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1. Let xn = (1 − (−1)n + 1/n), consider the subsequence yn = x2n = 1/n and zn =
x2n+1 = 2 + 1/n. We know that lim yn = 0 and lim zn = 2. If xn were convergent,
then by proposition 3.3, any subsequence would have the same limit. Therefore, xn is
divergent.
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Notice that the first n − 1 terms are all smaller than or equal to 1, meanwhile the
sum of the last two terms 1

nn−2 + 1
nn is also smaller than 1, therefore proving the

inequality for n > 2.
Now xn = n

1
n > 1 for any n, and {xn} is monotonic decreasing for n > 2, so

by monotone convergence theorem (and disregarding the first two terms in the se-
quence), x = limxn exists.
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, so by squeeze theorem

we obtain the limit. Now we have
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1
nxn = x.

So x is either 1 or 0. We conclude that x = 1 by noting that xn > 1 for all n, so the
infimum cannot be 0.

3. We prove by contradiction. Suppose that limxn ̸= 0, then there is some ϵ > 0 so that for
all k ∈ N, there is some nk > k so that |xnk

| ≥ ϵ. Note that nk might not be increasing
with respect to k, but we may pick out an increasing sequence by inductively defining



m1 = n1, and mk = nmk−1
, then by construction mk > mk−1. So (xmk

) defines a
subsequence.

This subsequence does not admit any further subsequence converging to 0 almost imme-
diately following from the construction, since |xmk

| ≥ ϵ for all k. For the ϵ > 0 taken
above, |xmk

| < ϵ will never hold, so any subsequence would not converge to 0. This is a
contradiction.


