MATH 2058: Honours Mathematical Analysis I: Home Test 2 5:00 pm, 02 Dec 2022

Important Notice:

The answer paper must be submitted before 03 Dec 2022 at 5:00 pm.

♠ The answer paper MUST BE sent to the CU Blackboard. After submitting the answer sheet, you ARE NOT Allowed to resubmit it again.

 \bigstar The answer paper must include your name and student ID.

Answer ALL Questions

1. (25 points)

Let C[a, b] be the set of all real-valued continuous functions defined on a closed and bounded interval [a, b]. Let $\mathcal{F} \subseteq C[a, b]$ be a non-empty subset of C[a, b] that satisfies the following condition: for all elements $u, v \in \mathcal{F}$, we have $u \wedge v \in \mathcal{F}$, where $u \wedge v(x) :=$ $\min(u(x), v(x))$ for all $x \in [a, b]$.

- (i) Let $g \in C[a, b]$. Suppose that $g(x) = \inf\{h(x) : h \in \mathcal{F}; g \leq h\}$ for all $x \in [a, b]$. Show that for every $\varepsilon > 0$, there is an element $f \in \mathcal{F}$ such that $|f(x) - g(x)| < \varepsilon$ for all $x \in [a, b]$.
- (ii) Does the Part (i) hold if the function g is assumed to be bounded only?
- (iii) Does the Part (i) hold if the domain [a, b] is replaced by an unbounded closed interval $[a, \infty)$?

2. (25 points) For $x = (x_1, ..., x_m)$ and $y = (y_1, ..., y_m)$ in \mathbb{R}^m , let $||x|| := \sqrt{x_1^2 + \cdots + x_m^2}$ and recall that the inner product of x and y is defined by $\langle x, y \rangle := \sum_{k=1}^m x_k y_k$. Let A be a matrix of order $m \times m$ and let $B := \{x \in \mathbb{R}^m : ||x|| \le 1\}$. Define a function $q: B \longrightarrow \mathbb{R}$ by

$$q(x) := \langle Ax, x \rangle$$

for $x \in B$.

- (i) Show that the set $\{||Ax|| : x \in \mathbb{R}^m; ||x|| = 1\}$ is bounded.
- (ii) Show that the function q is a Lipschitz function on B, that is, there is C > 0 such that $|q(x) q(y)| \le C ||x y||$ for all $x, y \in B$.
- (iii) Show that

$$\sup\{\frac{|q(x) - q(y)|}{\|x - y\|} : x, y \in B; x \neq y\} = 2\sup\{|\langle Ax, x \rangle| : x \in \mathbb{R}^m; \|x\| = 1\}.$$

*** END OF PAPER ***