
Minimal surfaces
Mean curvature and area

Area functional with volume constraint

Minimal surfaces: definition

Definition

A regular surface M is said to be minimal if the mean curvature of
M is identically zero.

Proposition

For a graph X(x , y) = (x , y , f (x , y)).
Minimal if

0 = H =
1

2
·

(1 + f 2
y )fxx − 2fx fy fxy + (1 + f 2

x )fyy

(1 + f 2
x + f 2

y )
3
2

.

Or

div(
∇f

1 + |∇f |2
) = 0.
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Minimal surfaces in isothermal coordinates

Definition

Let X(u, v) be a local parametrization of a regular surface. X is
said to be isothermal if |Xu| = |Xv | = λ, and 〈Xu,Xv 〉 = 0.

To check whether a surface is minimal, the following fact is useful.

Proposition

Let X(u, v) be an isothermal coordinate parametrization of a
regular surface M. Let N = Xu × Xv/|Xu × Xv |. Then

Xuu + Xvv = 2λ2HN

where H is the mean curvature.
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Proof

Proof.

〈Xuu,Xu〉 =
1

2
〈Xu,Xu〉u = λu.

〈Xvv ,Xu〉 = −〈Xv ,Xuv 〉 = −λu.

So
〈Xuu + Xvv ,Xu〉 = 0.

Similarly, 〈Xuu + Xvv ,Xv 〉 = 0. Hence

Xuu + Xvv = 〈Xuu + Xvv ,N〉N = (e + g)N = 2λ2HN,

because

H =
1

2

eG − 2fF + Eg

EG − F 2
=

1

2

e + g

λ2
.
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Corollary

Suppose X(u, v) is an an isothermal coordinate parametrization of
a regular surface M. M is a minimal surface if and only if
Xuu + Xvv = 0. (That is: each coordinate function is harmonic as
a function of u, v.)
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Minimal surfaces and complex variables

This is only for your reference: Let X(u, v) be a coordinate
parametrization of M. Let φ1 = xu −

√
−1xv , φ2 = yu −

√
−1yv ,

φ3 = zu −
√
−1zv . Then

(i) X is isothermal if and only if φ21 + φ22 + φ23 = 0.

(ii) M is minimal if and only if φi are analytic for i = 1, 2, 3.
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Examples

A plane is a minimal surface.

Let M be the catenoid: the surface of revolution by rotating
the curve (a cosh v , 0, v) about the z-axis. Take a = 1

X(u, v) = (cosh v cos u, cosh v sin u, v).

Then E = G = cosh2 v , F = 0.

Xuu = (−(cosh v cos u,− cosh v sin u, 0);

Xvv = (cosh v cos u, cosh v sin u, 0).

So Xuu + Xvv = 0. Catenoid is minimal.
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Surfaces of revolution which are minimal

Consider the surface of revolution given by

X(u, v) = (f (v) cos u, f (v) sin u, g(v)); (f ′)2 + (g ′)2 = 1

It is minimal if and only if

0 = H =
1

2

−g ′ + f (g ′f ′′ − g ′′f ′)

f
.

Suppose g ′ 6= 0 somewhere, then v can be expressed as a function
of z and f (v) = φ(g(v)). We have φ̇ means derivative w.r.t. z etc.

f ′ = φ̇g ′, f ′′ = φ̈(g ′)2 + φ̇g ′′.

So we have

0 = −g ′ + φ
(

g ′(φ̈(g ′)2 + φ̇g ′′)− g ′′φ̇g ′
)

= −g ′ + φφ̈(g ′)3
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Surfaces of revolution which are minimal, cont.

So
−1 + φφ̈(g ′)2 = 0.

Since (f ′)2 + (g ′)2 = 1, so (g ′)2(1 + φ̇2) = 1, and we have

φφ̈

1 + φ̇2
= 1.

Check, φ = a cosh((z + c)/a) are solutions.
Hence g ′ 6= 0 and the surface is part of a catenoid, or g ′ ≡= 0,
then the surface is a part of a plane.
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First variational formula for area: Minimal surfaces are
critical points of the areas functional

Let X : U ⊂ R2 → R3 be a coordinate parametrization of a regular
surface M. Let D be a compact domain in U and let
Q = X(D) ⊂ M. Let h(u, v) be a smooth function on D. Let
N = Xu ×Xv/|Xu ×Xv | be the unit normal of the surface. Define:

Y(u, v ; t) = X(u, v) + th(u, v)N(u, v).

Lemma

There exists ε > 0 such that for each fixed t with |t| < ε,
Y(u, v ; t) represent a parametrized regular surface. (Y(u, v ; t) is
called a normal variation of Q.)
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Proof

Let Yu = Xu + t(huN + hNu), etc. So

Yu × Yv =Xu × Xv + t [(huN + hNu)× Xv + Xu × (hvN + hNv )]

+ t2(huN + hNu)× (huN + hNu)

=Xu × Xv + R(u, v , t).

Since |Xu × Xv | ≥ C1 for some C1 > 0 on D and |R| ≤ εC2 for
some C2 > 0 on D independent of ε. So Yu × Yv 6= 0 if ε is small
enough.
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First variational formula, cont.

Let ε > 0 be as above. Define A(t) to be the area of

M(t) = {Y(u, v , t)|(u, v) ∈ D}.

Theorem (First variation of area)

dA

dt

∣∣∣
t=0

= −2

∫∫
Q

hHdA

where H is the mean curvature of M. Here for any function φ on
D, ∫∫

Q
φdA :=

∫∫
D
φ|Xu × Xv |dudv .
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Proof

Proof: Let E (u, v , t) = 〈Yu(u, v , t),Yu(u, v , t)〉 etc. Let
E0(u, v) = E (u, v , 0) etc (which are the coefficients of the first
fundamental form of X).

E (u, v , t) =E0(u, v) + 2th(u, v)〈Nu,Xu〉+ O(t2)

=E0(u, v)− 2th(u, v)e(u, v) + O(t2);

F (u, v , t) =F0(u, v) + 2th(u, v)〈Nu,Xv 〉+ O(t2)

=F0(u, v)− 2th(u, v)f (u, v) + O(t2);

G (u, v , t) =G0(u, v) + 2th(u, v)〈Nv ,Xv 〉+ O(t2)

=G0(u, v)− 2th(u, v)g(u, v) + O(t2),

where e, f , g are the coefficients of the second fundamental form
of X. Hence

EG − F 2 = E0G0 − F 2
0 − 2t (eG0 − 2fF0 + gG0) + O(t2).
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First variational formula, cont.

Hence

A(t) =

∫∫
D

√
(EG − F 2)dudv

=

∫∫
D

√
E0G0 − F 2

0 dudv − t

∫∫
D

h
eG0 − 2fF0 + gG0√

E0G0 − F 2
0

dudv

+ O(t2)

=

∫∫
D

√
E0G0 − F 2

0 dudv − 2t

∫∫
Q

hHdA + O(t2).
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Corollary

A′(0) = 0 for all normal variation of Q if and only if H ≡ 0 on Q.
Actually, a regular surface M is minimal if and only if A′(0) = 0 for
all normal variation of M with compact support: i.e. any variation
by f N where f has satisfies f 6= 0 is a compact set in M.
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Construction of bump function

To prove the theorem, we need to construct a so-called bump
function, starting with

φ(t) =

{
0, if t ≤ 0;

e−
1
t , if t > 0.

Consider the function:

Φ(t) =
ψ1(t)

ψ1(t) + ψ2(t)

where

ψ1(t) = φ(2 + t)φ(2− t), ψ2(t) = φ(t − 1) + φ(−1− t).

Then Φ(t) satisfies Φ(t) ≥ 0, and

Φ(t) =

{
1, if |t| ≤ 1;
0, if |t| ≥ 2.
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A general result

Lemma

Let h be a smooth function defined in a domain U ⊂ R2. Suppose∫∫
U

f hdudv = 0

for all smooth function f with compact support in U, then h ≡ 0.

A reference for minimal surfaces: Osserman, A survey of minimal
surfaces.
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Constant mean curvature surfaces

Let M be an regular surface which is the boundary of a domain.
Let N be a unit normal vector field. Consider the variation given
by variational vector field f N: Namely in local coordinate patch:

Y(u, v ; t) = X(u, v) + tf N(u, v).

Or in general Y = X + tf N where X is the position vector of a
point in M.
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Variation with constraint

We want to compute the variation of the area under the constraint
that the volume is fixed.
As before, let A(t) be the area of the surface Y(t). Then we have

A′(0) = −2

∫∫
M

fHdA.
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Volume constraint

Let V (t) be the volume contained insider Y(t). So f must be such
that V ′(0) = 0.
Let X(u, v) be a local parametrization from U → M ⊂ R3.
Consider the map

F(u, v ,w) = X(u, v) + wN(u, v) = (x , y , z).

Then the volume between X(u, v) and Y(u, v , t) is given by

V (t) =

∫∫
U

(∫ tf (u,v)

0
J dw

)
dudv
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where

J =det

 xu xv xw
yu yv yw
zu zv zw


=Fu × Fv · Fw

=(Xu + wNu)× (Xv + wNv ) ·N
=Xu × Xv ·N + O(w)

=|Xu × Xv |+ O(w).

Hence

V (t) = t

∫∫
U

f |Xu × Xv |dudv + O(t2)and

V ′(0) =

∫∫
U

f |Xu × Xv |dudv .
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Theorem

Let M be as above. Suppose M is a critical point of the area
functional under normal variation which preserves volume. Then M
has constant curvature.
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Proof.

From above, we have ∫∫
M

fHdA = 0

for all f satisfying
∫∫

M fdA = 0. Hence H must be constant. In
fact, let a be the average of H over M: a = 1

A(M)

∫∫
M HdA. Then∫∫

M
f (H − a)dA = 0

for all f satisfying
∫∫

M fdA = 0. Let f = H − a, then
∫∫

M fdA = 0.
Hence ∫∫

M
(H − a)2dA = 0.

Hence H ≡ a which is a constant.
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Delaunay surfaces

For your reference.

Theorem

(Delaunay). A complete immersed surface of revolution of
constant mean curvature is a roulette of a conic.

Roulette of a circle gives a circular cylinder.

Roulette of a parabola gives a catenoid.

Roulette of an ellipse is called an undulary and it gives an
unduloid.

Roulette of a hyperbola is called a nodary and it gives a
nodoid.

Ref: Opera’s book, section 3.6
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