
MATH2040A Homework 1

Reference Solutions

1 Compulsory Part

1.2.8. In any vector space V , show that (a+ b)(x+ y) = ax+ ay + bx+ by for any x, y ∈ V and any a, b ∈ F.

Solution: By the axioms of vector space, we have

(a+ b)(x+ y) = a(x+ y) + b(x+ y) = ax+ ay + bx+ by

which holds fo all x, y ∈ V and a, b ∈ F.

Note

VS8 and VS7 are used here.

1.2.13. Let V denote the set of ordered pairs of real numbers. If (a1, a2) and (b1, b2) are elements of V and c ∈ R, define

(a1, a2) + (b1, b2) = (a1 + b1, a2b2) and c(a1, a2) = (ca1, a2)

Is V a vector space over R with these operations? Justify your answer.

Solution: V is not a vector space as it violates VS8:

1 · (1, 3) + 1 · (1, 3) = (1, 3) + (1, 3) = (2, 9) ̸= (2, 3) = 2 · (1, 3) = (1 + 1) · (1, 3)

Note

There are other vector space axioms that (V,+, ·) does not satisfy, but you only need to give one such example.

It is not a valid proof if you only show that (0, 0) does not work as a zero vector: a vector with base set R2 does not necessarily
have the same zero vector as R2. You would also have to argue that (0, 0) is the only appropriate choice.

1.2.17. Let V = { (a1, a2) : a1, a2 ∈ F }, where F is a field. Define addition of elements of V coordinatewise, and for c ∈ F and
(a1, a2) ∈ V , define

c(a1, a2) = (a1, 0)

Is V a vector space over F with these operations? Justify your answer.

Solution: V is not a vector space as it violates VS5: 1 · (1, 1) = (1, 0) ̸= (1, 1)

Note

As F is a field, we have 0 ̸= 1. For other cases (e.g. “0 ̸= 2”), the characteristic of the field may need to be considered.

1.2.18. Let V = { (a1, a2) : a1, a2 ∈ R }. For (a1, a2), (b1, b2) ∈ V and c ∈ R define

(a1, a2) + (b1, b2) = (a1 + 2b1, a2 + 3b2) and c(a1, a2) = (ca1, ca2)

Is V a vector space over R with these operations? Justify your answer.
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Solution: V is not a vector space as it violates VS8:

1 · (1, 1) + 1 · (1, 1) = (1, 1) + (1, 1) = (3, 4) ̸= (2, 2) = 2 · (1, 1) = (1 + 1) · (1, 1)

1.2.21. Let V and W be vector spaces over a field F. Let

Z = { (v, w) : v ∈ V and w ∈ W }

Prove that Z is a vector space over F with the operations

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2) and c(v1, w1) = (cv1, cw1)

Solution: We verify all axioms one by one:

• (VS1) Let x = (x1, x2), y = (y1, y2) ∈ V . Then x + y = (x1, x2) + (y1, y2) = (x1 + y1, x2 + y2) = (y1 + x1, y2 + x2) =
(y1, y2) + (x1, x2) = y + x.

• (VS2) Let x = (x1, x2), y = (y1, y2), z = (z1, z2) ∈ V . Then (x+ y) + z = ((x1, x2) + (y1, y2)) + (z1, z2) = (x1 + y1, x2 +
y2) + (z1, z2) = (x1 + y1 + z1, x2 + y2 + z2) = (x1, x2) + (y1 + z1, y2 + z2) = (x1, x2) + ((y1, y2) + (z1, z2)) = x+ (y+ z).

• (VS3) Denote 0⃗ = (0, 0) ∈ V with 0 ∈ F being the zero element of F. We now show that 0⃗ is a zero vector of V : for all
x = (x1, x2) ∈ V , x+ 0⃗ = (x1, x2) + (0, 0) = (x1 + 0, x2 + 0) = (x1, x2) = x.

• (VS4) Let x = (x1, x2) ∈ V . Then x1, x2 ∈ F. As F is a field, there exist elements −x1,−x2 ∈ F such that x1+(−x1) =
x2 + (−x2) = 0 with 0 being the zero element of F. Then y = (−x1,−x2) ∈ V and x + y = (x1, x2) + (−x1,−x2) =
(x1 + (−x1), x2 + (−x2)) = (0, 0) = 0⃗.

• (VS5) Let x = (x1, x2) ∈ V . Then 1 · x = 1 · (x1, x2) = (1 · x1, 1 · x2) = (x1, x2) = x.

• (VS6) Let a, b ∈ F and x = (x1, x2) ∈ V . Then (ab)·x = (ab)·(x1, x2) = (ab·x1, ab·x2) = a·(bx1, bx2) = a·(b·(x1, x2)) =
a · (b · x).

• (VS7) Let a ∈ F and x = (x1, x2), y = (y1, y2) ∈ V . Then a · (x+ y) = a · ((x1, x2) + (y1, y2)) = a · (x1 + y1, x2 + y2) =
(a(x1 + y1), a(x2 + y2)) = (ax1 + ay1, ax2 + ay2) = (ax1, ax2) + (ay1, ay2) = a · (x1, x2) + a · (y1, y2) = a · x+ a · y.

• (VS8) Let a, b ∈ F and x = (x1, x2) ∈ V . Then (a+ b) ·x = (a+ b) · (x1, x2) = ((a+ b)x1, (a+ b)x2) = (ax1+ bx1, ax2+
bx2) = (ax1, ax2) + (bx1, bx2) = a · (x1, x2) + b · (x1, x2) = a · x+ b · x.

As every axiom is satisfied, V is a vector space over F with the operations defined.

1.3.10. Prove that W1 = { (a1, a2, . . . , an) ∈ Fn : a1 + a2 + . . . + an = 0 } is a subspace of Fn, but W2 = { (a1, a2, . . . , an) ∈ Fn :
a1 + a2 + . . .+ an = 1 } is not.

Solution: We will use Theorem 1.3 from textbook.

(a) As the zero vector of Fn is 0⃗ = (0, 0, . . . , 0) and 0 + 0 + . . .+ 0 = 0, we have that 0⃗ ∈ W1.

Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ W1. Then x1 + . . .+ xn = y1 + . . .+ yn = 0. So (x1 + y1) + . . .+ (xn + yn) =
(x1 + . . .+ xn) + (y1 + . . .+ yn) = 0 + 0 = 0, and thus (x1 + y1, . . . , xn + yn) ∈ W1.

Let x = (x1, . . . , xn) ∈ W1 and c ∈ F. Then x1 + . . .+ xn = 0. So cx1 + . . .+ cxn = c(x1 + . . .+ xn) = c · 0 = 0. This
implies that c · x = (cx1, . . . , cxn) ∈ W1.

As x, y ∈ W1 and c ∈ F are arbitrary, by Theorem 1.3 W1 is a subspace of Fn.

(b) As for the zero vector 0⃗ = (0, . . . , 0), 0 + . . .+ 0 = 0 ̸= 1, we have that 0⃗ /∈ W2. By Theorem 1.3, W2 is not a subspace
of Fn.

Note

Compare W1 with Question 1.2.13, where you cannot simply take (0, 0) ∈ R2 as the zero vector of V . This is because there
is a known vector space structure (the one on Fn) where W1 inherits its own structure from, but in Question 1.2.13 there is
no such structure (R2 is only used as a base set and the structure proposed for V does not depend on it).

This is also why we say “a subspace of a vector space”.
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1.3.11. Is the set W = { f(x) ∈ P(F) : f(x) = 0 or f(x) has degree n } a subspace of P(F) if n ≥ 1? Justify your answer.

Solution: W is not a subspace of P(F) if n ≥ 1.

By definition, xn + 1, xn ∈ P(F) are polynomials of degree n and so xn + 1, xn ∈ W , but 1 = (xn + 1)− xn is a polynomial
of degree 0 ̸= n and 1 ̸= 0. By the definition of subspaces (or Theorem 1.3), W is not a subspace of P(F).

1.3.17. Prove that a subset W of a vector space V is a subspace of V if and only if W ̸= ∅, and, whenever a ∈ F and x, y ∈ W , then
ax ∈ W and x+ y ∈ W .

Solution: Let W ⊆ V .

(a) Suppose W is a subspace of V . By Theorem 1.3, 0 ∈ W , This implies that W ̸= ∅.
Let a ∈ F and x, y ∈ W . By Theorem 1.3, ax ∈ W and x+ y ∈ W .

(b) Suppose W ̸= ∅ and ax, x+ y ∈ W for all a ∈ F and x, y ∈ W . In view of Theorem 1.3, it remains to show that 0 ∈ W .

As W ̸= ∅, there exists some x ∈ W . Then by assumption −x = (−1) · x ∈ W , and so 0 = x+ (−x) ∈ W .

1.3.19. Let W1 and W2 be subspaces of a vector space V . Prove that W1∪W2 is a subspace of V if and only if W1 ⊆ W2 or W2 ⊆ W1.

Solution:

(a) Suppose W1 ∪W2 is a subspace of V . It suffices to show that W1 ̸⊆ W2 implies W2 ⊆ W1. So we may assume further
that W1 ̸⊆ W2. This implies that there exists some w1 ∈ W1 \W2.

Let w ∈ W2. Then w,w1 ∈ W1∪W2. As W1∪W2 is a subspace of V , w+w1 ∈ W1∪W2, which implies that w+w1 ∈ W1

or w + w1 ∈ W2.

If w + w1 ∈ W2, then w1 = (w + w1) − w ∈ W2 as W2 is a subspace of V . This contracts with the assumption, so we
must have w + w1 ∈ W1. Then w = (w + w1)− w1 ∈ W1 as W1 is a subspace of V .

As w ∈ W2 is arbitrary, we have W2 ⊆ W1.

(b) Suppose W1 ⊆ W2 or W2 ⊆ W1 hold. By symmetry we may assume that it is the case that W1 ⊆ W2. Then
W1 ∪W2 = W2, which is a subspace of V .

1.3.22. Let F1 and F2 be fields. A function g ∈ F(F1,F2) is called an even function if g(−t) = g(t) for each t ∈ F1 and is called an
odd function g(−t) = −g(t) for each t ∈ F1. Prove that the set of all even functions in F(F1,F2) and the set of all odd functions
in F(F1,F2) are subspaces of F(F1,F2).

Solution: Let 0(t) ∈ F(F1,F2) be the zero function from F1 to F2 such that 0(t) = 0 for all t ∈ F1. Then for all t ∈ F1,
0(−t) = 0 = 0(t) = −0(t). This implies that 0(t) is both even and odd.

(a) Let f, g ∈ F(F1,F2) be even and c ∈ F2. Then for all t ∈ F1, f(−t) = f(t) and g(−t) = g(t).

So for all t ∈ F1, (f + g)(−t) = f(−t)+ g(−t) = f(t)+ g(t) = (f + g)(t) and (cf)(−t) = cf(−t) = cf(t) = (cf)(t), which
implies that f + g and cf are even functions.

By Theorem 1.3, { f ∈ F(F1,F2) | f is even } is a subspace of F(F1,F2).

(b) Let f, g ∈ F(F1,F2) be odd and c ∈ F2. Then for all t ∈ F1, f(−t) = −f(t) and g(−t) = −g(t).

So for all t ∈ F1, (f +g)(−t) = f(−t)+g(−t) = −f(t)−g(t) = −(f +g)(t) and (cf)(−t) = cf(−t) = −cf(t) = −(cf)(t),
which implies that f + g and cf are odd functions.

By Theorem 1.3, { f ∈ F(F1,F2) | f is odd } is a subspace of F(F1,F2).

Note

See also Question 1.3.28.
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2 Optional Part

1.2.1. Label the following statements as true or false.

(a) Every vector space contains a zero vector.

(b) A vector space may have more than one zero vector.

(c) In any vector space, ax = bx implies that a = b.

(d) In any vector space, ax = ay implies that x = y.

(e) A vector in Fn may be regarded as a matrix in Mn×1(F).
(f) An m× n matrix has m columns and n rows.

(g) In P(F), only polynomials of the same degree may be added.

(h) If f and g are polynomials of degree n, then f + g is a polynomial of degree n.

(i) If f is a polynomial of degree n and c is a nonzero scalar, then cf is a polynomial of degree n.

(j) A nonzero scalar of F may be considered to be a polynomial in P(F) having degree zero.

(k) Two functions in F(S,F) are equal if and only if they have the same value at each element of S.

Solution:

True(a) False(b) False(c) False(d)

True(e) False(f) False(g) False(h)

True(i) True(j) True(k)

1.2.14. Let V = { (a1, a2, . . . , an) : ai ∈ C for i = 1, 2, . . . , n }; so V is a vector space over C. Is V a vector space over the field of
real numbers with the operations of coordinatewise addition and multiplication?

Solution: (V,+, ·) is a vector space over R. This can be verified by checking every vector space axioms. We shall omit the
detail proof here except pointing out the fact that R is a subfield of C and so all axioms regarding scalar multiplication with
C still hold for R.

1.2.15. Let V = { (a1, a2, . . . , an) : ai ∈ R for i = 1, 2, . . . , n }; so V is a vector space over R. Is V a vector space over the field of
complex numbers with the operations of coordinatewise addition and multiplication?

Solution: (V,+, ·) is not a vector over C: the scalar multiplication is not closed as i ∈ C and (1, . . . , 1) ∈ V but i·(1, . . . , 1) =
(i, . . . , i) /∈ V .

1.2.20. Let V be the set of sequences {an} of real numbers. For {an}, {bn} ∈ V and any real number t, define

{an}+ {bn} = {an + bn} and t{an} = {tan}

Prove that, with these operations, V is a vector space over R.

Solution: Similar to Question 1.2.21, We verify all axioms one by one:

• (VS1) Let x = {xn}, y = {yn} ∈ V . Then x+ y = {xn}+ {yn} = {xn + yn} = {yn + xn} = {yn}+ {xn} = y + x.

• (VS2) Let x = {xn}, y = {yn}, z = {zn} ∈ V . Then (x + y) + z = ({xn} + {yn}) + {zn} = {xn + yn} + {zn} =
{xn + yn + zn} = {xn}+ {yn + zn} = {xn}+ ({yn}+ {zn}) = x+ (y + z).

• (VS3) Denote 0⃗ = {0} ∈ V . We now show that 0⃗ is a zero vector of V : for all x = {xn} ∈ V , x + 0⃗ = {xn} + {0} =
{xn + 0} = {xn} = x.

• (VS4) Let x = {xn} ∈ V . Then for y = {−xn}, y ∈ V and x+ y = {xn}+ {−xn} = {xn + (−xn)} = {0} = 0⃗.

• (VS5) Let x = {xn} ∈ V . Then 1 · x = 1 · {xn} = {1 · xn} = {xn} = x.

• (VS6) Let a, b ∈ R and x = {xn} ∈ V . Then (ab) · x = (ab) · {xn} = {abxn} = a · {bxn} = a · (b · {xn}) = a · (b · x).
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• (VS7) Let a ∈ R and x = {xn}, y = {yn} ∈ V . Then a · (x+ y) = a · ({xn}+ {yn}) = a · {xn + yn} = {a(xn + yn)} =
{axn + ayn} = {axn}+ {ayn} = a · {xn}+ a · {yn} = a · x+ a · y.

• (VS8) Let a, b ∈ R and x = {xn} ∈ V . Then (a+ b) ·x = (a+ b) · {xn} = {(a+ b)xn} = {axn+ bxn} = {axn}+{bxn} =
a · {xn}+ b · {yn} = a · x+ b · x.

As every axiom is satisfied, V is a vector space over R with the operations defined.

1.3.1. Label the following statements as true or false.

(a) If V is a vector space and W is a subset of V that is a vector space, then W is a subspace of V .

(b) The empty set is a subspace of every vector space.

(c) If V is a vector space other than the zero vector space, then V contains a subspace W such that W ̸= V .

(d) The intersection of any two subsets of V is a subspace of V .

(e) An n× n diagonal matrix can never have more than n nonzero entries.

(f) The trace of a square matrix is the product of its diagonal entries.

(g) Let W be the xy-plane in R3; that is, W = { (a1, a2, 0) : a1, a2 ∈ R }. Then W = R2.

Solution:

False(a) False(b) True(c)

False(d) True(e) False(f)

False. Note that W is only isomorphic to R2(g)

1.3.8. Determine whether the following sets are subspaces of R3 under the operations of addition and scalar multiplication defined
on R3. Justify your answers.

(a) W1 =
{
(a1, a2, a3) ∈ R3 : a1 = 3a2 and a3 = −a2

}
(b) W2 =

{
(a1, a2, a3) ∈ R3 : a1 = a3 + 2

}
(c) W3 =

{
(a1, a2, a3) ∈ R3 : 2a1 − 7a2 + a3 = 0

}
(d) W4 =

{
(a1, a2, a3) ∈ R3 : a1 − 4a2 − a3 = 0

}
(e) W5 =

{
(a1, a2, a3) ∈ R3 : a1 + 2a2 − 3a3 = 1

}
(f) W6 =

{
(a1, a2, a3) ∈ R3 : 5a21 − 3a22 + 6a23 = 0

}
Solution:

(a) Since 0 = 3 · 0 and 0 = −0, 0⃗ = (0, 0, 0) ∈ W1.

Let (a1, a2, a3), (b1, b2, b3) ∈ W1 and c ∈ R, Then a1 = 3a2, b1 = 3b2 and a3 = −a2, b3 = −b2 and so (a1+b1) = 3(a2+b2),
(a3+ b3) = −(a2+ b2) and ca1 = 3ca2, ca3 = −ca2. This implies that (a1, a2, a3)+(b1, b2, b3) = (a1+ b1, a2+ b2, a3+ b3)
and c(a1, a2, a3) = (ca1, ca2, ca3) ∈ W1.

By Theorem 1.3, W1 is a subspace of R3.

(b) W2 is not a subspace of R3 as 0 ̸= 2 = 0 + 2 and so 0⃗ = (0, 0, 0) /∈ W2

(c) Since 2 · 0− 7 · 0 + 0 = 0, 0⃗ = (0, 0, 0) ∈ W3.

Let (a1, a2, a3), (b1, b2, b3) ∈ W3 and c ∈ R, Then 2a1−7a2+a3 = 2b1−7b2+b3 = 0 so 2·(a1+b1)−7·(a2+b2)+(a3+b3) = 0
and 2ca1 − 7ca2 + ca3 = 0. This implies that (a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3) and c(a1, a2, a3) =
(ca1, ca2, ca3) ∈ W3.

By Theorem 1.3, W3 is a subspace of R3.

(d) Since 0− 4 · 0− 0 = 0, 0⃗ = (0, 0, 0) ∈ W3.

Let (a1, a2, a3), (b1, b2, b3) ∈ W3 and c ∈ R, Then a1−4a2−a3 = b1−4b2−b3 = 0 so 2(a1+b1)−4(a2+b2)−(a3+b3) = 0
and ca1 − 4ca2 − ca3 = 0. This implies that (a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3) and c(a1, a2, a3) =
(ca1, ca2, ca3) ∈ W4.

By Theorem 1.3, W4 is a subspace of R3.
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(e) W5 is not a subspace of R3 as 0 + 2 · 0− 3 · 0 = 0 ̸= 1 and so 0⃗ = (0, 0, 0) /∈ W5

(f) W6 is not a subspace of R3. Since

5 ·
(

1√
5

)2

− 3 ·
(

1√
3

)2

+ 6 · 02 = 5 · 02 − 3 ·
(
− 1√

3

)2

+ 6 ·
(

1√
6

)
= 0

we have (
1√
5
,
1√
3
, 0

)
,

(
0,− 1√

3
,
1√
6

)
∈ W6

but (
1√
5
,
1√
3
, 0

)
+

(
0,− 1√

3
,
1√
6

)
=

(
1√
5
, 0,

1√
6

)
/∈ W6

as

5 ·
(

1√
5

)2

− 3 · 02 + 6 ·
(

1√
6

)2

= 2 ̸= 0

1.3.23. Let W1 and W2 be subspaces of a vector space V .

(a) Prove, that W1 +W2 is a subspace of V that contains both W1 and W2.

(b) Prove that any subspace of V that contains both W1 and W2 must also contain W1 +W2.

Solution:

(a) Since W1,W2 are subspaces of V , by Theorem 1.3 0 ∈ W1 and 0 ∈ W2, so 0 = 0 + 0 ∈ W1 +W2.

Let x, y ∈ W1 +W2 and c ∈ F. Then there exists x1, y1 ∈ W1 and x2, y2 ∈ W2 such that x = x1 + x2 and y = y1 + y2.
This implies that x + y = (x1 + y1) + (x2 + y2) and cx = (cx1) + (cx2) with x1 + y1, cx1 ∈ W1 and x2 + y2, cy2 ∈ W2,
which implies that x+ y, cx ∈ W1 +W2.

By Theorem 1.3, W1 +W2 is a subspace of V .

For all w ∈ W1, we have w = w + 0 ∈ W1 +W2 as 0 ∈ W2. As w ∈ W1 is arbitrary, W1 ⊆ W1 +W2.

For all w ∈ W2, we have w = 0 + w ∈ W1 +W2 as 0 ∈ W1. As w ∈ W2 is arbitrary, W2 ⊆ W1 +W2.

Therefore W1 +W2 is a subspace of V that contains both W1 and W2.

(b) Let U ⊆ V be a subspace of V that contains W1 and W2.

Let x ∈ W1 +W2. Then there exist w1 ∈ W1, w2 ∈ W2 such that x = w1 + w2. As U contains W1 and W2, we have
w1, w2 ∈ U . As U is a subspace, we have that x = w1 + w2 ∈ U .

As x ∈ W1 +W2 is arbitrary, W1 +W2 ⊆ U .

As U is arbitrary, every subspace of V that contains both W1 and W2 also contains W1 +W2.

1.3.28. Let F be a field. Prove that the set W1 of all skew-symmetric n× n matrices with entries from F is a subspace of Mn×n(F).
Now assume that F is not of characteristic 2, and let W2 be the subspace of Mn×n(F) consisting of all symmetric, n×n matrices.
Prove that Mn×n(F) = W1 ⊕W2.

Solution:

(a) Let 0n×n ∈ Mn×n(F) be the zero matrix. Then 0Tn×n = 0n×n = −0n×n, so 0n×n is a skew-symmetric matrix.

Let A,B ∈ W1 and c ∈ F. Then AT = −A and BT = −B, so (A + B)T = AT + BT = −A − B = −(A + B) and
(cA)T = cAT = −cA = −(cA), which implies that A+B, cA are skew-symmetric matrices.

By Theorem 1.3, W1 is a subspace of Mn×n(F).

(b) Let A ∈ W1 ∩W2. Then A is both skew-symmetric and symmetric, so A = AT = −A. As F is not of characteristic 2,
A = 0n×n. This implies that W1 ∩W2 ⊆ {0n×n}.
As W1,W2 are subspaces of Mn×n(F), 0n×n ∈ W1 ∩W2, {0n×n} ⊆ W1 ∩W2. This implies that W1 ∩W2 = {0n×n}.
Let A ∈ Mn×n(F). Let A1 = 1

2 (A − AT), A2 ∈ 1
2 (A + AT) ∈ Mn×n(F). Then AT

1 = 1
2 (A − AT)T = 1

2 (A
T − A) = −A1,

AT
2 = 1

2 (A + AT)T = 1
2 (A

T + A) = A2. This implies that A1 ∈ W1 and A2 ∈ W2. By definition we have that
A = A1 +A2 ∈ W1 +W2. As A ∈ Mn×n(F) is arbitrary, Mn×n(F) ⊆ W1 +W2.
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As W1,W2 ⊆ Mn×n(F), W1 +W2 ⊆ Mn×n(F). This implies that Mn×n(F) = W1 +W2.

By definition, Mn×n(F) = W1 ⊕W2.

1.3.30. Let W1 and W2 be subspaces of a vector space V . Prove that V is the direct sum of W1 and W2 if and only if each vector in
V can be uniquely written as x1 + x2, where x1 ∈ W1 and x2 ∈ W2.

Solution:

(a) Suppose V = W1 ⊕W2. Then V = W1 +W2 and W1 ∩W2 = {0}. Hence for all x ∈ V there exist x1 ∈ W1 and x2 ∈ W2

such that x = x1 + x2.

Let x ∈ V be such that there exists x1, y1 ∈ W1 and x2, y2 ∈ W2 such that x = x1+x2 = y1+y2. Then x1−y1 = x2−y2.
As x1, y1 ∈ W1 and x2, y2 ∈ W2, we have that x1 − y1 ∈ W1 and x2 − y2 ∈ W2. So x1 − y1 = x2 − y2 ∈ W1 ∩W2 = {0}.
This implies that x1 − y1 = x2 − y2 = 0 and so x1 = y1, x2 = y2. Hence the decomposition for an arbitrary x is unique.

Thus, each vector in V can be uniquely written as x1 + x2 where x1 ∈ W1 and x2 ∈ W2.

(b) Suppose each vector x in V can be uniquely written as x = x1 + x2 where x1 ∈ W1 and x2 ∈ W2. By definition, this
means that V = W1 +W2.

Let x ∈ W1 ∩ W2 ⊆ V . Since W1,W2 are subspaces, −x ∈ W1 ∩ W2. So 0 = 0 + 0 = x + (−x) with 0, x ∈ W1 and
0,−x ∈ W2. By assumption, this implies that x = 0 = −x and so W1 ∩W2 = {0}.
By definition, we have that V = W1 ⊕W2.

1.3.31. Let W be a subspace of V .

(a) Prove that v +W is a subspace of V if and only if v ∈ W

(b) Prove that v1 +W = v2 +W if and only if v1 − v2 ∈ W

(c) Prove that the addition and scalar multiplication defined as

(v1 +W ) + (v2 +W ) = (v1 + v2) +W

a(v +W ) = av +W

for v1, v2, v ∈ V and a ∈ F are well-defined.

(d) Prove that the set S = { v +W : v ∈ V } of all cosets of W is a vector space with the operations defined.

Solution:

(a) Let v ∈ V .

i. Suppose v +W is a subspace of V . Then 0 ∈ v +W . So there exists w ∈ W such that 0 = v + w, w = −v, and
hence v = −w ∈ W as W is a subspace.

ii. Suppose v ∈ W .

Let w ∈ W . Then w − v ∈ W and so w = v + (w − v) ∈ v +W . As W is arbitrary, W ⊆ v +W .

Let x ∈ v +W . Then there exists w ∈ W such that x = v +w. As v, w ∈ W and W is a subspace, x = v +w ∈ W .
As x is arbitrary, v +W ⊆ W .

So v +W = W , which is a subspace.

So v +W is a subspace of V if and only if v ∈ W .

(b) Let v1, v2 ∈ V .

i. Suppose v1 +W = v2 +W . Then v1 = v1 + 0 ∈ v1 +W = v2 +W , so there exists w ∈ W such that v1 = v2 + w.
This implies that v1 − v2 = w ∈ W .

ii. Suppose v1 − v2 ∈ W .

Let x ∈ v1 +W . Then there exists w ∈ W such that x = v1 +w = v2 +(w− (v1 − v2)). As w, v1 − v2 ∈ W , we have
that w − (v1 − v2) ∈ W and so x = v2 + w − (v1 − v2) ∈ v2 +W . As x is arbitrary, v1 +W ⊆ v2 +W .

Let x ∈ v2 +W . Then there exists w ∈ W such that x = v2 +w = v1 +(w+(v1 − v2)). As w, v1 − v2 ∈ W , we have
that w + (v1 − v2) ∈ W and so x = v1 + w + (v1 − v2) ∈ v1 +W . As x is arbitrary, v2 +W ⊆ v1 +W .

Hence v1 +W = v2 +W .

So v1 +W = v2 +W if and only if v1 − v2 ∈ W .
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(c) i. Let v1, v2, v
′
1, v

′
2 ∈ V such that v1+W = v′1+W and v2+W = v′2+W . By part (b) we have that v1−v′1, v2−v′2 ∈ W ,

so (v1 + v2)− (v′1 + v′2) = (v1 − v′1) + (v2 − v′2) ∈ W . By part (b), (v1 + v2) +W = (v′1 + v′2) +W .

ii. Let a ∈ F. Let v, v′ ∈ V be such that v+W = v′+W . Then by part (b), v−v′ ∈ W , so (av)−(av′) = a(v−v′) ∈ W .
By part (b), (av) +W = (av′) +W .

Hence the operations are independent of the choice of representation, and so they are well-defined.

(d) We verify all axioms one by one:

i. Let x+W, y +W ∈ S. Then (x+W ) + (y +W ) = (x+ y) +W = (y + x) +W = (y +W ) + (x+W )

ii. Let x+W, y+W, z+W ∈ S. Then ((x+W )+ (y+W ))+ (z+W ) = ((x+ y)+W )+ (z+W ) = (x+ y+ z)+W =
(x+W ) + (((y + z)) +W ) = (x+W ) + ((y +W ) + (z +W ))

iii. Let 0⃗ = W = 0 +W ∈ S. Then for all x+W ∈ S, (x+W ) + 0⃗ = (x+W ) + (0 +W ) = (x+ 0) +W = x+W

iv. Let x+W ∈ S. Then with (−x) +W ∈ S we have (x+W ) + ((−x) +W ) = (x+ (−x)) +W = 0 +W = 0⃗

v. Let x+W ∈ S. Then 1 · (x+W ) = (1 · x) +W = x+W

vi. Let a, b ∈ F and x+W ∈ S. Then (ab) · (x+W ) = (abx) +W = a · ((bx) +W ) = a · (b · (x+W ))

vii. Let a ∈ F and x + W, y + W ∈ S. Then a · ((x + W ) + (y + W )) = a · ((x + y) + W ) = (a · (x + y)) + W =
(ax+ ay) +W = (ax+W ) + (ay +W ) = a · (x+W ) + a · (y +W )

viii. Let a, b ∈ F and x+W ∈ S. Then (a+ b) · (x+W ) = ((a+ b) ·x)+W = (ax+ bx)+W = ((ax)+W )+((bx)+W ) =
a · (x+W ) + b · (x+W )

As every axiom is satisfied, S is a vector space over F with the operations defined.

Note

S = V/W is the quotient space.

The construction of quotient space is important for understanding the abstract properties of vector spaces, and similar
theorems (e.g. the first isomorphism theorem) for other algebraic structures (e.g. group) regarding quotient objects also hold
for quotient spaces. Unfortunately, quotient space does not seem to be in the course syllabus.
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