THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2058 Honours Mathematical Analysis I 2022-23 Tutorial 9 solutions 10th November 2022

- Tutorial problems will be posted every Wednesday, provided there is a tutorial class on the Thursday same week. You are advised to try out the problems before attending tutorial classes, where the questions will be discussed.
- Solutions to tutorial problems will be posted after tutorial classes.
- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.
- 1. (a) $f(x) = x^2$ is continuous on R. Given any $c \in \mathbb{R}$, and any $\epsilon > 0$, we pick $\delta =$ $\min\{1, \frac{\epsilon}{2|c|+1}\} > 0$, then if x is in the range of $0 < |x - c| < \delta$, we have $|x| \le$ $|c| + |x - c| < |c| + \delta \leq |c| + 1$, and so $|x + c| \leq |x| + |c| \leq 2|c| + 1$.

$$
|x^{2} - c^{2}| = |x + c| \cdot |x - c| < (2|c| + 1)\delta \leq \epsilon.
$$

(b) $f(x) = \frac{x}{x^2-1}$ is continuous on $\mathbb{R} \setminus \{\pm 1\}$. For any $c \in \mathbb{R} \setminus \{\pm 1\}$ and any $\epsilon > 0$, firstly consider $r = \min\{|c+1|, |c-1|\}/2$. Then for any $x \in (c-r, c+r)$, we have by triangle inequality min $\{|x+1|, |x-1|\} \ge \min\{||c+1| - |c-x||, ||c-1| - |c-x||\}.$ Note that both $|c+1|$, $|c-1|$ greater than or equal to $\min\{|c+1|, |c-1|\} = 2r$ $|c-x|$, so $\min\{|c+1| - |c-x|, |c-1| - |c-x||\} = \min\{|c+1| - |c-x|, |c-1|\}$ $|1| - |c - x|$ = min{ $|c + 1|$, $|c - 1|$ } - $|c - x| > 2r - r = r$. Finally, from the above, for any x in the range of $0 < |x - c| < r$, we have

$$
\frac{|xc|+1}{|(x^2-1)(c^2-1)|} \le \frac{|c|(|c|+r)+1}{r^2 \cdot (2r)^2} = \frac{|c|^2 + |c|r+1}{4r^4} =: K
$$

Now given any $\epsilon > 0$, we may take $\delta = \min\{r, \epsilon/K\}$, then for x in the range of $0 < |x - c| < \delta$,

$$
\left| \frac{x}{x^2 - 1} - \frac{c}{c^2 - 1} \right| = \left| \frac{xc^2 - cx^2 + c - x}{(x^2 - 1)(c^2 - 1)} \right|
$$

$$
\leq \frac{|xc| + 1}{|(x^2 - 1)(c^2 - 1)|} |x - c|
$$

$$
< \frac{|c|^2 + |c|r + 1}{4r^4} \delta
$$

$$
= K\delta \leq \epsilon.
$$

We would also like to show that f is discontinuous at ± 1 . Simply consider the sequences $(x_n) = (\sqrt{1 + \frac{1}{n}}) \rightarrow 1$ and $(-x_n) \rightarrow -1$. We have $f(x_n) = n\sqrt{1 + \frac{1}{n}} = \sqrt{n}$ $n^2 + n \to \infty$ and $f(-x_n) = -\sqrt{n^2 + n} \to -\infty$. So by sequential criterion f cannot be continuous at those points.

(c) First, we claim that $f(x)$ is discontinuous for x non-zero rational number. This can be simply seen by sequential criterion. Given any rational $\frac{p}{q}$, by density of $\mathbb{R} \setminus \mathbb{Q}$, there is a sequence (r_n) of irrational number so that $\lim r_n = \frac{p}{q}$ $\frac{p}{q}$, then $\lim f(r_n) =$ $\lim r_n = \frac{p}{q}$ $\frac{p}{q} \neq f(\frac{p}{q})$ $\frac{p}{q}$) if $\frac{p}{q} \neq 0$.

Next, we show that $f(x)$ is continuous at $x = 0$, given $\epsilon > 0$, simply take $\delta = \epsilon$, then for $0 < |x| < \delta$, if x is irrational, $|f(x)| = |x| < \epsilon$, and if $x = \frac{p}{a}$ $\frac{p}{q}$ is rational, $|f(\frac{p}{a}$ $\vert \frac{p}{q} \rangle \vert = \vert p \vert \cdot \vert \sin(1/q) \vert \leq \vert p \vert \cdot \vert 1/q \vert = \vert x \vert < \epsilon$. In the above, we have used the inequality $|\sin a| \leq |a|$.

Finally, we will prove that for c irrational, $f(x)$ is continuous at c. We will need the following fact, which we take for granted, $\lim_{q\to\infty} \frac{\sin 1/q}{1/q} = 1$. First, given any $\epsilon > 0$, we may pick $1 > a > 0$ and $\epsilon/2 > \delta' > 0$ so that $a(r + \delta') < \epsilon/2$. Given such a, by the limit we mentioned, there exists $N \in \mathbb{N}$ so that for $q > N$, we have $1 - a < q \sin(1/q) < 1 + a$. For this N, we note by a similar argument as in Thomae's function, there are finitely many rational numbers within distance at most 1 to c, whose reduced form has denominator q less than N . So there must exist $\delta'' > 0$ small enough so that any $\frac{p}{q} \in \mathbb{Q} \cap (c - \delta'', c + \delta'')$ written in reduced form has $q \ge N$. Now we take $\delta = \min{\{\delta^i, \delta^{\prime\prime}\}}$, then for $x \in (c - \delta, c + \delta)$, if x is irrational, then $|f(x) - c| = |x - c| = \delta < \epsilon/2 < \epsilon$. If $x = \frac{p}{a}$ $\frac{p}{q}$ is rational and written in reduced form, then

$$
|f(x) - f(c)| = \left| \frac{p}{q} \cdot q \sin\left(\frac{1}{q}\right) - c \right|
$$

\n
$$
\leq \max \left\{ \left| \frac{p}{q} (1 + a) - c \right|, \left| \frac{p}{q} (1 - a) - c \right| \right\}
$$

\n
$$
\leq \left| \frac{p}{q} - c \right| + a \cdot \frac{p}{q}
$$

\n
$$
< \delta + a(r + \delta)
$$

\n
$$
< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
$$

- 2. Yes, if $f + g$ was continuous, then along with f being continuous would imply $g =$ $(f + g) - f$ is also continuous, which would be a contradiction.
- 3. Take $f(x) = \frac{1}{x}$ for $x \neq 0$, and $f(x) = 0$ for $x = 0$, clearly $f(x)$ is discontinuous at $x = 0$. If we take $g = f$ also, then $g \circ f(x) = x$ for any $x \in \mathbb{R}$, which is a continuous function.
- 4. First, note that $f(0) = f(0+0) = f(0) + f(0)$ implies that $f(0) = 0$. Suppose that f is continuous at c, then given $\epsilon > 0$, we can find $\delta > 0$ so that $0 < |y - c| < \delta$ implies $|f(y) - f(c)| = |f(y - c)| < \epsilon$. Now if c' is any other point in R, taking the same $\delta > 0$, note that if $0 < |x - c'| < \delta$, then $0 < |(x - c' + c) - c| < \delta$, i.e. $y = x - c' + c$ satisfies the premise above, so we have $\epsilon > |f(x - c' + c - c)| = |f(x) - f(c') + f(c) - f(c)| =$ $|f(x) - f(c')|$.
- 5. First note that for all x, $g(x) = g(0+x) = g(0)g(x)$. If $g(x) = 0$ for all x, then it is a constant function, and hence is continuous. Otherwise, $g(x) \neq 0$ for some x, then dividing through $g(x)$, we must have $g(0) = 1$. Furthermore, $g(x)$ is non-vanishing, if say $g(x) = 0$ for some x, then $1 = g(0) = g(x-x) = g(x)g(-x) = 0$, which is absurd. Now

for any $c \neq 0$, given any $\epsilon > 0$, by continuity of g at 0, we have $\delta > 0$ so that $0 < |x| < \delta$ implies $|g(x) - 1| < \epsilon / |g(c)|$. For the same δ , if x is in the range of $0 < |x - c| < \delta$, note that $|g(x - c) - 1| < \epsilon / |g(c)|$. Therefore $\epsilon > |g(c)g(x - c) - g(c)| = |g(x) - g(c)|$.

6. (a) We will prove that the complement D_{ϵ}^{c} is open. Given any $c \in D_{\epsilon}^{c}$, by assumption, there is some $\delta_x > 0$ so that for all $x, y \in (c-\delta_c, c+\delta_c)$, we have $|f(x)-f(y)| < \epsilon$. Suppose d is another point in $(c - \delta_c, c + \delta_c)$, then simply take $\delta_d = \min\{|c + \delta_c - \delta_c|$ $d|, |c - \delta_c - d|$, we have $(d - \delta_d, d + \delta_d) \subset (c - \delta_c, c + \delta_c)$, and therefore for any $x, y \in (d - \delta_d, d + \delta_d)$, we have $|f(x) - f(y)| < \epsilon$, i.e. $(c - \delta_c, c + \delta_c) \subset D_{\epsilon}^c$. Thus we may write as an arbitrary union of open intervals

$$
D_{\epsilon}^{c} = \bigcup_{c \in D_{\epsilon}^{c}} (c - \delta_{c}, c + \delta_{c}).
$$

- (b) Suppose $\epsilon_1 < \epsilon_2$, if x is ϵ_1 -continuous, then there is δ so that for any $y, z \in (x \delta_1)$ $(\delta, x + \delta)$ we have $|f(y) - f(z)| < \epsilon_1 < \epsilon_2$, so x is automatically ϵ_2 -continuous. By contrapositive, if x is not ϵ_2 -continuous, then it is not ϵ_1 -continuous, i.e. $D_{\epsilon_2} \subset D_{\epsilon_1}$.
- (c) If f is continuous at c, then for any $\epsilon > 0$, there is some δ so that whenever $0 <$ $|x - c| < \delta$, we have $|f(x) - f(c)| < \epsilon/2$. Then for any $x, y \in (c - \delta, c + \delta)$, we have $|f(x) - f(y)| \le |f(x) - f(c)| + |f(y) - f(c)| < \epsilon/2 + \epsilon/2 = \epsilon$. So f is ϵ -continuous at c, for arbitrary ϵ . In our notation, $\bigcup_{\epsilon > 0} D_{\epsilon} \subset D_f$.
- (d) If f is not continuous at c, then there exists some $\epsilon > 0$ so that for any $\delta > 0$, there is some x_{δ} with $0 < |x_{\delta} - c| < \delta$ so that $|f(x_{\delta}) - f(c)| \geq \epsilon$. In particular taking $x = x_{\delta}$ and $y = c$, we see that this implies that f is not ϵ -continuous at c. In terms of the subsets, this says that $D_f \subset \bigcup_{\epsilon > 0} D_{\epsilon}$. Now we claim that $\bigcup_{\epsilon>0} D_{\epsilon} = \bigcup_n D_{\frac{1}{n}}$. The (\supseteq) direction is trivial, as we are taking union over a subfamily. For the (\subseteq) direction, simply note that by part (b), if $x \in D_{\epsilon}$, then by AP we may take some $n \in \mathbb{N}$ big enough so that $\frac{1}{n} < \epsilon$, then $D_{\epsilon} \subset D_{\frac{1}{n}}$.

This concludes the proof.