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• Tutorial problems will be posted every Wednesday, provided there is a tutorial class on
the Thursday same week. You are advised to try out the problems before attending tutorial
classes, where the questions will be discussed.

• Solutions to tutorial problems will be posted after tutorial classes.

• If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or
in person during office hours.

1. (a) We will show that limx→1+
x2

x−1
= +∞. Given any M > 0, take δ = 1

M
> 0, then

for x in the range 0 < x− 1 < δ, in particular x > 1, so we have

x2

x− 1
≥ 1

x− 1
>

1

δ
= M.

(b) We will show that limx→1−
x2

x−1
= −∞, combined with part (a), this implies that

limx→1
x2

x−1
does not exist.

Given M > 0, we pick δ = min{1
2
, 1
4M

}, then for x in the range of 0 < 1 − x <
δ ≤ 1

2
, we have 1

2
< x and hence x2 ≥ 1

4
, then

x2

x− 1
≤ 1

4(x− 1)
< − 1

4δ
< −M.

(c) We will show that limx→0

√
x+1
x

does not exist by demonstrating that the one-sided
limits do not agree.
To see why, let’s use sequential criterion, consider the sequence xn = 2

n
+ 1

n2 , notice
that limxn = 0 and xn > 0 for all n. We have

lim f(xn) = lim

√
1 + 2

n
+ 1

n2

2
n
+ 1

n2

= lim
1 + 1

n
2
n
+ 1

n2

= lim
n2 + n

2n+ 1
> lim

n2 + n

2n+ 2
= lim

n

2
= +∞

Consider another sequence yn = − 2
n
+ 1

n2 < 0, then again lim yn = 0, while

lim f(yn) = lim

√
1− 2

n
+ 1

n2

− 2
n
+ 1

n2

= lim
1− 1

n

− 2
n
+ 1

n2

= lim
n2 − n

−2n+ 1
< lim

n2 − n

−2n
= lim

n− 1

−2
= −∞

By sequential criterion, limit does not exist.



(d) We will show that limx→∞
√
x+1
x

= 0. Given ϵ > 0, take M = max{ 4
ϵ2
, 1} > 0, then

for x > M , in particular x > 1, so that
√
x+ 1 < 2

√
x, we have

√
x+ 1

|x|
<

2
√
x

|x|
=

2√
x
<

2√
M

≤ ϵ.

(e) We will prove that limx→∞
x−

√
x

x+
√
x
= 1. Given any ϵ > 0, take M = 4

ϵ2
> 0, then∣∣∣∣x−

√
x

x+
√
x
− 1

∣∣∣∣ = ∣∣∣∣ 2
√
x
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√
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<
2√
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<

2√
M

= ϵ.

2. Note that limx→c f = ∞ iff for any M > 0, there exists δ > 0 so that 0 < |x − c| < δ
implies f(x) > M . Then for any ϵ > 0, take M = 1

ϵ
, then there exists δ > 0 so that

0 < |x − c| < δ implies 1
f(x)

< 1
M

= ϵ, in other words limx→c
1
f
= 0. The reverse

direction is similar.

3. If limx→∞ f(x) = L, then for any ϵ > 0, there exists M > 0 so that x > M implies that
|f(x) − L| < ϵ. Then for any ϵ > 0, there exists δ = 1

M
> 0 so that 0 < 1

x
< 1

M
= δ

implies that |f( 1
x
)− L| < ϵ. The other direction is similar.

4. To prove that limx→∞ f ◦g = L, pick any ϵ > 0, by convergence of f , there exists M1 > 0
so that for y > M1, we have |f(y)− L| < ϵ. For this choice of M1, by convergence of g,
there exists M2 > 0 so that for x > M2, we have g(x) > M1.

Now combining the above, for M2 given above, x > M2 =⇒ g(x) > M1 =⇒ |f(g(x))−
L| < ϵ.

5. We will prove a more general statement: The set of discontinuity of the floor function is
Z, and for any continuous function f : A → R, the set of discontinuity of ⌊f⌋ is given by

S = {x ∈ A∩D(A)| f(x) ∈ Z and ∀δ > 0,∃y ∈ (x−δ, x+δ)∩A such that f(y) < f(x)}.

First we note that ⌊x⌋ is discontinuous at any n ∈ Z, this is clear because for 0 < δ < 1,
if n < x < n+ δ, we have ⌊x⌋ = n, and if n− δ < x < n, we have ⌊x⌋ = n− 1. So the
one-sided limits are different from both sides, and the function cannot be continuous.

Now for any r ∈ R \ Z, say n < r < n + 1, then there exists δ0 > 0 so that
n < r − δ0 < r + δ0 < n + 1. Then for any ϵ > 0, simply take δ = δ0, then for
any x ∈ (r − δ0, r + δ) ⊂ (n, n+ 1), we have |⌊x⌋ − ⌊r⌋| = n− n = 0 < ϵ.

Next we will show that for any x ∈ S, ⌊f⌋ is discontinuous at x. Write f(x) = N ∈ Z,
we simply take ϵ = 1, then by assumption for any δ > 0, we can find y ∈ (x−δ, x+δ)∩A
so that f(y) < f(x) = N . Therefore |⌊f(y)⌋ − ⌊f(x)⌋| = 1 ≥ ϵ.

Now we will prove that for x ̸∈ S, ⌊f⌋ is continuous at x. If x ∈ A \ S, then either
f(x) ̸∈ Z or f(x) ∈ Z but there exists some δ > 0 so that for any y ∈ (x− δ, x+ δ)∩A,
we have f(y) ≥ f(x). In the first case, i.e. f(x) ̸∈ Z, then N < f(x) < N + 1 for
some N ∈ Z, so there is some small ϵ > 0 so that N < f(x) − ϵ < f(x) + ϵ < N + 1,
then by continuity of f , there is some δ > 0 so that for y ∈ (x − δ, x + δ) ∩ A, we
have f(y) ∈ (f(x) − ϵ, f(x) + ϵ) ⊂ (N,N + 1). In particular, for y in the given range,
⌊f(y)⌋ = N is constant. So ⌊f⌋ must be continuous at x.



In the second case, by the assumption, there exists δ > 0 so that on (x− δ, x+ δ)∩A,
f(y) ≥ f(x) =: N ∈ Z. By continuity of f at x, there is a δ′ > 0 so that for y ∈
(x − δ′, x + δ′) ∩ A, |f(y) − f(x)| < 1. Then by taking δ′′ = min{δ, δ′}, for y in δ′′-
neighborhood of x, we must have N+1 > f(y) ≥ N , and hence ⌊f(y)⌋ = N . Again, we
have exhibited a neighborhood of x on which ⌊f⌋ is constant, so it must be continuous at
such x.

(a) For f(x) = sinx, note that S = {nπ : n ∈ Z}.

(b) For f(x) = 1/x, we see that S = { 1
n
: n ∈ Z}.

6. Let limx→c f(x) = f(c) > 0, then by taking ϵ = f(c) > 0, there is a δ > 0 so that for
0 < |x − c| < δ, we have |f(x) − f(c)| < f(c). In particular, f(c) − f(x) < f(c),
therefore 0 < f(x) holds for all |x− c| < δ.


