THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2058 Honours Mathematical Analysis I 2022-23 Tutorial 9 solutions 10th November 2022

- Tutorial problems will be posted every Wednesday, provided there is a tutorial class on the Thursday same week. You are advised to try out the problems before attending tutorial classes, where the questions will be discussed.
- Solutions to tutorial problems will be posted after tutorial classes.
- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.
- 1. (a) $f(x) = x^2$ is continuous on \mathbb{R} . Given any $c \in \mathbb{R}$, and any $\epsilon > 0$, we pick $\delta = \min\{1, \frac{\epsilon}{2|c|+1}\} > 0$, then if x is in the range of $0 < |x c| < \delta$, we have $|x| \le |c| + |x c| < |c| + \delta \le |c| + 1$, and so $|x + c| \le |x| + |c| \le 2|c| + 1$.

$$|x^{2} - c^{2}| = |x + c| \cdot |x - c| < (2|c| + 1)\delta \le \epsilon.$$

(b) $f(x) = \frac{x}{x^2-1}$ is continuous on $\mathbb{R} \setminus \{\pm 1\}$. For any $c \in \mathbb{R} \setminus \{\pm 1\}$ and any $\epsilon > 0$, firstly consider $r = \min\{|c+1|, |c-1|\}/2$. Then for any $x \in (c-r, c+r)$, we have by triangle inequality $\min\{|x+1|, |x-1|\} \ge \min\{||c+1| - |c-x||, ||c-1| - |c-x||\}$. Note that both |c+1|, |c-1| greater than or equal to $\min\{|c+1|, |c-1|\} = 2r > |c-x|$, so $\min\{||c+1| - |c-x|, ||c-1| - |c-x||\} = \min\{|c+1| - |c-x|, |c-1| - |c-x||\} = \min\{|c+1| - |c-x|, |c-1|\} = \min\{|c+1|, |c-1|\} = \min\{|c+1|, |c-1|\} = \min\{|c+1|, |c-1|\} = \min\{|c-1|, |c-1|\} = \min\{|c+1|, |c-1|\} = \min\{|c+1|, |c-1|\}$. For any x in the range of 0 < |x-c| < r, we have

$$\frac{|xc|+1}{|(x^2-1)(c^2-1)|} \le \frac{|c|(|c|+r)+1}{r^2 \cdot (2r)^2} = \frac{|c|^2+|c|r+1}{4r^4} =: K$$

Now given any $\epsilon > 0$, we may take $\delta = \min\{r, \epsilon/K\}$, then for x in the range of $0 < |x - c| < \delta$,

$$\begin{aligned} \left| \frac{x}{x^2 - 1} - \frac{c}{c^2 - 1} \right| &= \left| \frac{xc^2 - cx^2 + c - x}{(x^2 - 1)(c^2 - 1)} \right| \\ &\leq \frac{|xc| + 1}{|(x^2 - 1)(c^2 - 1)|} |x - c| \\ &< \frac{|c|^2 + |c|r + 1}{4r^4} \delta \\ &= K\delta \le \epsilon. \end{aligned}$$

We would also like to show that f is discontinuous at ± 1 . Simply consider the sequences $(x_n) = (\sqrt{1 + \frac{1}{n}}) \to 1$ and $(-x_n) \to -1$. We have $f(x_n) = n\sqrt{1 + \frac{1}{n}} = \sqrt{n^2 + n} \to \infty$ and $f(-x_n) = -\sqrt{n^2 + n} \to -\infty$. So by sequential criterion f cannot be continuous at those points.

(c) First, we claim that f(x) is discontinuous for x non-zero rational number. This can be simply seen by sequential criterion. Given any rational $\frac{p}{q}$, by density of $\mathbb{R} \setminus \mathbb{Q}$, there is a sequence (r_n) of irrational number so that $\lim r_n = \frac{p}{q}$, then $\lim f(r_n) = \lim r_n = \frac{p}{q} \neq f(\frac{p}{q})$ if $\frac{p}{q} \neq 0$.

Next, we show that f(x) is continuous at x = 0, given $\epsilon > 0$, simply take $\delta = \epsilon$, then for $0 < |x| < \delta$, if x is irrational, $|f(x)| = |x| < \epsilon$, and if $x = \frac{p}{q}$ is rational, $|f(\frac{p}{q})| = |p| \cdot |\sin(1/q)| \le |p| \cdot |1/q| = |x| < \epsilon$. In the above, we have used the inequality $|\sin a| \le |a|$.

Finally, we will prove that for c irrational, f(x) is continuous at c. We will need the following fact, which we take for granted, $\lim_{q\to\infty} \frac{\sin 1/q}{1/q} = 1$. First, given any $\epsilon > 0$, we may pick 1 > a > 0 and $\epsilon/2 > \delta' > 0$ so that $a(r + \delta') < \epsilon/2$. Given such a, by the limit we mentioned, there exists $N \in \mathbb{N}$ so that for $q \ge N$, we have $1 - a < q \sin(1/q) < 1 + a$. For this N, we note by a similar argument as in Thomae's function, there are finitely many rational numbers within distance at most 1 to c, whose reduced form has denominator q less than N. So there must exist $\delta'' > 0$ small enough so that any $\frac{p}{q} \in \mathbb{Q} \cap (c - \delta'', c + \delta'')$ written in reduced form has $q \ge N$. Now we take $\delta = \min\{\delta', \delta''\}$, then for $x \in (c - \delta, c + \delta)$, if x is irrational, then $|f(x) - c| = |x - c| = \delta < \epsilon/2 < \epsilon$. If $x = \frac{p}{q}$ is rational and written in reduced form, then

$$|f(x) - f(c)| = \left| \frac{p}{q} \cdot q \sin\left(\frac{1}{q}\right) - c \right|$$

$$\leq \max\left\{ \left| \frac{p}{q}(1+a) - c \right|, \left| \frac{p}{q}(1-a) - c \right| \right\}$$

$$\leq \left| \frac{p}{q} - c \right| + a \cdot \frac{p}{q}$$

$$< \delta + a(r+\delta)$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

- 2. Yes, if f + g was continuous, then along with f being continuous would imply g = (f + g) f is also continuous, which would be a contradiction.
- 3. Take $f(x) = \frac{1}{x}$ for $x \neq 0$, and f(x) = 0 for x = 0, clearly f(x) is discontinuous at x = 0. If we take g = f also, then $g \circ f(x) = x$ for any $x \in \mathbb{R}$, which is a continuous function.
- 4. First, note that f(0) = f(0+0) = f(0) + f(0) implies that f(0) = 0. Suppose that f is continuous at c, then given $\epsilon > 0$, we can find $\delta > 0$ so that $0 < |y c| < \delta$ implies $|f(y) f(c)| = |f(y c)| < \epsilon$. Now if c' is any other point in \mathbb{R} , taking the same $\delta > 0$, note that if $0 < |x c'| < \delta$, then $0 < |(x c' + c) c| < \delta$, i.e. y = x c' + c satisfies the premise above, so we have $\epsilon > |f(x c' + c c)| = |f(x) f(c') + f(c) f(c)| = |f(x) f(c')|$.
- 5. First note that for all x, g(x) = g(0 + x) = g(0)g(x). If g(x) = 0 for all x, then it is a constant function, and hence is continuous. Otherwise, $g(x) \neq 0$ for some x, then dividing through g(x), we must have g(0) = 1. Furthermore, g(x) is non-vanishing, if say g(x) = 0 for some x, then 1 = g(0) = g(x x) = g(x)g(-x) = 0, which is absurd. Now

for any $c \neq 0$, given any $\epsilon > 0$, by continuity of g at 0, we have $\delta > 0$ so that $0 < |x| < \delta$ implies $|g(x) - 1| < \epsilon/|g(c)|$. For the same δ , if x is in the range of $0 < |x - c| < \delta$, note that $|g(x - c) - 1| < \epsilon/|g(c)|$. Therefore $\epsilon > |g(c)g(x - c) - g(c)| = |g(x) - g(c)|$.

6. (a) We will prove that the complement D^c_ϵ is open. Given any c ∈ D^c_ϵ, by assumption, there is some δ_x > 0 so that for all x, y ∈ (c − δ_c, c + δ_c), we have |f(x) − f(y)| < ϵ. Suppose d is another point in (c − δ_c, c + δ_c), then simply take δ_d = min{|c + δ_c − d|, |c − δ_c − d|}, we have (d − δ_d, d + δ_d) ⊂ (c − δ_c, c + δ_c), and therefore for any x, y ∈ (d − δ_d, d + δ_d), we have |f(x) − f(y)| < ϵ, i.e. (c − δ_c, c + δ_c) ⊂ D^c_ϵ. Thus we may write as an arbitrary union of open intervals

$$D_{\epsilon}^{c} = \bigcup_{c \in D_{\epsilon}^{c}} (c - \delta_{c}, c + \delta_{c}).$$

- (b) Suppose $\epsilon_1 < \epsilon_2$, if x is ϵ_1 -continuous, then there is δ so that for any $y, z \in (x \delta, x + \delta)$ we have $|f(y) f(z)| < \epsilon_1 < \epsilon_2$, so x is automatically ϵ_2 -continuous. By contrapositive, if x is not ϵ_2 -continuous, then it is not ϵ_1 -continuous, i.e. $D_{\epsilon_2} \subset D_{\epsilon_1}$.
- (c) If f is continuous at c, then for any $\epsilon > 0$, there is some δ so that whenever $0 < |x c| < \delta$, we have $|f(x) f(c)| < \epsilon/2$. Then for any $x, y \in (c \delta, c + \delta)$, we have $|f(x) f(y)| \le |f(x) f(c)| + |f(y) f(c)| < \epsilon/2 + \epsilon/2 = \epsilon$. So f is ϵ -continuous at c, for arbitrary ϵ . In our notation, $\bigcup_{\epsilon > 0} D_{\epsilon} \subset D_{f}$.
- (d) If f is not continuous at c, then there exists some ε > 0 so that for any δ > 0, there is some x_δ with 0 < |x_δ c| < δ so that |f(x_δ) f(c)| ≥ ε. In particular taking x = x_δ and y = c, we see that this implies that f is not ε-continuous at c. In terms of the subsets, this says that D_f ⊂ ⋃_{ε>0} D_ε. Now we claim that ⋃_{ε>0} D_ε = ⋃_n D_{1/n}. The (⊇) direction is trivial, as we are taking union over a subfamily. For the (⊆) direction, simply note that by part (b), if x ∈ D_ε,

then by AP we may take some $n \in \mathbb{N}$ big enough so that $\frac{1}{n} < \epsilon$, then $D_{\epsilon} \subset D_{\frac{1}{n}}$. This concludes the proof.