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• If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or
in person during office hours.

1. (a) Let xn = n/100, it suffices to show that it is unbounded. For any M > 0, by
Archimedean property there is some n > 100M , therefore xn > M . Unbounded
sequence is divergent by proposition 2.7.

(b) We will show that limxn = 1. To prove this, pick any ϵ > 0, if ϵ > 1, then for any
n ∈ N, ∣∣∣∣n2 − 1
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(c) We will show that limxn = 0. First note that for n ≥ 2,
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Consider now the sequence {yn} where y1 = 1 and yn = 1
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for n ≥ 2. Then by
squeeze theorem (proposition 2.10), it suffices to show that lim yn = 0.
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(d) Regardless of what the value of a is, since −1 ≤ cos(na) ≤ 1, the sequence xn =
cos(na)/n satisfies the following bound,
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n
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By Monotone convergence theorem, lim 1
n
= inf{ 1

n
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0. So by squeeze theorem, limxn = 0.



(e) We will show that limxn = 0. First note that

0 ≤ n2

n3 + 1
≤ n2

n3
=

1

n
.

Once again the result follows from squeeze theorem.

(f) We will show that xn =
√
n is unbounded above, hence it is divergent. For any

M > 0, by Archimedean property there is some N ∈ N so that N > M , so
xN2 =

√
N2 = N > M . So xn is unbounded.

2. Notice that lim |xn| = 0 is equivalent to saying that for any ϵ > 0, there exists some
N ∈ N so that for n ≥ N , ||xn|− 0| = |xn| < ϵ. The condition is identical to limxn = 0.

3. Suppose that c = 0, then cxn = 0 is just the constant sequence, which converges to
0 = cL. We include the ϵ-argument here for completeness: for any ϵ > 0, take N = 1,
then for n ≥ N = 1, |xn − 0| = 0 < ϵ. Now suppose c ̸= 0, then fix any ϵ > 0, by
assumption, with respect to ϵ′ = ϵ/|c| > 0, we may find N ∈ N so that for n ≥ N , we get
|xn − L| < ϵ′. Then for the same N , we have n ≥ N gives |cxn − cL| = |c| · |xn − L| <
|c|ϵ′ = ϵ and we are done.

4. Suppose limxn = L, this implies that given any ϵ > 0, we can find N ∈ N, so that for
n ≥ N , |xn − L| < ϵ. In fact, we may pick N = 2k to be even because if N is odd, then
replacing N by N + 1 will give an even number. Then for the same k ∈ N, if m ≥ k, we
have |ym − L| = |x2m − L| < ϵ. The last inequality holds because 2m > 2k = N .

5. (a) We can just compute

xn+1 − xn =
x2
n − 4xn + 4

4
=

(xn − 2)2

4
≥ 0,

therefore xn is an increasing sequence.

(b) The base case x1 = 1 ≤ 2 is satisfies. Suppose now we know that xk ≤ 2, then
xk+1 =

x2
k+4

4
≤ 22+4

4
= 2. So inductively, we have xn ≤ 2 for any n.

(c) From the above, we know limxn = L exists according to monotone convergence
theorem. Now the limit of the sequence {xn+1} is the same as the {xn}, which can
be readily seen by definition. Therefore, along with the fact that limit is compatible
with arithmetic, the recurrence relation implies that limxn+1 = ((limxn)

2 + 4)/4.
So L satisfies the relation L = (L2 + 4)/4. Solving this yields L = 2.

6. (a) For this question, we will be using the Bernoulli’s inequality. For x > 0, n ∈ N, we
have (1 + x)n ≥ 1 + nx, which can be shown by simply doing binomial expansion
and truncating the higher order terms. Suppose that 0 < a < 1, then a−1 > 1 and
therefore we can rewrite xn = an = 1

(1+c)n
where c > 0. Then
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.

By squeeze theorem, it suffices to show that lim 1/(cn) = 0. This is clear because
lim 1/n = 0.



(b) xn = 1n = 1 is a constant sequence, hence it converges to 1.

(c) For a > 1, we may write xn = an = (1+b)n ≥ 1+nb, then xn can be easily seen to
be unbounded since 1 + nb is. For any M > 0, by Archimedean principle, we may
find k ∈ N large enough so that kb > 1 and N ∈ N so that N > M , then taking
n = Nk, we get xNk ≥ 1 + (Nk)b > M as desired.

7. (a) We will use the monotone convergence theorem to show that limit of xn exists. First,
we note that xn is monotonic increasing:
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Then, we also have xn ≤ 1 simply by considering
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Therefore limit of xn exists.

(b) The argument is wrong because xn is not a sum of n sequences, the number of terms
in the sum depends on n.
Remark: The limit of xn turns out to be ln 2, this can be shown by noting that xn is
actually the same as Riemann sum of the function f(x) = 1

x
from 1 to 2. Therefore,

the limit approaches
∫ 2

1
1
x
dx = ln 2.

8. Suppose that xn is an integer sequence converging to some limit L, then pick ϵ = 1
2
, we

have |xn − L| < 1
2

for n ≥ N for some N ∈ N, this in particular means that xn assumes
the same value for n ≥ N . Otherwise, if xm ̸= xn for some pair of n,m ≥ N , then
|xm − xn| ≥ 1. But by triangle inequality |xn − xm| ≤ |xn − L|+ |xm − L| < 1. This is
a contradiction.

9. Suppose limxn = 0, then for any ϵ > 0, we can find some N ∈ N so that if n ≥ N , we
have xn ≤ ϵ2 for n ≥ N , this in particular implies

√
xn ≤ ϵ for n ≥ N . So we are done.

10. For each n ∈ N, by density of S, there exists some element xn ∈ S ∩ (r − 1
n
, r + 1

n
). We

obtain a sequence {xn} inside S. We will now prove that limxn = r. Pick any ϵ > 0,
then by Archimedean property we have 1

N
< ϵ for some N ∈ N. Then for any n ≥ N ,

we have |xn − r| < 1
n
≤ 1

N
ϵ by construction of xn. Hence the result.


