THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2058 Honours Mathematical Analysis I 2022-23 Homework 4 11th October 2022

- Homework will be posted on both the course webpage and blackboard every Tuesday. Students are required to upload their solutions on blackboard by 23:59 p.m. next <u>Thursday</u>. Additional announcement will be made if there are no homework that week.
- Please send an email to echlam@math.cuhk.edu.hk if you have any questions.
- (P.84 Q5) Let (x_n) and (y_n) be two sequences, define (z_n) to be the "shuffled" sequence, by z₁ := x₁, z₂ = y₁, ..., z_{2n-1} = x_n and z_{2n} = y_n. Prove that lim z_n exists if and only if both lim x_n and lim y_n exists and are equal.
- 2. (P.84 Q12) Show that if (x_n) is unbounded, then there exists a subsequence (x_{n_k}) so that $\lim 1/x_{n_k} = 0$.
- 3. (P.84 Q14) Let (x_n) be a bounded sequence, let $s = \sup\{x_n : n \in \mathbb{N}\}$, suppose that $s \notin \{x_n : n \in \mathbb{N}\}$, show that there is a subsequence (x_{n_k}) so that $\lim x_{n_k} = s$.