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• Tutorial problems will be posted every Wednesday, provided there is a tutorial class on
the Thursday same week. You are advised to try out the problems before attending tutorial
classes, where the questions will be discussed.

• Solutions to tutorial problems will be posted after tutorial classes.

• If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or
in person during office hours.

1. (a) f(x) = x2 is continuous on R. Given any c ∈ R, and any ϵ > 0, we pick δ =
min{1, ϵ

2|c|+1
} > 0, then if x is in the range of 0 < |x − c| < δ, we have |x| ≤

|c|+ |x− c| < |c|+ δ ≤ |c|+ 1, and so |x+ c| ≤ |x|+ |c| ≤ 2|c|+ 1.

|x2 − c2| = |x+ c| · |x− c| < (2|c|+ 1)δ ≤ ϵ.

(b) f(x) = x
x2−1

is continuous on R\{±1}. For any c ∈ R\{±1} and any ϵ > 0, firstly
consider r = min{|c + 1|, |c − 1|}/2. Then for any x ∈ (c − r, c + r), we have by
triangle inequality min{|x+1|, |x−1|} ≥ min{||c+1|−|c−x||, ||c−1|−|c−x||}.
Note that both |c+ 1|, |c− 1| greater than or equal to min{|c+ 1|, |c− 1|} = 2r >
|c− x|, so min{||c+ 1| − |c− x|, ||c− 1| − |c− x||} = min{|c+ 1| − |c− x|, |c−
1| − |c − x|} = min{|c + 1|, |c − 1|} − |c − x| > 2r − r = r. Finally, from the
above, for any x in the range of 0 < |x− c| < r, we have

|xc|+ 1

|(x2 − 1)(c2 − 1)|
≤ |c|(|c|+ r) + 1

r2 · (2r)2
=

|c|2 + |c|r + 1

4r4
=: K

Now given any ϵ > 0, we may take δ = min{r, ϵ/K}, then for x in the range of
0 < |x− c| < δ,

∣∣∣∣ x

x2 − 1
− c

c2 − 1

∣∣∣∣ = ∣∣∣∣xc2 − cx2 + c− x

(x2 − 1)(c2 − 1)

∣∣∣∣
≤ |xc|+ 1

|(x2 − 1)(c2 − 1)|
|x− c|

<
|c|2 + |c|r + 1

4r4
δ

= Kδ ≤ ϵ.

We would also like to show that f is discontinuous at ±1. Simply consider the se-

quences (xn) = (
√

1 + 1
n
) → 1 and (−xn) → −1. We have f(xn) = n

√
1 + 1

n
=

√
n2 + n → ∞ and f(−xn) = −

√
n2 + n → −∞. So by sequential criterion f

cannot be continuous at those points.



(c) First, we claim that f(x) is discontinuous for x non-zero rational number. This can
be simply seen by sequential criterion. Given any rational p

q
, by density of R \ Q,

there is a sequence (rn) of irrational number so that lim rn = p
q
, then lim f(rn) =

lim rn = p
q
̸= f(p

q
) if p

q
̸= 0.

Next, we show that f(x) is continuous at x = 0, given ϵ > 0, simply take δ = ϵ,
then for 0 < |x| < δ, if x is irrational, |f(x)| = |x| < ϵ, and if x = p

q
is rational,

|f(p
q
)| = |p| · | sin(1/q)| ≤ |p| · |1/q| = |x| < ϵ. In the above, we have used the

inequality | sin a| ≤ |a|.
Finally, we will prove that for c irrational, f(x) is continuous at c. We will need
the following fact, which we take for granted, limq→∞

sin 1/q
1/q

= 1. First, given any
ϵ > 0, we may pick 1 > a > 0 and ϵ/2 > δ′ > 0 so that a(r + δ′) < ϵ/2. Given
such a, by the limit we mentioned, there exists N ∈ N so that for q ≥ N , we
have 1 − a < q sin(1/q) < 1 + a. For this N , we note by a similar argument as
in Thomae’s function, there are finitely many rational numbers within distance at
most 1 to c, whose reduced form has denominator q less than N . So there must exist
δ′′ > 0 small enough so that any p

q
∈ Q∩(c−δ′′, c+δ′′) written in reduced form has

q ≥ N . Now we take δ = min{δ′, δ′′}, then for x ∈ (c− δ, c+ δ), if x is irrational,
then |f(x)− c| = |x− c| = δ < ϵ/2 < ϵ. If x = p

q
is rational and written in reduced

form, then

|f(x)− f(c)| =
∣∣∣∣pq · q sin

(
1

q

)
− c

∣∣∣∣
≤ max

{∣∣∣∣pq (1 + a)− c

∣∣∣∣ , ∣∣∣∣pq (1− a)− c

∣∣∣∣}
≤

∣∣∣∣pq − c

∣∣∣∣+ a · p
q

< δ + a(r + δ)

<
ϵ

2
+

ϵ

2
= ϵ.

2. Yes, if f + g was continuous, then along with f being continuous would imply g =
(f + g)− f is also continuous, which would be a contradiction.

3. Take f(x) = 1
x

for x ̸= 0, and f(x) = 0 for x = 0, clearly f(x) is discontinuous at x = 0.
If we take g = f also, then g ◦ f(x) = x for any x ∈ R, which is a continuous function.

4. First, note that f(0) = f(0 + 0) = f(0) + f(0) implies that f(0) = 0. Suppose that f
is continuous at c, then given ϵ > 0, we can find δ > 0 so that 0 < |y − c| < δ implies
|f(y)− f(c)| = |f(y − c)| < ϵ. Now if c′ is any other point in R, taking the same δ > 0,
note that if 0 < |x− c′| < δ, then 0 < |(x− c′ + c)− c| < δ, i.e. y = x− c′ + c satisfies
the premise above, so we have ϵ > |f(x− c′ + c− c)| = |f(x)− f(c′) + f(c)− f(c)| =
|f(x)− f(c′)|.

5. First note that for all x, g(x) = g(0 + x) = g(0)g(x). If g(x) = 0 for all x, then it
is a constant function, and hence is continuous. Otherwise, g(x) ̸= 0 for some x, then
dividing through g(x), we must have g(0) = 1. Furthermore, g(x) is non-vanishing, if say
g(x) = 0 for some x, then 1 = g(0) = g(x−x) = g(x)g(−x) = 0, which is absurd. Now



for any c ̸= 0, given any ϵ > 0, by continuity of g at 0, we have δ > 0 so that 0 < |x| < δ
implies |g(x)− 1| < ϵ/|g(c)|. For the same δ, if x is in the range of 0 < |x− c| < δ, note
that |g(x− c)− 1| < ϵ/|g(c)|. Therefore ϵ > |g(c)g(x− c)− g(c)| = |g(x)− g(c)|.

6. (a) We will prove that the complement Dc
ϵ is open. Given any c ∈ Dc

ϵ , by assumption,
there is some δx > 0 so that for all x, y ∈ (c−δc, c+δc), we have |f(x)−f(y)| < ϵ.
Suppose d is another point in (c− δc, c+ δc), then simply take δd = min{|c+ δc −
d|, |c− δc − d|}, we have (d− δd, d + δd) ⊂ (c− δc, c + δc), and therefore for any
x, y ∈ (d− δd, d+ δd), we have |f(x)− f(y)| < ϵ, i.e. (c− δc, c+ δc) ⊂ Dc

ϵ . Thus
we may write as an arbitrary union of open intervals

Dc
ϵ =

⋃
c∈Dc

ϵ

(c− δc, c+ δc).

(b) Suppose ϵ1 < ϵ2, if x is ϵ1-continuous, then there is δ so that for any y, z ∈ (x −
δ, x+ δ) we have |f(y)− f(z)| < ϵ1 < ϵ2, so x is automatically ϵ2-continuous. By
contrapositive, if x is not ϵ2-continuous, then it is not ϵ1-continuous, i.e. Dϵ2 ⊂ Dϵ1 .

(c) If f is continuous at c, then for any ϵ > 0, there is some δ so that whenever 0 <
|x − c| < δ, we have |f(x) − f(c)| < ϵ/2. Then for any x, y ∈ (c − δ, c + δ), we
have |f(x) − f(y)| ≤ |f(x) − f(c)| + |f(y) − f(c)| < ϵ/2 + ϵ/2 = ϵ. So f is
ϵ-continuous at c, for arbitrary ϵ. In our notation,

⋃
ϵ>0Dϵ ⊂ Df .

(d) If f is not continuous at c, then there exists some ϵ > 0 so that for any δ > 0, there
is some xδ with 0 < |xδ − c| < δ so that |f(xδ) − f(c)| ≥ ϵ. In particular taking
x = xδ and y = c, we see that this implies that f is not ϵ-continuous at c. In terms
of the subsets, this says that Df ⊂

⋃
ϵ>0Dϵ.

Now we claim that
⋃

ϵ>0Dϵ =
⋃

nD 1
n

. The (⊇) direction is trivial, as we are taking
union over a subfamily. For the (⊆) direction, simply note that by part (b), if x ∈ Dϵ,
then by AP we may take some n ∈ N big enough so that 1

n
< ϵ, then Dϵ ⊂ D 1

n
.

This concludes the proof.


