Topic#16 Adjoint of a linear operator

Goal: Recall for $A \in M_{n \times n}(\mathbb{F})$,

$$A^* \stackrel{def}{=} \bar{A}^t$$
 (conjugate transpose or adjoint of A),

i.e.,

$$\langle Ax, y \rangle = \langle x, A^*y \rangle, \ \forall x, y \in \mathbb{F}^n$$

(Exercise: check this identity!)

How to extend to T^* for $T \in \mathcal{L}(V)$? Does it exist $T^* \in \mathcal{L}(V)$ s.t.

$$\langle Tx, y \rangle = \langle x, T^*y \rangle, \ \forall x, y \in \mathbb{F}^n$$
?

<u>Remark:</u> If V is a **finite-dim** i.p.s. and $T \in \mathcal{L}(V)$, a natural idea is to construct T^* by $[T^*]_{\beta} \stackrel{def}{=} ([T]_{\beta})^*$.

<u>Def.:</u> V: i.p.s. over $\mathbb F$ with $\langle \cdot, \cdot \rangle$ (finite-dim or ∞ -dim). $T \in \mathcal L(V)$. Then, the **adjoint** of T, denoted by T^* , is defined to be a <u>transformation</u> $T^*: V \to V$ such that

$$\langle Tx, y \rangle = \langle x, T^*y \rangle, \quad \forall x, y \in V.$$

Example. For $A \in M_{n \times n}(\mathbb{F}), \ (L_A)^* = L_{A^*}.$

$$\langle x, (L_A)^* y \rangle = \langle L_A x, y \rangle$$
 (by def of $(L_A)^*$))
 $= \langle Ax, y \rangle$ (by def of L_A))
 $= \langle x, A^* y \rangle$ (direct computation)
 $= \langle x, L_{A^*} y \rangle$ (by def of L_{A^*})

 $\therefore x, y$ are arbitrary

$$(L_A)^* = L_{A^*}$$

Question: Existence? Uniqueness?

Thm. If T^* exists, then T^* is **unique** and $T^* \in \mathcal{L}(V)$.

Proof. 1°. (Uniqueness) Assume:

$$\langle T(x), y \rangle = \langle x, T^*(y) \rangle = \langle x, (T^*)'(y) \rangle, \ \forall x, y \in V.$$

then $\langle x, T^*(y) - (T^*)'(y) \rangle = 0$, $\forall x, y \in V$. Fix $y \in V$, as $x \in V$ is arbitrary,

$$T^*(y) - (T^*)'(y) = 0$$
, i.e. $T^*(y) = (T^*)'(y)$.

As y is also arbitrary, $T^* = (T^*)'$.

$$T^*(ax + by) = aT^*(x) + bT^*(y), \ \forall x, y \in V, \ \forall a, b \in \mathbb{F}.$$

In fact,

$$\langle z, T^*(ax + by) \rangle = \langle T(z), ax + by \rangle = \bar{a} \langle T(z), x \rangle + \bar{b} \langle T(z), y \rangle$$

$$= \bar{a}\langle z, T^*(x)\rangle + \bar{b}\langle z, T^*(y)\rangle = \langle z, aT^*(x) + bT^*(y)\rangle, \ \forall z \in V.$$

Therefore, $T^*(ax + by) = aT^*(x) + bT^*(y) \ \forall a, b \in \mathbb{F}, \ \forall x, y \in V$

4/11

Thm (existence):

If V is finite-dimensional, then T^* exists.

$$(\therefore \exists! \, T^* \in \mathcal{L}(V) \, \text{ s.t } \langle T(x), y \rangle = \langle x, T^*(y) \rangle \, \, \forall x, y \in V)$$

Lemma (Riesz representaion thm):

Let V be a finite-dim i.p.s. over \mathbb{F} , and let $f \in \mathcal{L}(V,\mathbb{F})$.

Then, \exists a unique $y \in V$ s.t. $f(x) = \langle x, y \rangle$, $\forall x \in V$

Pf of lemma. (Existence) Let $\beta = \{v_1, \cdots, v_n\}$ be an orthonormal basis for V. Let $y \stackrel{def}{=} \sum_{i=1}^n \overline{f(v_i)}v_i$, and $g(x) \stackrel{def}{=} \langle x, y \rangle, \ \forall x \in V$. To show g = f, it suffices to show $g(v_j) = f(v_j)$, $1 \le j \le n$. Indeed,

$$g(v_j) = \langle v_j, y \rangle = \langle v_j, \sum_{i=1}^n \overline{f(v_i)} v_i \rangle = \sum_{i=1}^n f(v_i) \langle v_j, v_i \rangle$$

= $\sum_{i=1}^n f(v_i) \delta_{ji} = f(v_j)$.

$$g \equiv f$$
 on V. (Uniqueness) Let $y' \in V$ be s.t. $f(x) = \langle x, y \rangle = \langle x, y' \rangle$, $\forall x \in V$. Then $\langle x, y - y' \rangle = 0$, $\forall x \in V$. $\therefore y - y' = 0$, i.e. $y = y'$.

<u>Thm.</u> Let $T \in \mathcal{L}(V)$, where V is a finite-dim i.p.s.. Then T^* exists.

Pf: Take $y \in V$ and fix it. Def $f: V \to \mathbb{F}$ by $f(x) = \langle T(x), y \rangle$, $\forall x \in V$. It is direct to check f is linear (Exercise). Then, by lemma,

$$\exists ! y' \in V \text{ s.t. } f(x) = \langle x, y' \rangle, \, \forall x \in V.$$

Thus, $T^*: V \to V$, $y \mapsto T^*(y) = y' \in V$ is well-defined (by previous arguments), and

$$\langle T(x), y \rangle = f(x) = \langle x, y' \rangle = \langle x, T^*(y) \rangle,$$

i.e.
$$\langle T(x), y \rangle = \langle x, T^*(y) \rangle, \ \forall x, y \in V.$$

Remark: Then T^* is unique & $T^* \in \mathcal{L}(V)$.

Prop. Let $T \in \mathcal{L}(V)$, where V is a finite-dim i.p.s with an orthonormal o.b. β . Then

$$[T^*]_{\beta} = [T]_{\beta}^*.$$

Pf. Let $\beta = \{v_1, \cdots, v_n\}$, and $[T]_{\beta} = A$, $[T^*]_{\beta} = B$. Then,

$$B_{ij} = \langle T^*(v_j), v_i \rangle$$

$$= \langle v_j, T(v_i) \rangle$$

$$= \overline{\langle T(v_i), v_j \rangle}$$

$$= \overline{A_{ji}}$$

i.e. $B = A^*$.

Remarks:

1°. This gives an alternative way to construct T^* explicitly in terms of $([T]_{\beta})^*$.

Properties: Let $T, U \in \mathcal{L}(V)$, where V is an i.p.s. (finite-dim or ∞ -dim). Assume $T^*, U^* \in \mathcal{L}(V)$ exist. Then

(a)
$$(T + U)^* = T^* + U^*$$
.

(b)
$$(cT)^* = \bar{c}T^*, \ \forall c \in \mathbb{F}.$$

(c)
$$(TU)^* = U^*T^*$$
.

- (d) $T^{**} = T$.
- (e) $I^* = I$.

 $I_{n}^{*} = I_{n}$.

Remark: Similar properties are true for $n \times n$ matrices, i.e., let $A, B \in M_{n \times n}(\mathbb{F})$, then $(A+B)^* = A^* + B^*$, $(cA)^* = \bar{c}A^*$, $(AB)^* = B^*A^*$, $A^{**} = A$,

Proof of (b), (c), (e) left for exercises.

Proof of (a).

$$\langle x, (T+U)^*(y) \rangle = \langle (T+U)(x), y \rangle$$

$$= \langle T(x) + U(x), y \rangle$$

$$= \langle T(x), y \rangle + \langle U(x), y \rangle$$

$$= \langle x, T^*(y) \rangle + \langle x, U^*(y) \rangle$$

$$= \langle x, T^*(y) + U^*(y) \rangle$$

$$= \langle x, (T^* + U^*)(y) \rangle.$$

$$\therefore x, y$$
 are arbitrary

$$\therefore (T+U)^* = T^* + U^*.$$

Proof of (d):

$$\langle x, T^{**}(y) \rangle = \langle T^{*}(x), y \rangle = \langle x, T(y) \rangle.$$

$$T^{**} = T$$
.