Minimal surfaces: definition

Definition

A regular surface M is said to be minimal if the mean curvature of M is identically zero.

Proposition

For a graph $\mathbf{X}(x, y) = (x, y, f(x, y))$. Minimal if

$$
0 = H = \frac{1}{2} \cdot \frac{(1+f_y^2)f_{xx} - 2f_xf_yf_{xy} + (1+f_x^2)f_{yy}}{(1+f_x^2+f_y^2)^{\frac{3}{2}}}.
$$

Or

$$
\mathsf{div}\big(\frac{\nabla f}{1+|\nabla f|^2}\big)=0.
$$

Minimal surfaces in isothermal coordinates

Definition

Let $X(u, v)$ be a local parametrization of a regular surface. X is said to be isothermal if $|\mathbf{X}_u| = |\mathbf{X}_v| = \lambda$, and $\langle \mathbf{X}_u, \mathbf{X}_v \rangle = 0$.

To check whether a surface is minimal, the following fact is useful.

Proposition

Let $X(u, v)$ be an isothermal coordinate parametrization of a regular surface M. Let $N = X_u \times X_v / |X_u \times X_v|$. Then

 $\mathbf{X}_{uu} + \mathbf{X}_{vv} = 2\lambda^2 H \mathbf{N}$

メロメ メ御 メメミメメミメ

へのへ

where H is the mean curvature.

Proof

Proof.

$$
\langle \mathbf{X}_{uu}, \mathbf{X}_{u} \rangle = \frac{1}{2} \langle \mathbf{X}_{u}, \mathbf{X}_{u} \rangle_{u} = \lambda_{u}.
$$

$$
\langle \mathbf{X}_{vv}, \mathbf{X}_{u} \rangle = -\langle \mathbf{X}_{v}, \mathbf{X}_{uv} \rangle = -\lambda_{u}.
$$

So

$$
\langle \mathbf{X}_{uu} + \mathbf{X}_{vv}, \mathbf{X}_{u} \rangle = 0.
$$

Similarly, $\langle X_{uu} + X_{vv}, X_{v} \rangle = 0$. Hence

$$
\mathbf{X}_{uu} + \mathbf{X}_{vv} = \langle \mathbf{X}_{uu} + \mathbf{X}_{vv}, \mathbf{N} \rangle \mathbf{N} = (e+g)\mathbf{N} = 2\lambda^2 H \mathbf{N},
$$

because

$$
H = \frac{1}{2} \frac{eG - 2fF + Eg}{EG - F^2} = \frac{1}{2} \frac{e + g}{\lambda^2}.
$$

Corollary

Suppose $\mathbf{X}(u, v)$ is an an isothermal coordinate parametrization of a regular surface M. M is a minimal surface if and only if $X_{uu} + X_{vv} = 0$. (That is: each coordinate function is harmonic as a function of $u, v.$)

∢ロ ▶ ∢ 倒 ▶ ∢ ヨ ▶

一人 ヨート

∽≏ດ

Minimal surfaces and complex variables

This is only for your reference: Let $\mathbf{X}(u, v)$ be a coordinate parametrization of M. Let $\phi_1 = x_u - \sqrt{-1}x_v$, $\phi_2 = y_u - \sqrt{-1}y_v$, $\phi_3 = z_u - \sqrt{-1}z_v$. Then (i) **X** is isothermal if and only if $\phi_1^2 + \phi_2^2 + \phi_3^2 = 0$. (ii) M is minimal if and only if ϕ_i are analytic for $i = 1, 2, 3$.

∽≏ດ

Examples

- A plane is a minimal surface.
- \bullet Let M be the catenoid: the surface of revolution by rotating the curve (a cosh v , 0, v) about the z-axis. Take $a = 1$

$$
\mathbf{X}(u,v) = (\cosh v \cos u, \cosh v \sin u, v).
$$

Then $E = G = \cosh^2 v$, $F = 0$.

$$
\mathbf{X}_{uu} = (-(\cosh v \cos u, -\cosh v \sin u, 0);
$$

$$
\mathbf{X}_{vv} = (\cosh v \cos u, \cosh v \sin u, 0).
$$

 $4.17 \times$

へのへ

So $\mathbf{X}_{uu} + \mathbf{X}_{vv} = 0$. Catenoid is minimal.

Surfaces of revolution which are minimal

Consider the surface of revolution given by

$$
\mathbf{X}(u, v) = (f(v) \cos u, f(v) \sin u, g(v)); (f')^{2} + (g')^{2} = 1
$$

It is minimal if and only if

$$
0 = H = \frac{1}{2} \frac{-g' + f(g'f'' - g''f')}{f}.
$$

Suppose $\boldsymbol{g}'\neq 0$ somewhere, then $\boldsymbol{\nu}$ can be expressed as a function of z and $f(v) = \phi(g(v))$. We have $\dot{\phi}$ means derivative w.r.t. z etc.

$$
f' = \dot{\phi}g', \quad f'' = \ddot{\phi}(g')^2 + \dot{\phi}g''.
$$

So we have

$$
0=-g'+\phi\left(g'(\ddot{\phi}(g')^2+\dot{\phi}g'')-g''\dot{\phi}g'\right)=-g'+\phi\ddot{\phi}(g')^3
$$

Surfaces of revolution which are minimal, cont.

So

$$
-1+\phi\ddot{\phi}(g')^2=0.
$$

Since $(f')^2 + (g')^2 = 1$, so $(g')^2(1 + \dot{\phi}^2) = 1$, and we have

$$
\frac{\ddot{\phi\phi}}{1+\dot{\phi}^2}=1.
$$

Check, $\phi = a \cosh((z + c)/a)$ are solutions. Hence $g'\neq 0$ and the surface is part of a catenoid, or $g'\equiv=0,$ then the surface is a part of a plane.

First variational formula for area: Minimal surfaces are critical points of the areas functional

Let $\mathsf{X}:\mathsf{U}\subset\mathbb{R}^2\to\mathbb{R}^3$ be a coordinate parametrization of a regular surface M. Let \overline{D} be a compact domain in U and let $Q = X(D) \subset M$. Let $h(u, v)$ be a smooth function on \overline{D} . Let $N = X_u \times X_v / |X_u \times X_v|$ be the unit normal of the surface. Define:

$$
\mathbf{Y}(u,v;t)=\mathbf{X}(u,v)+th(u,v)\mathbf{N}(u,v).
$$

Lemma

There exists $\epsilon > 0$ such that for each fixed t with $|t| < \epsilon$. $Y(u, v; t)$ represent a parametrized regular surface. ($Y(u, v; t)$ is called a normal variation of Q .)

Proof

Let
$$
\mathbf{Y}_u = \mathbf{X}_u + t(h_u \mathbf{N} + h \mathbf{N}_u)
$$
, etc. So
\n
$$
\mathbf{Y}_u \times \mathbf{Y}_v = \mathbf{X}_u \times \mathbf{X}_v + t [(h_u \mathbf{N} + h \mathbf{N}_u) \times \mathbf{X}_v + \mathbf{X}_u \times (h_v \mathbf{N} + h \mathbf{N}_v)] + t^2 (h_u \mathbf{N} + h \mathbf{N}_u) \times (h_u \mathbf{N} + h \mathbf{N}_u)
$$
\n
$$
= \mathbf{X}_u \times \mathbf{X}_v + R(u, v, t).
$$

Since $|\mathbf{X}_u \times \mathbf{X}_v| \ge C_1$ for some $C_1 > 0$ on \overline{D} and $|R| \le \epsilon C_2$ for some $C_2 > 0$ on \overline{D} independent of ϵ . So $\mathbf{Y}_u \times \mathbf{Y}_v \neq \mathbf{0}$ if ϵ is small enough.

K ロ ▶ K 御 ▶ K 舌

 $2Q$

First variational formula, cont.

Let $\epsilon > 0$ be as above. Define $A(t)$ to be the area of

$$
M(t)=\{\mathbf{Y}(u,v,t)|(u,v)\in\overline{D}\}.
$$

Theorem (First variation of area)

$$
\left. \frac{dA}{dt} \right|_{t=0} = -2 \iint_{\overline{Q}} hH dA
$$

where H is the mean curvature of M. Here for any function ϕ on \overline{D} .

$$
\iint_{\overline{Q}} \phi dA := \iint_{\overline{D}} \phi | \mathbf{X}_u \times \mathbf{X}_v | dudv.
$$

Proof

Proof: Let $E(u, v, t) = \langle Y_u(u, v, t), Y_u(u, v, t) \rangle$ etc. Let $E_0(u, v) = E(u, v, 0)$ etc (which are the coefficients of the first fundamental form of X).

$$
E(u, v, t) = E_0(u, v) + 2th(u, v)\langle \mathbf{N}_u, \mathbf{X}_u \rangle + O(t^2)
$$

\n
$$
= E_0(u, v) - 2th(u, v)e(u, v) + O(t^2);
$$

\n
$$
F(u, v, t) = F_0(u, v) + 2th(u, v)\langle \mathbf{N}_u, \mathbf{X}_v \rangle + O(t^2)
$$

\n
$$
= F_0(u, v) - 2th(u, v)f(u, v) + O(t^2);
$$

\n
$$
G(u, v, t) = G_0(u, v) + 2th(u, v)\langle \mathbf{N}_v, \mathbf{X}_v \rangle + O(t^2)
$$

\n
$$
= G_0(u, v) - 2th(u, v)g(u, v) + O(t^2),
$$

where e, f, g are the coefficients of the second fundamental form of X. Hence

$$
EG-F^2=E_0G_0-F_0^2-2t\left(eG_0-2fF_0+gG_0\right)+O(t^2).
$$

First variational formula, cont.

Hence

$$
A(t) = \iint_{\overline{D}} \sqrt{(EG - F^2)} du dv
$$

= $\iint_{\overline{D}} \sqrt{E_0 G_0 - F_0^2} du dv - t \iint_{\overline{D}} h \frac{eG_0 - 2fF_0 + gG_0}{\sqrt{E_0 G_0 - F_0^2}} du dv$
+ $O(t^2)$
= $\iint_{\overline{D}} \sqrt{E_0 G_0 - F_0^2} du dv - 2t \iint_{\overline{Q}} hH dA + O(t^2).$

≮ロ ▶ ⊀ 御 ▶ ⊀ 君 ▶ ⊀ 君 ▶ 重 $2Q$

Corollary

 $A'(0)=0$ for all normal variation of \overline{Q} if and only if $H\equiv 0$ on Q . Actually, a regular surface M is minimal if and only if $A'(0) = 0$ for all normal variation of M with compact support: i.e. any variation by fN where f has satisfies $\overline{f \neq 0}$ is a compact set in M.

Construction of bump function

To prove the theorem, we need to construct a so-called bump function, starting with

$$
\phi(t)=\left\{\begin{array}{ll}0,&\text{if }t\leq0;\\e^{-\frac{1}{t}},&\text{if }t>0.\end{array}\right.
$$

Consider the function:

$$
\Phi(t)=\frac{\psi_1(t)}{\psi_1(t)+\psi_2(t)}
$$

where

$$
\psi_1(t) = \phi(2+t)\phi(2-t), \psi_2(t) = \phi(t-1) + \phi(-1-t).
$$

Then $\Phi(t)$ satisfies $\Phi(t) \geq 0$, and

$$
\Phi(t) = \left\{ \begin{array}{ll} 1, & \text{if } |t| \leq 1; \\ 0, & \text{if } |t| \geq 2, \text{ for all } t \leq t \end{array} \right.
$$

A general result

Lemma

Let h be a smooth function defined in a domain $U \subset \mathbb{R}^2$. Suppose

$$
\iint_U f h du dv = 0
$$

for all smooth function f with compact support in U, then $h \equiv 0$.

A reference for minimal surfaces: Osserman, A survey of minimal surfaces.

Constant mean curvature surfaces

Let M be an regular surface which is the boundary of a domain. Let N be a unit normal vector field. Consider the variation given by variational vector field fN : Namely in local coordinate patch:

$$
\mathbf{Y}(u,v;t)=\mathbf{X}(u,v)+\mathit{tfN}(u,v).
$$

∽≏ເ

Or in general $Y = X + t f N$ where X is the position vector of a point in M.

Variation with constraint

We want to compute the variation of the area under the constraint that the volume is fixed.

As before, let $A(t)$ be the area of the surface $Y(t)$. Then we have

$$
A'(0)=-2\iint_M fH dA.
$$

 \leftarrow \Box \rightarrow

へのへ

Volume constraint

Let $V(t)$ be the volume contained insider $Y(t)$. So f must be such that $V'(0) = 0$. Let $\mathsf{X}(u, v)$ be a local parametrization from $\mathcal{U} \to \mathcal{M} \subset \mathbb{R}^3.$ Consider the map

$$
F(u, v, w) = X(u, v) + wN(u, v) = (x, y, z).
$$

Then the volume between $\mathbf{X}(u, v)$ and $\mathbf{Y}(u, v, t)$ is given by

$$
V(t) = \iiint_U \left(\int_0^{tf(u,v)} J \, dw \right) du dv
$$

4 0 8 へのへ

where

$$
J = det \begin{pmatrix} x_u & x_v & x_w \\ y_u & y_v & y_w \\ z_u & z_v & z_w \end{pmatrix}
$$

=**F**_u × **F**_v · **F**_w
=(**X**_u + w**N**_u) × (**X**_v + w**N**_v) · **N**
=**X**_u × **X**_v · **N** + O(w)
=|**X**_u × **X**_v| + O(w).

Hence

$$
V(t) = t \iint_U f|\mathbf{X}_u \times \mathbf{X}_v| dudv + O(t^2) \text{ and}
$$

$$
V'(0) = \iint_U f|\mathbf{X}_u \times \mathbf{X}_v| dudv.
$$

È

 299

Theorem

Let M be as above. Suppose M is a critical point of the area functional under normal variation which preserves volume. Then M has constant curvature.

K ロ ▶ K 倒 ▶

 Ω

ミト 扂

Proof.

From above, we have

$$
\iint_M f H dA = 0
$$

for all f satisfying $\iint_M f dA = 0$. Hence H must be constant. In fact, let a be the average of H over M: $a = \frac{1}{A(t)}$ $\frac{1}{A(M)}\int\!\!\int_M H dA$. Then

$$
\iint_M f(H-a)dA=0
$$

for all f satisfying $\iint_M f dA = 0$. Let $f = H -$ a, then $\iint_M f dA = 0$. Hence

$$
\iint_M (H-a)^2 dA = 0.
$$

Hence $H \equiv a$ which is a constant.

Delaunay surfaces

For your reference.

Theorem

(Delaunay). A complete immersed surface of revolution of constant mean curvature is a roulette of a conic.

- Roulette of a circle gives a circular cylinder.
- Roulette of a parabola gives a catenoid.
- Roulette of an ellipse is called an undulary and it gives an unduloid.
- Roulette of a hyperbola is called a nodary and it gives a nodoid.

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

∽≏ດ

Ref: Opera's book, section 3.6