Topic#15 Orthogonal complement

Def. V: i.p.s. with $\langle \cdot, \cdot \rangle$. $\emptyset \neq S \subset V$.

$$S^{\perp} \stackrel{\textit{def}}{=} \{ x \in V : \langle x, y \rangle = 0, \forall y \in S \}$$

is called the **orthogonal complement** of S.

Note: S^{\perp} is a subspace of V. (prove this!) S need not be a subspace

e.g.

1°.
$$\{0\}^{\perp} = V, \ V^{\perp} = \{0\}.$$

2°. $V=\mathbb{R}^3$, $S=\{e_3\}$, then $S^\perp=\mathsf{span}(\{e_1,e_2\})$ is the xy-plane.

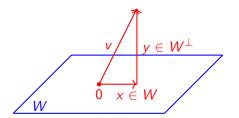
Theorem. V: i.p.s with $\langle \cdot, \cdot \rangle$ (can be infinite-dim).

W: subspace of V, $\dim(W) < \infty$. Then,

$$\forall v \in V, \exists ! x \in W \& y \in W^{\perp} \text{ s.t. } v = x + y.$$

Furthermore, if W has an orthonormal basis $\{w_1, \dots, w_k\}$ then

$$x = \sum_{i=1}^k \langle v, w_i \rangle w_i.$$



Def. x is called the **orthogonal projection** of $v \in V$ on W.

Pf. • Existence: Let $v \in V$. Define

$$x \stackrel{\text{def}}{=} \sum_{i=1}^{k} \langle v, w_i \rangle w_i \in W, \quad y \stackrel{\text{def}}{=} v - x \in V.$$

Claim. $y \in W^{\perp}$.

Indeed, recall $W^{\perp} = \{u \in V : \langle u, w \rangle = 0, \forall w \in W\}$, then it suffices to show $\langle y, w \rangle = 0, \forall w \in W$. Let $w \in W = \text{span}(\{w_1, \cdots, w_k\})$, then $w = \sum_{j=1}^k a_j w_j$, and

$$\begin{split} \langle y, w \rangle &= \langle v - \sum_{i=1}^k \langle v, w_i \rangle w_i, \sum_{j=1}^k a_j w_j \rangle \\ &= \sum_{j=1}^k \bar{a}_j \langle v, w_j \rangle - \sum_{i=1}^k \sum_{j=1}^k \bar{a}_j \langle v, w_i \rangle \langle w_i, w_j \rangle \\ &= \sum_{i=1}^k \bar{a}_j \langle v, w_j \rangle - \sum_{i=1}^k \bar{a}_j \langle v, w_j \rangle = 0. \quad \Box \end{split}$$

• Uniqueness: Let v = x + y = x' + y' for $x, x' \in W$, $y, y' \in W^{\perp}$.

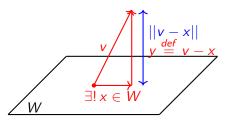
$$\therefore x - x' = y - y' \in W \cap W^{\perp} = \{0\} \text{(why?)}. \ \therefore x = x', y = y'. \quad \Box$$

Hint of 'why': let $y \in W \cap W^{\perp}$, to show y = 0.

See $y \in W$ and $y \perp$ any vector in W.

So we get
$$\langle y, y \rangle = 0 \Rightarrow y = 0_v$$
.

Remark:



Claim. Let
$$v \in V$$
, and $x \stackrel{def}{=} \sum_{i=1}^k \langle v, w_i \rangle w_i \in W$. Then

$$||v-w|| \ge ||v-x||, \ \forall \ w \in W,$$

where "=" holds iff w = x. Namely, for all vectors in W, x is the unique vector that is "closest" to v.

Pf.
$$||v - w||^2 = ||(x + y) - w||^2 = ||(x - w) + y||^2$$
 $y \stackrel{\text{def}}{=} v - x$

$$\stackrel{Pythagorian}{=} \|x - w\|^2 + \|y\|^2 (\because x - w \in W, y \in W^{\perp}) \ge \|y\|^2.$$

"=" holds
$$\Leftrightarrow ||x - w|| = 0 \Leftrightarrow x = w$$
.

Application: Let v = x + y for $x \in W, y \in W^{\perp}$, then

$$||v||^2 = \langle v, v \rangle = \langle x + y, x + y \rangle = ||x||^2 + ||y||^2$$
. $\therefore ||v||^2 \ge ||x||^2$.

Note:
$$x = \sum_{i=1}^k \langle v, w_i \rangle w_i$$
, then $||x||^2 = \sum_{i=1}^k |\langle v, w_i \rangle|^2$ (prove it!).

$$\therefore \|v\|^2 \ge \sum_{i=1}^k |\langle v, w_i \rangle|^2 \ \forall v \in V \ \text{(Beseel's inequality)}$$

For instance, $V = H([0, 2\pi])$.

Recall that $S=\{e^{int}: n=0,\pm 1,\cdots\}$ is an orthonormal set of H.

Consider $W \stackrel{\text{def}}{=} \operatorname{span}(S) = \operatorname{span}(\{e^{int} : n = 0, \pm 1, \cdots, \pm k\}).$

Note $\dim(W) = 2k + 1$. For $\forall f \in H$, then

$$\sum_{n=-k}^{k} |\langle f, e^{int} \rangle|^2 \le ||f||^2$$

In particular, for f(t) = t,

RHS:

$$||f||^2 = \frac{1}{2\pi} \int_0^{2\pi} t^2 dt = \frac{4}{3}\pi^2.$$

LHS:

$$n = 0: \langle f, e^{i0t} \rangle = \langle f, 1 \rangle = \frac{1}{2\pi} \int_0^{2\pi} t dt = \pi.$$

$$n = \pm 1, \pm 2, \dots : \langle f, e^{int} \rangle = \frac{1}{2\pi} \int_0^{2\pi} t \overline{e^{int}} dt = \dots = -\frac{1}{in}.$$

... Beseel's inequality gives

$$\frac{4}{3}\pi^2 \ge |\pi|^2 + \sum_{\substack{n=\pm 1, \dots, \pm k \\ \dots \sum_{n=1}^k \frac{1}{n^2}}} |-\frac{1}{in}|^2 = \pi^2 + 2\sum_{i=1}^k \frac{1}{n^2}$$

Let $k \to \infty$.

$$\sum^{\infty} \frac{1}{n^2} \le \frac{1}{6} \pi^2.$$

Exercise. Try any other $f \in H$.

Remark:

V: i.p.s. with $\langle \cdot, \cdot \rangle$.

 $\beta \subset V$: othonormal (possibly infinite)

Let $v \in V$. We may compute

$$\langle v, x \rangle, x \in \beta$$

which is called the **Fourier coefficients** of v relative to β . (Above, take the $\beta = S$.)

Last goal of this topic:

Can a finite orthonormal (should be I. indep.) set be extended to an orthonormal basis?

Theorem. let V be an i.p.s with dim(V) = n. Then

(1) An othonormal set $S = \{v_1, \cdots, v_k\}$ can be extended to an orthonormal basis $\{v_1, \cdots, v_k, v_{k+1}, \cdots, v_n\}$ for V. Furthermore, let $W = \operatorname{span}(S)$, then

$$S_1 = \{v_{k+1}, \cdots, v_n\}$$
 is an orthonormal basis for W^{\perp} .

(2) For any subspece W of V,

$$V = W \bigoplus W^{\perp}$$
 and $\dim(V) = \dim(W) + \dim(W^{\perp})$.

Pf. (1)
$$S = \{v_1, \dots, v_k\}$$
: orthonormal

 $\stackrel{\text{extension}}{\longrightarrow} \{v_1, \cdots, v_k, w_{k+1}, \cdots, w_n\} : \text{o.b. for } V$

$$\stackrel{G.-S.}{\longrightarrow} \{v_1, \cdots, v_k, w'_{k+1}, \cdots, w'_n\}$$
: orthogonal o.b. for V

(The first k vectors must be still v_1, \dots, v_k ; see Ex. 8 of Sec. 6.2)

$$\stackrel{normalizing}{\longrightarrow} \{v_1,\cdots,v_k,v_{k+1},\cdots,v_n\}$$
: orthonormal o.b. for V .

Let $W = \operatorname{span}(S) = \operatorname{span}(\{v_1, \dots, v_k\})$, to show:

$$S_1 \stackrel{def}{=} \{v_{k+1}, \cdots, v_n\}$$
 is an orthonormal basis for W^{\perp} .

Indeed,

1°. $S_1 \subset W^{\perp}$ & S_1 is orthonormal. 2°. $W^{\perp} \subset \text{span}(S_1)$.

In fact, let $x \in W^{\perp} \subset V$. Note: $x = \sum_{i=1}^{n} \langle x, v_i \rangle v_i$. Then,

$$x \in W^{\perp} \Rightarrow \langle x, v_i \rangle = 0, (i = 1, \dots, k; v_i \in W \Rightarrow x \perp v_i).$$

$$\therefore x = \sum_{i=k+1}^{n} \langle x, v_i \rangle v_i \in \operatorname{span}(S_1). \therefore W^{\perp} \subset \operatorname{span}(S_1).$$

(2) Let W be a subspace of V, then W is a finite-dim i.p.s., and hence it has an orthonormal basis $\{v_1, v_2, \dots, v_k\}$. By (1),

$$dim(V) = n$$

$$= k + (n - k)$$

$$= dim(W) + dim(W^{\perp}).$$