General information

- Tutors: Zhou Feng (zfeng@math.cuhk.edu.hk) & Yuhao Xie (yhxie@math.cuhk.edu.hk)
- Time and venue: Mon. 11:30–12:15, LHC G04;
- Course webpage: https://www.math.cuhk.edu.hk/course/2223/math3280a
- Textbook: Sheldon Ross, A first course in probability. 8th edition. Pearson Education International.
- Structure of tutorials:
 - 1. Quickly review the previous knowledge.
 - 2. Show some examples.
 - 3. Questions & Answers.
- All the suggestions and feedback are welcome.

Basic counting models

Why should we count? First, it gives us the total number of the outcomes of some experiment, i.e., the size of (discrete) sample space, which is the basic of further study. Second, during the process of counting, we can have a better understanding of the considered experiment. Third, countings arise frequently in our daily lives. And etc.

Setup: In last year, we have 47 students in session A and 50 students in session B.

Example 1. How many possible selections of two students, one from session A and the other from session B, do we have?

Solution. 47×50 . Because there are 47×50 vectors (a, b) with $a \in A$ and $b \in B$ and each selection can be represented by such a vector while any two different vectors represent different selections.

Model 1 (Basic counting principle). Suppose the experiment A has \mathbf{m} possible outcomes and for each outcome of A there are \mathbf{n} outcomes of experiment B. Then together there are \mathbf{mn} outcomes.

Note that we can visualized this process in our mind and this principle underlies many counting arguments.

Example 1'. Let $\alpha \in A$ and $\beta \in B$ be two students. What if α, β should be selected together?

Solution. $47 \times 50 - 49 - 46 = 46 \times 49 + 1$. LHS is followed by removing the unsatisfied pairs in which α and β are not matched together. RHS is obtained by first arranging all the other students except α and β , then plus the one pair (α, β) .

In general, more than one reasoning or counting methods can work. We can pick the ones that we are comfortable with or collect them all. Like above, two of the major ways of thinking: (1) follow the description of the experiments, count in the respective cases, and finally sum them up. (2) find a larger set of possible outcomes and then 'remove' the over-counting ones.

Example 2. In a classroom with 47 seats, how many seat plans does session A have?

Solution. $47 \times 46 \times \cdots \times 1 =: 47!$. Determine the possible selections one by one from the first seat to the last seat.

Model 2 (Permutation). $\{ \# \text{ permutations of } n \text{ elements} \} = n(n-1) \cdots 1 =: n! \text{ with convention } 0! = 1.$

Example 2'. What if we only want to know who are sitting in the 1st, 2nd and 3rd seats?

Solution. 'Forward' reasoning: $47 \times 46 \times 45$. The 47 possible students in the 1st seat, multiplies the 46 students in 2nd seat (after fixing the student in 1st seat) and similar for the 3rd seat.

'Exclusion' reasoning; 47!/44!. We have 47! permutations of 47 students. However, no matter how we permute the 44 students in the last 44 seats, the first three students remain the same to us. Hence dividing the over-counting 44! permutations yields the answer.

Model 2'. {# ways to choose k **ordered** elements from n elements} = $n(n-1)\cdots(n-(k-1)) = n!/(n-k)!$.

Example 3. What if we just want to know who are sitting in the first three seats and do **not** care the order?

Solution. (47!/44!)/3!. Further divide the over-counted 3! permutations of 3 students.

Model 3 (Combination). $\{\# \text{ ways to choose } k \text{ elements from } n \text{ elements}\} = \frac{n!}{k!(n-k)!} =: \binom{n}{k}$.

Example 3'. Suppose the three TAs, denoted by F, X, and W, are supposed to mark the corresponding number of HWs (F: 12, X: 10, and W: 25). How many HW marking plans do the TAs have?

Solution. $\binom{47}{12}\binom{35}{10}\binom{25}{25} = \frac{47!}{12!10!25!}$. Similarly, we can also reason in two ways.

Model 3'. {# ways to choose n_1, \ldots, n_k elements with $n_1 + \cdots + n_k = n$ into k **distinct** groups from n elements} = $\frac{n!}{n_1! \cdots n_k!}$.

Until now, we have reviewed the basic counting principle, permutations and combinations which are the core concepts in basic counting.

_____ It's good to stop here.

Example 4. In a 'very long' classroom with 100 seats for the midterm exam, how many seat plans do we have for session A (47 students) such that any two students do not sit next to each other?

There are three choices:

(a)
$$\binom{53}{47}$$
 (b) $\binom{54}{47}$ (c) $54!/7!$

Consider the 47 students and 53 empty seats. Use \bigcirc to denote empty seat and \wedge to represent the positions that students can take.

$$\land \bigcirc \land \bigcirc \land \cdots \land \bigcirc \land \bigcirc \land$$

where there are $53 \bigcirc \text{ and } 53 + 1 = 54 \land$.

Solution. Choosing 47 positions from $54 \land \text{will}$ satisfy the condition. Notice that the order matters since each student is unique. Hence the correct choice is (c).

From this example, we know that several factors can affect the counting results. Two common factors are: 1. whether the order matters? 2. whether it allows repetitions?

What if the classroom is shaped in a circle \bigcirc ? The counting result will be changed.

Example 5. Supposed the marked HWs are divided into 3 groups (F: 12; X: 10; W: 25).

Take 5 HWs out of 47 HWs. Write down f the number of HWs in group F among these 5 homeworks; x the number of HWs in group X among these 5 homeworks; w the number of HWs in group W among these 5 homeworks (note f + x + w = 5). How many possible different vectors (f, x, w) are there?

Solution.

It is equivalent to divide 5 balls in to 3 groups using 2 = 3 - 1 red carets (e.g., the above diagram represents (1, 1, 3)). Then the answer is the number of ways to choose 2 positions for red carets from the total 7 = 5 + 2 positions. Thus $\binom{5+2}{2}$ is the final answer.

Model 5. Restated as number of non-negative integer solutions like our textbook:

$$\{ \# \ vectors \ (n_1, \ldots, n_k) \ with \ integers \ n_i \geq 0 \ and \ n_1 + \cdots + n_k = n \} = \binom{n+k-1}{k-1}.$$

Example 5'. Notice that Example 5 is more interesting than Model 5 since we have the upper-bound conditions $f \le 12, x \le 10, w \le 25$. So what if we take 11 HWs out of all the HWs? How about 23 HWs? Is there a general formula for the number of vectors that we are interested in?

Solution. For the case of taking 11 HWs, the answer is $\binom{11+2}{2} - 1$ since we have to remove the only one illegal vector (0, 11, 0). The general case is more complicated.

After some computer experiments, we can believe that the formula may exist. To obtain the formula, we can reason based on the ideas that: (a) remove the unsatisfied (illegal) outcomes. (b) compensate the outcomes that we have over-removed. For convenience, we attach one possible formula below.

MATH3280A Tutorial 1

Table of Contents

MATH3280A Tutorial 1

A continuation of Example 5
Specific setup
Plot the outcomes
Appendix

A continuation of Example 5

Let $k \geq 2$ an integer and $t = (t_1, \ldots, t_k)$ be a vector of non-negative integers.

For each $0 \leq s \leq (t_1 + \dots + t_k)$, how many vectors (n_1, \dots, n_k) are there such that

$$\begin{cases} n_1 + \dots + n_k = s \\ 0 \le n_i \le t_i \quad , \forall \ 1 \le i \le k \end{cases} ?$$

We denote the total number of such vectors by $N_t(s)$ as a function of the target sum s depending on the treshold vector t.

A theoretical formula: For $0 \le i \le k$, define the multisets (i.e., allowing repeating elements)

$$T_i:=\Big\{t\cdot b:b=(b_1,\ldots,b_k)\in\{0,1\}^k ext{ and }b_1+\cdots+b_k=i\Big\},$$

where · denotes the standard inner product, then

$$N_t(s) = \sum_{i=0}^k (-1)^i \sum_{x \in T_i} inom{s-(x+i)+k-1}{k-1} \chi_{[x+i,+\infty)}(s) \quad .$$

Specific setup

Count by enumeration: $C_t(s) =$ 133.

Output by formula: $N_t(s)=$ 133.

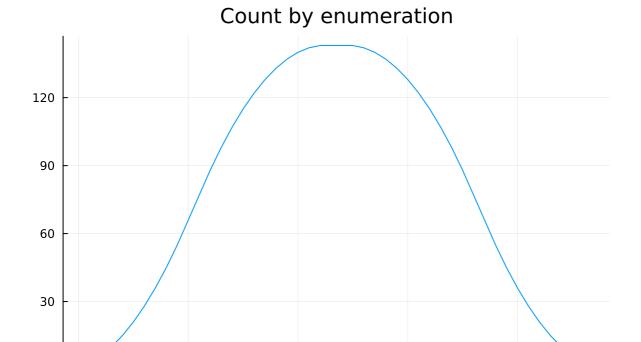
All outcomes:

countOutcomes =

formulaOutcomes =

Plot the outcomes

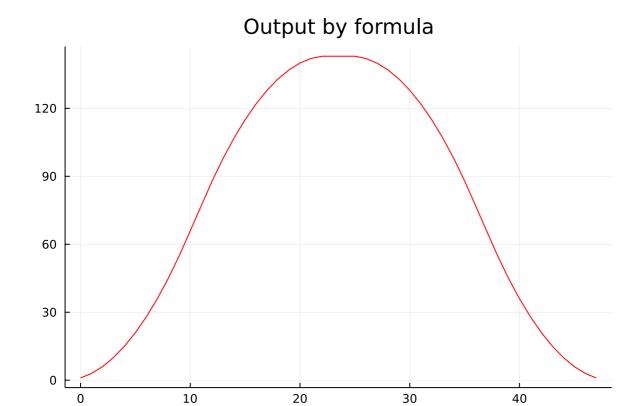
10



20

30

40



Appendix

```
count_outcome (generic function with 1 method)
count_outcomes (generic function with 1 method)
formula_outcome (generic function with 1 method)
formula_outcomes (generic function with 1 method)
```