Step 1: Assume the domain D is bounded by the line segment $L: \{a \leq x \leq b, y = 0\}$ and the graph K of a function $y = \phi(x)$ over L with $\phi(x) > 0$ for $x \in (a,b)$ and y(a) = y(b) = 0. If X = (0, g(x, y)) is a smooth vector field, then

$$\int_{D} \operatorname{div} X \, dx dy = \int_{D} \frac{\partial g}{\partial y} dx dy$$

$$= \int_{a}^{b} \left(\int_{0}^{\phi(x)} \frac{\partial g}{\partial y} dy \right) dx$$

$$= \int_{a}^{b} \left(g(x, \phi(x)) - g(x, 0) \right) dx.$$

The outward unit normal ν of D at the boundary E is (0, -1).

Hence

$$\int_{I} \langle X, \nu \rangle ds = -\int_{a}^{b} g(x, 0) dx$$

The unit outward normal of D at the boundary K is $(-\phi'(x),1)/\sqrt{1+(\phi')^2(x)}$. and

$$\int_{K} \langle X, \nu \rangle ds = \int_{a}^{b} \langle X, \nu \rangle \sqrt{1 + (\phi')^{2}(x)} dx = \int_{a}^{b} g(x, \phi(x)) dx.$$

Step 2: The theorem is true for a domain bounded by a triangle.

Step 3: The theorem is true for a domain bounded by a polygon.

Step 4: The theorem is true for a domain bounded by a piecewise smooth curve.

Proof of the lemma.

Recall that

$$K = -e^{-2f} \left(\frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2} \right) f.$$

On the other hand,

$$EG - F^2 = e^{4f}.$$

Hence

$$\iint_{\mathcal{R}} KdA = -\iint_{U} e^{-2f} \left(\frac{\partial^{2} f}{\partial u^{2}} + \frac{\partial^{2} f}{\partial v^{2}} \right) \cdot e^{2f} dudv$$

$$= -\iint_{U} \left(\frac{\partial^{2} f}{\partial u^{2}} + \frac{\partial^{2} f}{\partial v^{2}} \right) dudv$$

$$= -\int_{0}^{L} \langle \mathbf{w}, \nu_{0} \rangle d\tau.$$

k_g in isothermal coordinates

We want to see what is the boundary integral. Consider:

- Let $\mathbf{X}(u, v): U \to M$ be a local isothermal parametrization of a surface M. That is: the 1st fundamental form satisfies E = G > 0, F = 0. Let $e^{2f} = E = G$.
- Let $\mathbf{e}_1 = \mathbf{X}_u/|\mathbf{X}_u| = e^{-f}\mathbf{X}_u$, and $\mathbf{e}_2 = e^{-f}\mathbf{X}_v$.
- We also assume that \mathbf{e}_1 , \mathbf{e}_2 are positively oriented. That is the orientation is given by the normal of the surface $\mathbf{N} = \mathbf{X}_u \times \mathbf{X}_v/|\mathbf{X}_u \times \mathbf{X}_v|$. We want to compute the geodesic curvature of a curve w.r.t. this orientation.

Let $\alpha:[0,I]$ be a smooth regular curve on $\mathbf{X}(U)$ with arc length parametrization. Let θ_0 be an angle such that $<\alpha'(0),\mathbf{e}_1>=\cos\theta_0$. Once we choose θ_0 , then we can define a function $\theta(s)$ such that it is smooth and $\theta(0)=\theta_0$ with $\langle\alpha'(s),\mathbf{e}_1(s)\rangle=\cos\theta(s)$ and $\langle\alpha'(s),\mathbf{e}_2(s)\rangle=\sin\theta(s)$. Hence

$$\alpha'(s) = \mathbf{e}_1 \cos \theta + \mathbf{e}_2 \sin \theta.$$

Let

$$\mathbf{n} = -\mathbf{e}_1 \sin \theta + \mathbf{e}_2 \cos \theta.$$

Then α' , **n** are positively oriented.

$$k_{g} = \frac{d\theta}{ds} + \left(-f_{v}\frac{du}{ds} + f_{u}\frac{dv}{ds}\right)$$

To compute $\iint KdA + \int_0^I k_g ds$

Now go back to what we consider.

- Let $X: U \to M$ be an isothermal local parametrization of an oriented surface M (i.e. $E = G = e^{2f}$, F = 0).
- Let $\alpha = \alpha(s) = \mathbf{X}(u(s), v(s))$ $(0 \le s \le I)$, be a simple closed piecewise smooth curve parametrized by arc length in M so that $\beta(s) = (u(s), v(s))$ is a piecewise smooth curved in U which bounds a region D in U. Let $\mathcal{R} = \mathbf{X}(D)$.
- Let L be the length of β in U and let τ be the arc length of β . Then $\beta(s) = \beta(s(\tau)), \ 0 \le \tau \le L$.

Assume there exist $0 = s_0 < s_1 < \dots, s_{k+1} = I$ so that α is continuous and smooth in each $[s_i, s_{i+1}]$. Then we have smooth functions θ on each $[s_i, s_{i+1}]$ as above. By the previous lemma, we have

$$\begin{split} \iint_{\mathcal{R}} K dA &= -\int_{0}^{L} \langle \nabla_{0} f, \nu_{0} \rangle_{0} d\tau \\ &= -\int_{0}^{I} \langle \nabla_{0} f, \nu_{0} \rangle_{0} \frac{d\tau}{ds} ds \\ &= -\int_{0}^{I} k_{g} ds + \int_{0}^{I} \frac{d\theta}{ds} ds \\ &= -\int_{0}^{I} k_{g} ds + \sum_{i=0}^{k} (\theta(s_{i+1}) - \theta(s_{i})). \end{split}$$

Or

$$\iint_{\mathcal{R}} KdA + \int_0^1 k_g ds = \sum_{i=0}^k (\theta(s_{i+1}) - \theta(s_i)).$$

What is the RHS?

Jordan curve theorem

Theorem (Jordan curve theorem)

Let α be a continuous simple closed curve in \mathbb{R}^2 (or in \mathbb{S}^2), then α will separate \mathbb{R}^2 (or \mathbb{S}^2) into two components (i.e. open connected sets).

Exterior angles and interior angles

Now let $\mathcal{R} \subset M$ is a bounded domain in M which is bounded by some piecewise smooth positively oriented simple closed curve $\alpha_1, \ldots, \alpha_n$.

Denote α be one of the α_k parametrized by arc length with length ℓ . Let $0=t_0 < t_1 < \cdots < t_{m+1}=\ell$ such that α is smooth on $[t_i,t_{i+1}]$ and α is smooth near $\alpha(0)=\alpha(\ell)$. Each $\alpha(t_i)$ $(1 \le i \le m)$ is called a *vertex*.

The exterior angle θ_i at $\alpha(t_i)$ is defined as follows. First let

$$\alpha'(t_i-) = \lim_{t < t_i, t \to t_i} \alpha'(t); \alpha'(t_i+) = \lim_{t > t_i, t \to t_i} \alpha'(t)$$

- $\alpha'(t_i-) = \alpha'(t_i+)$, then $\theta_i = 0$.
- $\alpha'(t_i-) \neq \pm \alpha'(t_i+)$. Then they are linearly independent. We define θ_i to be the *oriented angle* from $\alpha(t_i-)$ to $\alpha(t_i+)$ between $-\pi, \pi$. θ_i is positive (negative), if $\alpha(t_i-), \alpha(t_i+)$ are positively (negatively) oriented.
- $\alpha'(t_i-) = -\alpha'(t_i+)$, the $\theta_i = \pi$ or $-\pi$. The sign is determined by 'approximation'.

The *interior angle* ι_i at $\alpha(t_i)$ is defined as $\iota_i = \pi - \theta_i$.

Hopf's Umlaufsatz

Theorem (Hopf's Umlaufsatz, Theorem of Turning Tangents)

Let $\alpha:[0,I] \to \mathbb{R}^2$ be a piecewise regular, simple closed curve with $\alpha(0) = \alpha(I)$. Let $\alpha(t_1), \ldots, \alpha(t_k)$, $0 = t_0 < t_1 < \cdots < t_k < t_{k+1} = I$ be the vertices of α with exterior angle θ_i . Let φ_i be smooth choice of angles defined in $[t_i, t_{i+1}]$ such that the oriented angle from the positive axis to $\alpha'(t)$ is $\varphi_i(t)$ (i.e. $\alpha' = (\cos \varphi_i(t), \sin \varphi_i(t))$) for $t \in [t_i, t_{i+1}]$. Then

$$\sum_{i=1}^k \left(\varphi_i(t_{i+1}) - \varphi_i(t_i)\right) + \sum_{i=0}^k \theta_i = \pm 2\pi.$$

It is +1 if α is positively oriented and -1 if it is negatively oriented, with respect to the usual orientation of \mathbb{R}^2 .

The Gauss-Bonnet Theorem: local version

Theorem

Let $\mathbf{X}: U \to M$ be an isothermal local parametrization of an oriented surface M (i.e. $E = G = e^{2f}$, F = 0). Assume that \mathbf{X} is orientation preserving. Let $\alpha = \alpha(s) = \mathbf{X}(u(s), v(s))$, $0 \le s \le l$, be a simple closed curve parametrized by arc length so that (u(s), v(s)) bounds a region D in U. Let $\mathcal{R} = \mathbf{X}(D)$. Assume α is piecewise smooth and positively oriented. Let $\alpha(s_0), \ldots, \alpha(s_k)$ be the vertices of α with exterior angles $\varphi_0, \ldots, \varphi_k$, where $0 = s_0 < s_1 < \cdots < s_k < s_{k+1} = l$. Then

$$\int_0^l k_g(s)ds + \iint_{\mathcal{R}} KdA + \sum_{i=0}^k \varphi_i = 2\pi.$$

Proof.

Since the parametrization preserves angles and orientation, by Hopf's theorem and the fact that

$$\iint_{\mathcal{R}} K dA + \int_0^l k_g ds = \sum_{i=0}^k (\theta(s_{i+1}) - \theta(s_i)).$$

the result follows.

Corollary

Suppose k = 3, i.e. we have a triangle then

$$\int_0^1 k_g(s)ds + \iint_{\mathcal{R}} KdA = \sum_{i=1}^3 \iota_i - \pi,$$

where $\iota_i = \pi - \theta_i$ are the interior angles. Hence if each side is a geodesic, then K>0 implies the sum of the interior angles is larger than π , and K<0, implies the sum of the interior angles is less than π .