THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2058 Honours Mathematical Analysis I 2022-23 Tutorial 7 27th October 2022

- Tutorial problems will be posted every Wednesday, provided there is a tutorial class on the Thursday same week. You are advised to try out the problems before attending tutorial classes, where the questions will be discussed.
- Solutions to tutorial problems will be posted after tutorial classes.
- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.
- 1. (a) For any $\epsilon > 0$, take $\delta = \min\{1, 2\epsilon\} > 0$, then for any x satisfying $0 < |x 1| < \delta$, in particular 0 < x < 2, and so $|x + 1| \ge 1$, or $\frac{1}{|x+1|} \le 1$. We have

$$\left|\frac{x}{x+1} - \frac{1}{2}\right| = \frac{|x-1|}{2|x+1|} \le \frac{|x-1|}{2} < \frac{\delta}{2} \le \epsilon$$

(b) Note that we may express $(\sqrt[3]{x} - 2)(\sqrt[3]{x}^2 + 2\sqrt[3]{x} + 4) = x - 8$. And also $\sqrt[3]{x}^2 + 2\sqrt[3]{x} + 4 = (\sqrt[3]{x} + 1)^2 + 3 \ge 3$ for any $x \in \mathbb{R}$. For any $\epsilon > 0$, take $\delta = 3\epsilon$, then for any x satisfying $0 < |x - 8| < \delta$, we have

$$|\sqrt[3]{x} - 2| = \frac{|x - 8|}{\sqrt[3]{x^2} + 2\sqrt[3]{x} + 4} < \frac{\delta}{3} = \epsilon.$$

(c) For any $\epsilon > 0$, take $\delta = \min\{1, \epsilon/7\} > 0$, then for any x satisfying $0 < |x - 1| < \delta$, in particular 0 < x < 2, and so $|x^2 + x - 1| \le |x|^2 + |x| + 1 \le 7$. Now we have

$$|x^{3} - 2x + 1| = |x - 1| \cdot |x^{2} + x - 1| \le 7|x - 1| < 7\delta \le \epsilon.$$

(d) For any $\epsilon > 0$, take $\delta = \min\{0.1, \frac{0.61}{20.81}\epsilon\}$, then for any x satisfying $0 < |x - 2| < \delta$, in particular we have 1.9 < x < 2.1. Therefore $|x^2 - 4x - 8| \le |x|^2 + 4|x| + 8 \le 2.1^2 + 4.1 + 8 = 20.81$, and $\frac{1}{|x^2 - 3|} \le \frac{1}{1.9^2 - 3} = \frac{1}{0.61}$. Now we have

$$\left|\frac{x^3-2}{x^2-3}-6\right| = \frac{|x^3-6x^2+16|}{|x^2-3|} = \frac{|x^2-4x-8|}{|x^2-3|}|x-2| < \frac{20.81}{0.61}\delta \le \epsilon.$$

You can pick prettier numbers if you like, but it doesn't really matter.

(e) For any $\epsilon > 0$, take $\delta = \min\{1, \epsilon/2\} > 0$, then for x satisfying $0 < |x| < \delta$, we have $|x^2 + 1| \le 2$, and so

$$|x\cos x(x^{2}+1)| = |x| \cdot |\cos x| \cdot |x^{2}+1| \le 2|x| < 2\delta \le \epsilon.$$

(f) To prove that $\lim_{x\to a} f(x) \neq L$, we will negate the $\epsilon - \delta$ definition. It suffices to demonstrate an $\epsilon > 0$ so that for any $\delta > 0$, we can find some x within the range $0 < |x - a| < \delta$ so that $|f(x) - L| \ge \epsilon$. In our case, let's pick $\epsilon = 1$, then for any $\delta > 0$, if $\delta \ge 2$, we can simply take x = 0, we have

$$\left|\frac{0-1}{0+1} - 1\right| = 2 > \epsilon = 1.$$

If $2 > \delta > 0$, then we may pick any $1 - \delta < x < 1$, so

$$\left|\frac{x-1}{x+1} - 1\right| = \frac{2}{|x+1|} \ge \frac{2}{2} = 1 = \epsilon.$$

- (g) We will use the sequential criterion for limits of function. It suffices to demonstrate two convergent sequences (x_n) and (y_n) so that $\lim x_n = \lim y_n = 0$, with the property that $\lim(x_n + \frac{x_n}{|x_n|}) \neq \lim(y_n + \frac{y_n}{|y_n|})$. Simply take $x_n = \frac{1}{n}$ and $y_n = -\frac{1}{n}$, then $\lim x_n = \lim y_n = 0$. But $x_n + \frac{x_n}{|x_n|} = \frac{1}{n} + 1$, while $y_n + \frac{y_n}{|y_n|} = \frac{1}{n} 1$. Clearly they converge to 1 and -1 respectively, which are not the same.
- (a) Suppose that lim_{x→c} f(x)² = 0, then for any ε > 0, there exists some δ > 0 so that for 0 < |x c| < δ, we have |f(x)²| < ε². Taking square root yields |f(x)| < ε. So we are done.
 - (b) Define $f(x) = \sqrt{L}$ for $x \ge c$ and $f(x) = -\sqrt{L}$ for x < c. Then $\lim_{x\to c} f(x) = L$ is satisfied since $f(x)^2 = L$ is a constant function. However $\lim_{x\to c} f(x)$ does not exists since the limit from both sides are different.
- 3. (a) For any $\epsilon > 0$, we may take $\delta = \epsilon$, so that for x in the range of $0 < |x| < \delta$, we have $|f(x)| \le |x| < \delta = \epsilon$.
 - (b) For c ≠ 0, by density of the rational and irrational numbers, we may find a rational sequence (q_n) and an irrational sequence (r_n) so that they both converge to c, but then lim f(q_n) = lim q_n = c, whereas lim f(r_n) = lim 0 = 0, which are not the same.
- 4. This follows from the following claim: If (z_n) is a bounded divergent sequence, then (z_n) contains two convergent subsequences with different limits.

Proof. By Bolzano-Weierstrass theorem, there exists a convergent subsequence (x_n) of (z_n) with limit L. Now by divergence of (z_n) itself, just fix any $\epsilon > 0$, we may construct a subsequence w_n inductively so that $|w_n - L| \ge \epsilon$ for any $n \in \mathbb{N}$. Note that (w_n) is a bounded sequence, so we may apply Bolzano-Weierstrass theorem again to obtain a convergent subsequence (y_n) . Clearly $\lim y_n \ne L$ since $|y_n - L| \ge \epsilon$ for any n.

Now given bounded function $f : \mathbb{R} \to \mathbb{R}$ so that $\lim_{x\to c} f(x)$ does not exist. We claim that there exists some (z_n) converging to c so that $(f(z_n))$ is a divergent sequence.

Proof. Suppose not, i.e. for any sequence z_n converging to c, $f(z_n)$ also converges. Then for any sequences (z_n) and (z'_n) both converging to c, note that if $\lim f(z_n) \neq \lim f(z'_n)$, then we may define z''_n to be z_n for odd n and z'_n for even n, so that $\lim z''_n = c$ still but $\lim f(z''_n)$ does not exist, which contradicts the assumption. So $\lim f(z_n)$ is unique, independent on the sequence (z_n) that converges to c. By sequential criterion, it follows that $\lim_{x\to c} f(x)$ also exists, which is a contradiction. Now pick one such (z_n) so that $\lim z_n = c$ but $(f(z_n))$ is divergent. Since f is bounded, the sequence is also bounded. Therefore, by the proposition above, we know that there are two convergent subsequences $(f(x_n))$ and $(f(y_n))$ with different limits, clearly (x_n) and (y_n) are subsequences of (z_n) so they both converge to c. This concludes the proof.