Minimal surfaces: definition

Definition

A regular surface M is said to be minimal if the mean curvature of M is identically zero.

Proposition

For a graph $\mathbf{X}(x, y) = (x, y, f(x, y))$. Minimal if

$$0 = H = \frac{1}{2} \cdot \frac{(1+f_y^2)f_{xx} - 2f_xf_yf_{xy} + (1+f_x^2)f_{yy}}{(1+f_x^2+f_y^2)^{\frac{3}{2}}}.$$

Or

$$\operatorname{div}(\frac{\nabla f}{1+|\nabla f|^2})=0.$$

Minimal surfaces in isothermal coordinates

Definition

Let $\mathbf{X}(u, v)$ be a local parametrization of a regular surface. \mathbf{X} is said to be isothermal if $|\mathbf{X}_u| = |\mathbf{X}_v| = \lambda$, and $\langle \mathbf{X}_u, \mathbf{X}_v \rangle = 0$.

To check whether a surface is minimal, the following fact is useful.

Proposition

Let $\mathbf{X}(u, v)$ be an isothermal coordinate parametrization of a regular surface M. Let $\mathbf{N} = \mathbf{X}_u \times \mathbf{X}_v / |\mathbf{X}_u \times \mathbf{X}_v|$. Then

$$\mathbf{X}_{uu} + \mathbf{X}_{vv} = 2\lambda^2 H \mathbf{N}$$

where H is the mean curvature.

Proof

Proof.

$$\langle \mathbf{X}_{uu}, \mathbf{X}_{u} \rangle = \frac{1}{2} \langle \mathbf{X}_{u}, \mathbf{X}_{u} \rangle_{u} = \lambda_{u}.$$

$$\langle \mathbf{X}_{vv}, \mathbf{X}_{u} \rangle = -\langle \mathbf{X}_{v}, \mathbf{X}_{uv} \rangle = -\lambda_{u}.$$

So

$$\langle \mathbf{X}_{uu} + \mathbf{X}_{vv}, \mathbf{X}_{u} \rangle = 0.$$

Similarly, $\langle \bm{X}_{uu} + \bm{X}_{vv}, \bm{X}_v \rangle = 0.$ Hence

$$\mathbf{X}_{uu} + \mathbf{X}_{vv} = \langle \mathbf{X}_{uu} + \mathbf{X}_{vv}, \mathbf{N} \rangle \mathbf{N} = (e+g)\mathbf{N} = 2\lambda^2 H \mathbf{N},$$

because

$$H = \frac{1}{2} \frac{eG - 2fF + Eg}{EG - F^2} = \frac{1}{2} \frac{e + g}{\lambda^2}.$$

Corollary

Suppose $\mathbf{X}(u, v)$ is an an isothermal coordinate parametrization of a regular surface M. M is a minimal surface if and only if $\mathbf{X}_{uu} + \mathbf{X}_{vv} = 0$. (That is: each coordinate function is harmonic as a function of u, v.)

Minimal surfaces and complex variables

This is only for your reference: Let $\mathbf{X}(u, v)$ be a coordinate parametrization of M. Let $\phi_1 = x_u - \sqrt{-1}x_v$, $\phi_2 = y_u - \sqrt{-1}y_v$, $\phi_3 = z_u - \sqrt{-1}z_v$. Then (i) \mathbf{X} is isothermal if and only if $\phi_1^2 + \phi_2^2 + \phi_3^2 = 0$. (ii) M is minimal if and only if ϕ_i are analytic for i = 1, 2, 3.

イロト イヨト イヨト イヨト

Examples

- A plane is a minimal surface.
- Let *M* be the catenoid: the surface of revolution by rotating the curve (*a* cosh *v*, 0, *v*) about the *z*-axis. Take *a* = 1

$$\mathbf{X}(u, v) = (\cosh v \cos u, \cosh v \sin u, v).$$

Then $E = G = \cosh^2 v$, F = 0.

$$\mathbf{X}_{uu} = (-(\cosh v \cos u, -\cosh v \sin u, 0);$$
$$\mathbf{X}_{vv} = (\cosh v \cos u, \cosh v \sin u, 0).$$

<ロ> <同> <同> <同> < 同> < 同>

So $\mathbf{X}_{uu} + \mathbf{X}_{vv} = 0$. Catenoid is minimal.

Surfaces of revolution which are minimal

Consider the surface of revolution given by

$$\mathbf{X}(u,v) = (f(v)\cos u, f(v)\sin u, g(v)); (f')^2 + (g')^2 = 1$$

It is minimal if and only if

$$0 = H = \frac{1}{2} \frac{-g' + f(g'f'' - g''f')}{f}.$$

Suppose $g' \neq 0$ somewhere, then v can be expressed as a function of z and $f(v) = \phi(g(v))$. We have $\dot{\phi}$ means derivative w.r.t. z etc.

$$f'=\dot{\phi}g', \ f''=\ddot{\phi}(g')^2+\dot{\phi}g''.$$

So we have

$$0 = -g' + \phi \left(g'(\ddot{\phi}(g')^2 + \dot{\phi}g'') - g''\dot{\phi}g' \right) = -g' + \phi \ddot{\phi}(g')^3$$

Surfaces of revolution which are minimal, cont.

So

$$-1 + \phi \ddot{\phi}(g')^2 = 0.$$

Since $(f')^2+(g')^2=1$, so $(g')^2(1+\dot{\phi}^2)=1$, and we have

$$\frac{\phi\ddot{\phi}}{1+\dot{\phi}^2} = 1.$$

Check, $\phi = a \cosh((z + c)/a)$ are solutions. Hence $g' \neq 0$ and the surface is part of a catenoid, or $g' \equiv = 0$, then the surface is a part of a plane.

First variational formula for area: Minimal surfaces are critical points of the areas functional

Let $\mathbf{X} : U \subset \mathbb{R}^2 \to \mathbb{R}^3$ be a coordinate parametrization of a regular surface M. Let \overline{D} be a compact domain in U and let $Q = \mathbf{X}(D) \subset M$. Let h(u, v) be a smooth function on \overline{D} . Let $\mathbf{N} = \mathbf{X}_u \times \mathbf{X}_v / |\mathbf{X}_u \times \mathbf{X}_v|$ be the unit normal of the surface. Define:

$$\mathbf{Y}(u,v;t) = \mathbf{X}(u,v) + th(u,v)\mathbf{N}(u,v).$$

Lemma

There exists $\epsilon > 0$ such that for each fixed t with $|t| < \epsilon$, $\mathbf{Y}(u, v; t)$ represent a parametrized regular surface. ($\mathbf{Y}(u, v; t)$ is called a normal variation of \overline{Q} .)

Proof

Let
$$\mathbf{Y}_u = \mathbf{X}_u + t(h_u \mathbf{N} + h \mathbf{N}_u)$$
, etc. So
 $\mathbf{Y}_u \times \mathbf{Y}_v = \mathbf{X}_u \times \mathbf{X}_v + t [(h_u \mathbf{N} + h \mathbf{N}_u) \times \mathbf{X}_v + \mathbf{X}_u \times (h_v \mathbf{N} + h \mathbf{N}_v)]$
 $+ t^2(h_u \mathbf{N} + h \mathbf{N}_u) \times (h_u \mathbf{N} + h \mathbf{N}_u)$
 $= \mathbf{X}_u \times \mathbf{X}_v + R(u, v, t).$

Since $|\mathbf{X}_u \times \mathbf{X}_v| \ge C_1$ for some $C_1 > 0$ on \overline{D} and $|R| \le \epsilon C_2$ for some $C_2 > 0$ on \overline{D} independent of ϵ . So $\mathbf{Y}_u \times \mathbf{Y}_v \neq \mathbf{0}$ if ϵ is small enough.

イロト イヨト イヨト イヨト

First variational formula, cont.

Let $\epsilon > 0$ be as above. Define A(t) to be the area of

$$M(t) = \{\mathbf{Y}(u, v, t) | (u, v) \in \overline{D}\}.$$

Theorem (First variation of area)

$$\left.\frac{dA}{dt}\right|_{t=0} = -2\iint_{\overline{Q}} hHdA$$

where H is the mean curvature of M. Here for any function ϕ on \overline{D} ,

$$\iint_{\overline{Q}} \phi dA := \iint_{\overline{D}} \phi | \mathbf{X}_{u} \times \mathbf{X}_{v}| du dv.$$

Proof

Proof: Let $E(u, v, t) = \langle \mathbf{Y}_u(u, v, t), \mathbf{Y}_u(u, v, t) \rangle$ etc. Let $E_0(u, v) = E(u, v, 0)$ etc (which are the coefficients of the first fundamental form of **X**).

$$\begin{split} E(u, v, t) &= E_0(u, v) + 2th(u, v) \langle \mathbf{N}_u, \mathbf{X}_u \rangle + O(t^2) \\ &= E_0(u, v) - 2th(u, v)e(u, v) + O(t^2); \\ F(u, v, t) &= F_0(u, v) + 2th(u, v) \langle \mathbf{N}_u, \mathbf{X}_v \rangle + O(t^2) \\ &= F_0(u, v) - 2th(u, v)f(u, v) + O(t^2); \\ G(u, v, t) &= G_0(u, v) + 2th(u, v) \langle \mathbf{N}_v, \mathbf{X}_v \rangle + O(t^2) \\ &= G_0(u, v) - 2th(u, v)g(u, v) + O(t^2), \end{split}$$

where e, f, g are the coefficients of the second fundamental form of **X**. Hence

$$EG - F^{2} = E_{0}G_{0} - F_{0}^{2} - 2t\left(eG_{0} - 2fF_{0} + gG_{0}\right) + O(t^{2}). \quad = \quad \text{ac}$$

First variational formula, cont.

Hence

$$\begin{aligned} A(t) &= \iint_{\overline{D}} \sqrt{(EG - F^2)} du dv \\ &= \iint_{\overline{D}} \sqrt{E_0 G_0 - F_0^2} du dv - t \iint_{\overline{D}} h \frac{eG_0 - 2fF_0 + gG_0}{\sqrt{E_0 G_0 - F_0^2}} du dv \\ &+ O(t^2) \\ &= \iint_{\overline{D}} \sqrt{E_0 G_0 - F_0^2} du dv - 2t \iint_{\overline{Q}} h H dA + O(t^2). \end{aligned}$$

▲ロ ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 → のへで

Corollary

A'(0) = 0 for all normal variation of \overline{Q} if and only if $H \equiv 0$ on Q. Actually, a regular surface M is minimal if and only if A'(0) = 0 for all normal variation of M with compact support: i.e. any variation by f**N** where f has satisfies $\overline{f \neq 0}$ is a compact set in M.

Construction of bump function

To prove the theorem, we need to construct a so-called *bump function*, starting with

$$\phi(t)=\left\{egin{array}{ll} 0, & ext{if }t\leq 0; \ e^{-rac{1}{t}}, & ext{if }t>0. \end{array}
ight.$$

Consider the function:

$$\Phi(t) = \frac{\psi_1(t)}{\psi_1(t) + \psi_2(t)}$$

where

$$\psi_1(t) = \phi(2+t)\phi(2-t), \psi_2(t) = \phi(t-1) + \phi(-1-t).$$

Then $\Phi(t)$ satisfies $\Phi(t) \ge 0$, and

$$\Phi(t) = \begin{cases} 1, & \text{if } |t| \leq 1; \\ 0, & \text{if } |t| \geq 2. \\ \end{array}$$

A general result

Lemma

Let h be a smooth function defined in a domain $U \subset \mathbb{R}^2$. Suppose

$$\iint_U f \ h du dv = 0$$

for all smooth function f with compact support in U, then $h \equiv 0$.

A reference for minimal surfaces: *Osserman, A survey of minimal surfaces.*

Constant mean curvature surfaces

Let M be an regular surface which is the boundary of a domain. Let **N** be a unit normal vector field. Consider the variation given by variational vector field f**N**: Namely in local coordinate patch:

$$\mathbf{Y}(u,v;t) = \mathbf{X}(u,v) + tf \mathbf{N}(u,v).$$

Or in general $\mathbf{Y} = \mathbf{X} + tf \mathbf{N}$ where \mathbf{X} is the position vector of a point in M.

Variation with constraint

We want to compute the variation of the area under the constraint that the volume is fixed.

As before, let A(t) be the area of the surface $\mathbf{Y}(t)$. Then we have

$$A'(0) = -2 \iint_M fHdA.$$

Volume constraint

Let V(t) be the volume contained insider $\mathbf{Y}(t)$. So f must be such that V'(0) = 0. Let $\mathbf{X}(u, v)$ be a local parametrization from $U \to M \subset \mathbb{R}^3$. Consider the map

$$\mathbf{F}(u,v,w) = \mathbf{X}(u,v) + w\mathbf{N}(u,v) = (x,y,z).$$

Then the volume between X(u, v) and Y(u, v, t) is given by

$$V(t) = \iint_U \left(\int_0^{tf(u,v)} J \, dw \right) \, du \, dv$$

where

$$J = \det \begin{pmatrix} x_u & x_v & x_w \\ y_u & y_v & y_w \\ z_u & z_v & z_w \end{pmatrix}$$

= $\mathbf{F}_u \times \mathbf{F}_v \cdot \mathbf{F}_w$
= $(\mathbf{X}_u + w\mathbf{N}_u) \times (\mathbf{X}_v + w\mathbf{N}_v) \cdot \mathbf{N}$
= $\mathbf{X}_u \times \mathbf{X}_v \cdot \mathbf{N} + O(w)$
= $|\mathbf{X}_u \times \mathbf{X}_v| + O(w).$

Hence

$$V(t) = t \iint_{U} f | \mathbf{X}_{u} \times \mathbf{X}_{v} | dudv + O(t^{2}) and$$
$$V'(0) = \iint_{U} f | \mathbf{X}_{u} \times \mathbf{X}_{v} | dudv.$$

Theorem

Let M be as above. Suppose M is a critical point of the area functional under normal variation which preserves volume. Then M has constant curvature.

<ロ> <同> <同> <三>

< ≣ >

Proof.

From above, we have

$$\iint_M fHdA = 0$$

for all f satisfying $\iint_M fdA = 0$. Hence H must be constant. In fact, let a be the average of H over M: $a = \frac{1}{A(M)} \iint_M HdA$. Then

$$\iint_M f(H-a)dA = 0$$

for all f satisfying $\iint_M f dA = 0$. Let f = H - a, then $\iint_M f dA = 0$. Hence

$$\iint_M (H-a)^2 dA = 0.$$

Hence $H \equiv a$ which is a constant.

Delaunay surfaces

For your reference.

Theorem

(Delaunay). A complete immersed surface of revolution of constant mean curvature is a roulette of a conic.

- Roulette of a circle gives a circular cylinder.
- Roulette of a parabola gives a catenoid.
- Roulette of an ellipse is called an undulary and it gives an unduloid.
- Roulette of a hyperbola is called a nodary and it gives a nodoid.
- Ref: Opera's book, section 3.6