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* Tutorial problems will be posted every Wednesday, provided there is a tutorial class on
the Thursday same week. You are advised to try out the problems before attending tutorial
classes, where the questions will be discussed.

* Solutions to tutorial problems will be posted after tutorial classes.

* If you have any questions, please contact Eddie Lam via echlam @math.cuhk.edu.hk or
in person during office hours.

1. (a) Forany e > 0, take 6 = min{1, 2¢} > 0, then for any x satisfying 0 < |z — 1| < 4,

in particular 0 < = < 2,and so |x + 1| > 1, or | +1\ < 1. We have
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(b) Note that we may express (/7 — 2)(V/2~ + 23/Z +4) = = — 8. And also /2~ +
29r +4=(Yr+1)>+ 3 > 3forany x € R. For any ¢ > 0, take § = 3¢, then for
any z satisfying 0 < |z — 8| < J, we have
|z — 8]

VT + 23T + 4

(c) Forany € > 0, take 6 = min{1,¢/7} > 0, then for any « satisfying 0 < |z — 1| < ¢,
in particular 0 < z < 2, and so |z% + z — 1| < |z|? + || + 1 < 7. Now we have

97— 2] = <3=

2° =224+ 1| =|v—1| - [2* +2 -1 <7z -1 <70 < e

(d) For any € > 0, take § = min{0.1, ;x3-¢}, then for any x satisfying 0 < |z — 2| < 4,

in particular we have 1.9 < z < 2.1. Therefore |$ —dr — 8| < |z|* +4|z| +8 <
2.12 4+ 4.1 + 8 =20.81, and m A 5 < 1.92%73 = 0— Now we have
3 —2 |23 — 627 + 16| _ |z — 4z — §| 20.81
—6 —2|<—0<e
22— 3 ‘ 22 — 3] g P A< ga0se

You can pick prettier numbers if you like, but it doesn’t really matter.

(e) For any € > 0, take § = min{1,¢/2} > 0, then for z satisfying 0 < |z| < ¢, we
have |22 + 1| < 2, and so

|z cos (2 +1)| = |z| - |cos x| - [2° + 1| < 2|z] < 20 < e.



(f) To prove that lim, ., f(z) # L, we will negate the ¢ — § definition. It suffices to
demonstrate an € > 0 so that for any 6 > 0, we can find some = within the range
0 < |r —a| < dsothat|f(z) — L| > €. In our case, let’s pick € = 1, then for any
0 > 0,if § > 2, we can simply take x = 0, we have

(g) We will use the sequential criterion for limits of function. It suffices to demonstrate
two convergent sequences (z,,) and (y,) so that limz,, = limy, = 0, with the
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property that lim(z,, + £2;) # lim(y, + £=). Simply take z,, = + and y,, = —1

|ITL| |yn‘ n’

then lim x,, = limy,, = 0. But z,, + £~ = % + 1, while y,, + &= = % — 1. Clearly

.zl [yn|
they converge to 1 and —1 respectively, which are not the same.

2. (a) Suppose that lim,_,. f(x)? = 0, then for any € > 0, there exists some § > 0 so that
for 0 < |z — ¢| < 4, we have | f(z)?| < €. Taking square root yields | f(x)| < e. So
we are done.

(b) Define f(x) = V'L for z > ¢ and flz) = —+/L for x < ¢. Then lim, . f(z) =L
is satisfied since f(z)? = L is a constant function. However lim, .. f(x) does not
exists since the limit from both sides are different.

3. (a) Forany e > 0, we may take 0 = ¢, so that for z in the range of 0 < |z| < J, we have
|f(z)] < [z| <d=e.

(b) For ¢ # 0, by density of the rational and irrational numbers, we may find a rational
sequence (¢,) and an irrational sequence (r,,) so that they both converge to ¢, but
then lim f(g,) = limg, = ¢, whereas lim f(r,) = lim0 = 0, which are not the
same.

4. This follows from the following claim: If (z,,) is a bounded divergent sequence, then (z,,)
contains two convergent subsequences with different limits.

Proof. By Bolzano-Weierstrass theorem, there exists a convergent subsequence (z,) of
(z,) with limit L. Now by divergence of (z,) itself, just fix any ¢ > 0, we may construct
a subsequence w,, inductively so that |w, — L| > € for any n € N. Note that (w,) is
a bounded sequence, so we may apply Bolzano-Weierstrass theorem again to obtain a
convergent subsequence (y, ). Clearly lim y,, # L since |y, — L| > € for any n.

Now given bounded function f : R — R so that lim,_,. f(x) does not exist. We claim
that there exists some (z,) converging to ¢ so that (f(z,)) is a divergent sequence.

Proof.Suppose not, i.e. for any sequence z, converging to ¢, f(z,) also converges. Then
for any sequences (z,) and (z],) both converging to ¢, note that if lim f(z,) # lim f(z},),
then we may define 2!/ to be z, for odd n and 2/, for even n, so that lim 2! = c still
but lim f(z/) does not exist, which contradicts the assumption. So lim f(z,) is unique,
independent on the sequence (z,) that converges to c¢. By sequential criterion, it follows
that lim,_,. f(z) also exists, which is a contradiction.



Now pick one such (z,) so that lim z,, = ¢ but (f(z,)) is divergent. Since f is bounded,
the sequence is also bounded. Therefore, by the proposition above, we know that there
are two convergent subsequences (f(x,)) and (f(y,)) with different limits, clearly (x,,)
and (y, ) are subsequences of (z,) so they both converge to c. This concludes the proof.



