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• Tutorial problems will be posted every Wednesday, provided there is a tutorial class on
the Thursday same week. You are advised to try out the problems before attending tutorial
classes, where the questions will be discussed.

• Solutions to tutorial problems will be posted after tutorial classes.

• If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or
in person during office hours.

1. (a) For any ϵ > 0, take δ = min{1, 2ϵ} > 0, then for any x satisfying 0 < |x− 1| < δ,
in particular 0 < x < 2, and so |x+ 1| ≥ 1, or 1
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(c) For any ϵ > 0, take δ = min{1, ϵ/7} > 0, then for any x satisfying 0 < |x− 1| < δ,
in particular 0 < x < 2, and so |x2 + x− 1| ≤ |x|2 + |x|+ 1 ≤ 7. Now we have

|x3 − 2x+ 1| = |x− 1| · |x2 + x− 1| ≤ 7|x− 1| < 7δ ≤ ϵ.

(d) For any ϵ > 0, take δ = min{0.1, 0.61
20.81

ϵ}, then for any x satisfying 0 < |x− 2| < δ,
in particular we have 1.9 < x < 2.1. Therefore |x2 − 4x− 8| ≤ |x|2 + 4|x| + 8 ≤
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You can pick prettier numbers if you like, but it doesn’t really matter.

(e) For any ϵ > 0, take δ = min{1, ϵ/2} > 0, then for x satisfying 0 < |x| < δ, we
have |x2 + 1| ≤ 2, and so

|x cosx(x2 + 1)| = |x| · | cosx| · |x2 + 1| ≤ 2|x| < 2δ ≤ ϵ.



(f) To prove that limx→a f(x) ̸= L, we will negate the ϵ − δ definition. It suffices to
demonstrate an ϵ > 0 so that for any δ > 0, we can find some x within the range
0 < |x − a| < δ so that |f(x) − L| ≥ ϵ. In our case, let’s pick ϵ = 1, then for any
δ > 0, if δ ≥ 2, we can simply take x = 0, we have∣∣∣∣0− 1
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∣∣∣∣ = 2 > ϵ = 1.

If 2 > δ > 0, then we may pick any 1− δ < x < 1, so∣∣∣∣x− 1
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(g) We will use the sequential criterion for limits of function. It suffices to demonstrate
two convergent sequences (xn) and (yn) so that limxn = lim yn = 0, with the
property that lim(xn + xn

|xn|) ̸= lim(yn + yn
|yn|). Simply take xn = 1
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,
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they converge to 1 and −1 respectively, which are not the same.

2. (a) Suppose that limx→c f(x)
2 = 0, then for any ϵ > 0, there exists some δ > 0 so that

for 0 < |x− c| < δ, we have |f(x)2| < ϵ2. Taking square root yields |f(x)| < ϵ. So
we are done.

(b) Define f(x) =
√
L for x ≥ c and f(x) = −

√
L for x < c. Then limx→c f(x) = L

is satisfied since f(x)2 = L is a constant function. However limx→c f(x) does not
exists since the limit from both sides are different.

3. (a) For any ϵ > 0, we may take δ = ϵ, so that for x in the range of 0 < |x| < δ, we have
|f(x)| ≤ |x| < δ = ϵ.

(b) For c ̸= 0, by density of the rational and irrational numbers, we may find a rational
sequence (qn) and an irrational sequence (rn) so that they both converge to c, but
then lim f(qn) = lim qn = c, whereas lim f(rn) = lim 0 = 0, which are not the
same.

4. This follows from the following claim: If (zn) is a bounded divergent sequence, then (zn)
contains two convergent subsequences with different limits.

Proof. By Bolzano-Weierstrass theorem, there exists a convergent subsequence (xn) of
(zn) with limit L. Now by divergence of (zn) itself, just fix any ϵ > 0, we may construct
a subsequence wn inductively so that |wn − L| ≥ ϵ for any n ∈ N. Note that (wn) is
a bounded sequence, so we may apply Bolzano-Weierstrass theorem again to obtain a
convergent subsequence (yn). Clearly lim yn ̸= L since |yn − L| ≥ ϵ for any n.

Now given bounded function f : R → R so that limx→c f(x) does not exist. We claim
that there exists some (zn) converging to c so that (f(zn)) is a divergent sequence.

Proof.Suppose not, i.e. for any sequence zn converging to c, f(zn) also converges. Then
for any sequences (zn) and (z′n) both converging to c, note that if lim f(zn) ̸= lim f(z′n),
then we may define z′′n to be zn for odd n and z′n for even n, so that lim z′′n = c still
but lim f(z′′n) does not exist, which contradicts the assumption. So lim f(zn) is unique,
independent on the sequence (zn) that converges to c. By sequential criterion, it follows
that limx→c f(x) also exists, which is a contradiction.



Now pick one such (zn) so that lim zn = c but (f(zn)) is divergent. Since f is bounded,
the sequence is also bounded. Therefore, by the proposition above, we know that there
are two convergent subsequences (f(xn)) and (f(yn)) with different limits, clearly (xn)
and (yn) are subsequences of (zn) so they both converge to c. This concludes the proof.


