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Abstract. In this paper, we propose an inexact Uzawa method with variable relaxation parame-
ters for iteratively solving linear saddle-point problems. The method involves two variable relaxation
parameters, which can be updated easily in each iteration, similar to the evaluation of the two it-
eration parameters in the conjugate gradient method. This new algorithm has an advantage over
most existing Uzawa-type algorithms: it is always convergent without any a priori estimates on the
spectrum of the preconditioned Schur complement matrix, which may not be easy to achieve in ap-
plications. The rate of the convergence of the inexact Uzawa method is analyzed. Numerical results
of the algorithm applied for the Stokes problem and a purely linear system of algebraic equations
are presented.
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1. Introduction. The major interest of this paper is to solve the indefinite
system of equations

(
A B
Bt 0

)(
x
y

)
=

(
f
g

)
,(1.1)

where A is a symmetric and positive definite n×n matrix, and B is an n×m matrix
with m ≤ n. We assume that the global coefficient matrix

M =

(
A B
Bt 0

)

is nonsingular, which is equivalent to the positive definiteness of the Schur complement
matrix

C = BtA−1B.(1.2)

Linear systems such as (1.1) are called saddle-point problems, which may arise from
finite element discretizations of Stokes equations and Maxwell equations [6], [8], [12];
mixed finite element formulations for second order elliptic problems [2], [6]; or from
Lagrange multiplier formulations for optimization problems [1], [13], for parameter
identification, and domain decomposition problems [9], [14], [15].
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In recent years, there has been a rapidly growing interest in preconditioned iter-
ative methods for solving the indefinite system of equations like (1.1); see [3], [4], [5],
[7], [11], [14], [16], [17], and [18]. In particular, the inexact Uzawa-type algorithms
have attracted wide attention; see [3], [4], [7], [11], [17], and the references therein.
The main merit of these Uzawa-type algorithms is that they preserve the minimal
memory requirement and do not need actions of the inverse matrix A−1.

Let Â and Ĉ be two positive definite matrices, which are assumed to be the
preconditioners of the matrices A and C, respectively. Also let Rl be the usual l-
dimensional Euclidean space. For any l × l positive definite matrix G, we use ‖x‖G
to denote the G-induced norm, i.e., ‖x‖G = (Gx, x)1/2 for all x ∈ Rl. However, we
write ‖x‖ (the Euclidean norm) when G is the identity. Then the standard inexact
Uzawa algorithm can be described as follows (cf. [4] and [11]).

Algorithm 1.1 (inexact Uzawa). Given x0 ∈ Rn and y0 ∈ Rm, the sequence
{xi, yi} ⊂ Rn ×Rm is defined for i = 1, 2, . . . by

xi+1 = xi + Â−1[f − (Axi + Byi)](1.3)

and

yi+1 = yi + Ĉ−1(Btxi+1 − g).(1.4)

There are several earlier versions of the above algorithm; see, e.g., [3] and [17]. The
existing convergence results indicate that these algorithms are convergent by assuming
some good knowledge of the spectrum of the preconditioned matrices Â−1A and Ĉ−1C
or under some proper scalings of the preconditioners Â and Ĉ. This “preprocessing”
may not be easy to achieve in some applications.

To avoid the proper estimate of the generalized eigenvalues of Ĉ with respect
to BtÂ−1B, the Uzawa-type algorithm proposed in [3] introduced a preconditioned
conjugate gradient (PCG) algorithm as an inner iteration of (1.4) and proved that
when the number of the PCG iteration is suitably large this Uzawa-type algorithm
converges. However, it requires subtle skill in implementations to determine when to
terminate this inner iteration.

The preconditioned minimal residual method is always convergent, but its con-
vergence depends on the ratio of the smallest eigenvalue of Â−1A over the smallest
eigenvalue of Ĉ−1(BtÂ−1B) (cf. [18]). Hence one should have some good knowledge
of the smallest eigenvalues of these preconditioned matrices in order to achieve a
practical convergence rate. Without a good scaling based on some a priori estimate
of these smallest eigenvalues, the condition number of the (global) preconditioned
system still may be very large even if the condition numbers of the matrices Â−1A
and Ĉ−1(BtÂ−1B) are small (cf. [18]). In this case, the convergence of this iterative
method may be slow (see section 4).

In this paper we propose a new variant of the inexact Uzawa algorithm to relax
some aforementioned drawbacks by introducing two variable relaxation parameters in
the algorithm (1.3)–(1.4). That is, we define the sequence {xi, yi} for i = 1, 2, . . . by

xi+1 = xi + ωiÂ
−1[f − (Axi + Byi)](1.5)

and

yi+1 = yi + τiĈ
−1(Btxi+1 − g).(1.6)

The parameters ωi and τi above can be computed effectively, similar to the evaluation
of the two iteration parameters in the conjugate gradient method. It will be shown
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that our algorithm always converges provided the preconditioner Â for A is properly
scaled so that the eigenvalues of A−1Â are bounded by one. It is very interesting to
know whether this is a technical or necessary assumption, a question to which we still
do not have a definite answer. But the numerical experiments of section 4 seem to
imply that the proposed algorithm converges even when this assumption is violated.
Furthermore, it is important to remark that the convergence of the new algorithm is
independent of the constant scalings of the preconditioners Â and Ĉ while the con-
vergences of the preconditioned minimum residual (MINRES) method and Algorithm
1.1 are strongly affected by such constant scalings; see section 4 for some numerical
verifications. Also the new algorithm is always convergent for general precondition-
ers Ĉ, while the convergences of most existing Uzawa-type algorithms are guaranteed
only under certain conditions on the extreme eigenvalues of the preconditioned matrix
Ĉ−1C or Ĉ−1H (cf. [3] and [4]).

The rest of the paper is arranged as follows. In section 2, we describe the algorithm
and its convergence results, which indicate that the algorithm converges with an
optimal rate (independent of mesh sizes) if the preconditioned matrices Â−1A and
Ĉ−1C or Ĉ−1(BtÂ−1B) are well-conditioned. The analysis of convergence rates will
be given in section 3. In section 4, we apply the proposed algorithm for solving the
Stokes problem and a linear system of purely algebraic equations.

2. Algorithm and main results. We start with some illustrations about how
to choose the relaxation parameters ωi and τi in (1.5)–(1.6). We first claim that it
is impractical to determine these two parameters by the standard steepest descent
method. To see this, let {x, y} be the true solution of the saddle-point problem (1.1)
and set

exi = x− xi, eyi = y − yi,

fi = f − (Axi + Byi), gi = Btxi+1 − g.

Consider two arbitrary symmetric and positive definite n×n and m×m matrices A0

and C0. Suppose we choose the parameters ωi and τi such that the errors

‖exi+1‖2
A0

= ‖exi ‖2
A0

− 2ωi(e
x
i , Â

−1fi)A0
+ ω2

i ‖Â−1fi‖2
A0

and

‖eyi+1‖2
C0

= ‖eyi ‖2
C0

− 2 τi(e
y
i , Ĉ

−1gi)C0
+ τ2

i ‖Ĉ−1gi‖2
C0

are minimized; then we have

ωi =
(A0e

x
i , Â

−1fi)

‖Â−1fi‖2
A0

, fi 6= 0; τi =
(C0e

y
i , Ĉ

−1gi)

‖Ĉ−1gi‖2
C0

, gi 6= 0.

This requires the evaluations of A0e
x
i = A0x−A0xi and C0e

y
i = C0y −C0yi. Clearly

such evaluations are usually very expensive no matter how we choose A0 and C0, since
the action of A−1 is always involved. This verifies our claim.

Now, we are going to find a more efficient way to compute the parameters ωi and
τi. Note that the exact version of the inner iteration (1.3) is

xi+1 = xi + A−1fi.



320 QIYA HU AND JUN ZOU

Comparing this with the inexact iteration (1.5), we see that ωi may be chosen such
that the norm

‖A−1fi − ωiÂ
−1fi‖2

A

is minimized. A direct computation yields that

ωi =

{
(fi,Â

−1fi)

‖Â−1fi‖2

A

, fi 6= 0,

1, fi = 0.
(2.1)

With this parameter ωi, the outer iteration (1.4) is changed to

yi+1 = yi + Ĉ−1(bi − ωiB
tÂ−1Byi)

with

bi = Btxi + ωiB
tÂ−1(f −Axi) − g,

which is independent of yi. When replacing Ĉ by ωiB
tÂ−1B, we get the exact version

of this outer iteration:

yi+1 = yi + (ωiB
tÂ−1B)−1gi.

Comparing this with the inexact form (1.6), we see that the parameter τi may be
chosen such that the norm

‖(ωiB
tÂ−1B)−1gi − τiĈ

−1gi‖2
(ωiBtÂ−1B)

is minimized. A direct calculation gives

τi =

{
ω−1
i

(Ĉ−1gi, gi)

‖Ĉ−1gi‖2

BtÂ−1B

, gi 6= 0;

1, gi = 0.
or τi =

{
ω−1
i

(Ĉ−1gi, gi)

‖BĈ−1gi‖2

Â−1

, gi 6= 0;

1, gi = 0.
(2.2)

Unfortunately, such a relaxation parameter τi chosen as in (2.2) may cause the corre-
sponding algorithm (1.5)–(1.6) to diverge, especially when ωi is very small. This has
been confirmed by our numerical experiments. Also we will see from the subsequent
analysis that the factor ω−1

i in (2.2) needs to be corrected appropriately to guarantee
the convergence.

With the above preparations, we are now ready to formulate a new inexact Uzawa
algorithm.

Algorithm 2.1 (Uzawa algorithm with variable relaxation parameters). Given
the initial guesses x0 ∈ Rn and y0 ∈ Rm, compute the sequences {xi, yi} for i =
1, 2, . . . as follows.

Step 1. Compute fi = f − (Axi + Byi), ri = Â−1fi, and

ωi =

{
(fi, ri)
(Ari,ri)

, fi 6= 0,

1, fi = 0.

Set

xi+1 = xi + ωi ri .(2.3)
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Step 2. Compute gi = Btxi+1 − g, di = Ĉ−1gi, and

τi =

{
(gi, di)

(Â−1Bdi, Bdi)
, gi 6= 0,

1, gi = 0 .

Set

yi+1 = yi + θiτi di(2.4)

with

θi =
1 −

√
1 − ωi

2
.(2.5)

Remark 2.1. Intuitively, it is not easy to see why one needs to introduce the addi-
tional parameter θi in (2.4), but its presence is essential to guarantee the convergence
of Algorithm 2.1. This will become transparent from our subsequent convergence
proof. Also, the choices of θi in (2.4) are not unique. In fact, θi can be chosen to be
any real numbers such that

0 < θi ≤
1 −

√
1 − ωi

2
.

We refer to the remarks at the end of section 3 for more details.
Remark 2.2. It is clear that when both fi and gi vanish, the vectors xi and yi

are the exact solution of the system (1.1). In this case Algorithm 2.1 terminates.
Now we are ready to state our main results. Let H = BtÂ−1B and

κ1 = cond(Â−1A), α =
κ1 − 1

κ1 + 1
,

κ2 = cond(Ĉ−1H), β =
κ2 − 1

κ2 + 1
.

We shall frequently use a new norm ‖| · ‖| given by

‖|v‖| =
(
‖v1‖2 + ‖v2‖2

C

) 1

2 , v = {v1, v2} ∈ Rn ×Rm.

Without loss of generality, from now on we will always assume that α > 0, and
the preconditioner Â for A is properly scaled so that

(Âv, v) ≤ (Av, v) for all v ∈ Rn.(2.6)

The numerical experiments of section 4 indicate that Algorithm 2.1 still converges
when the condition (2.6) is violated. But our convergence proof will make use of this
assumption, and it is still an open question whether the convergence of Algorithm 2.1
is guaranteed without this assumption.

The following two theorems summarize the main results of the paper, and their
proofs will be given in section 3.

Theorem 2.1. With the assumption (2.6), there is a positive number ρ < 1 such
that

|||Ei+1||| ≤ ρ |||Ei|||
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with Ei = {√αA− 1

2 fi, eyi }. Also the positive number ρ can be estimated by

ρ ≤ ρ0 =
|c(γ, α)| +

√
c(γ, α)2 + 4α

2
(2.7)

with

γ ≡ (1 − β)(
√
λ0 −

√
λ0 − 1)

2λ0

√
λ0

< 1 − α, c(γ, α) = 1 − γ − α(1 + γ).

Here λ0 is any positive number such that

(Av, v) ≤ λ0(Âv, v) for all v ∈ Rn.(2.8)

Moreover, we have

ρ0 <

{
1 − 1

2γ(1 + α), 0 < γ ≤ 1−α
1+α ,

1 − 1
2 (1 − α)2, 1−α

1+α < γ < 1 − α.
(2.9)

Theorem 2.2. With the assumption (2.6), Algorithm 2.1 converges, and we have

‖exi ‖A ≤ (
√

1 + 4α + ρ)ρi−1|||E0|||, i = 1, 2, . . . ,

and

‖eyi ‖C ≤ ρi|||E0|||, i = 1, 2, . . . .

Remark 2.3. There always exists a λ0 such that (2.8) holds. It follows from (2.6)
that λ0 ≥ 1.

Remark 2.4. Theorem 2.2 indicates that Algorithm 2.1 is always convergent for
general preconditioners Ĉ. This seems to be a big advantage over most existing inexact
Uzawa-type algorithms for saddle-point problems, whose convergences are guaranteed
only under certain conditions on the extreme eigenvalues of the preconditioned matrix
Ĉ−1C or Ĉ−1H; see, for example, [3] and [4].

3. Analysis of the convergence rate. This section will focus on the proofs
of our main results stated in Theorems 2.1 and 2.2. Unless otherwise specified, the
notation below will be the same as that defined in section 2. In our subsequent proofs
we will often use the following well-known inequality:

(v, v) (v, v)

(Gv, v) (G−1v, v)
≥ 4λ1λ2

(λ1 + λ2)2
for all v ∈ Rl,(3.1)

where λ1 and λ2 are the smallest and largest eigenvalues of the l×l symmetric positive
definite matrix G. First we will show some auxiliary lemmas.

For fi 6= 0, let αi denote the following ratio:

αi =
‖(I − ωiA

1

2 Â−1A
1

2 )A− 1

2 fi‖
‖A− 1

2 fi‖
.

Lemma 3.1. With the assumption (2.6), the above ratio αi and the parameter ωi

given in Algorithm 2.1 can be bounded above and below as follows:

λ−1
0 ≤ ωi ≤ 1 − α2

i , 0 ≤ αi ≤ α.
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Proof. By the definition of the parameter ωi, we have

‖(I − ωiA
1

2 Â−1A
1

2 )A− 1

2 fi‖2 = ‖A−1fi − ωiÂ
−1fi‖2

A

= ‖A−1fi‖2
A − ωi(fi, Â

−1fi)

=

(
1 − ωi

(fi, Â
−1fi)

(fi, A−1fi)

)
‖A−1fi‖2

A.(3.2)

Using the Cauchy–Schwarz inequality and assumption (2.6), we obtain

(A−1fi, fi) = (Â(A−1fi), Â
−1fi) ≤ ‖A−1fi‖Â ‖Â−1fi‖Â

≤ ‖A−1fi‖A ‖Â− 1

2 fi‖ = (A−1fi, fi)
1

2 (Â−1fi, fi)
1

2 .

Thus

(A−1fi, fi) ≤ (Â−1fi, fi),

and this with (3.2) leads to α2
i ≤ 1 − ωi or ωi ≤ 1 − α2

i . The desired lower bound of
ωi is a direct consequence of (2.8) and the definition of ωi.

We next show that 0 ≤ αi ≤ α. It follows from (3.1) that

ωi
(fi, Â

−1fi)

(fi, A−1fi)
=

(fi, Â
−1fi)

2

(AÂ−1fi, Â−1fi) (fi, A−1fi)

=
(Â− 1

2 fi, Â
− 1

2 fi)
2

(Â− 1

2AÂ− 1

2 (Â− 1

2 fi), Â− 1

2 fi) (Â
1

2A−1Â
1

2 (Â− 1

2 fi), Â− 1

2 fi)

≥ 4λ1λ2

(λ1 + λ2)2
,

where λ1 and λ2 are the minimal and maximal eigenvalues of the matrix Â− 1

2AÂ− 1

2 ,
respectively. This with (3.2) implies that

α2
i ≤ 1 − 4λ1λ2

(λ1 + λ2)2
= α2.

The following lemma introduces an auxiliary matrix QBi which plays an important
role in the subsequent spectral estimates of the propagation matrix associated with
Algorithm 2.1.

Lemma 3.2. With the assumption (2.6), for any natural number i, there is a
symmetric and positive definite m×m matrix QBi such that

(i) Q−1
Bi gi = θiτiĈ

−1gi with gi = Btxi+1 − g as defined in Algorithm 2.1;

(ii) all eigenvalues of the matrix Q−1
BiC lie in the interval [ θi(1−β)

λ0
, θi(1 + β)].

Proof. If gi = 0, QBi = [θi(1 + β)]−1C is the desired matrix. We next consider
the case with gi 6= 0. Using H = BtÂ−1B, we can write

‖BĈ−1gi‖2
Â−1

= ‖Ĉ−1gi‖2
H ;

then by the definition of the parameter τi we have

‖τiĈ−1gi −H−1gi‖2
H = ‖H−1gi‖2

H − τi(gi, Ĉ
−1gi) =

(
1 − τi

(gi, Ĉ
−1gi)

(gi, H−1gi)

)
‖H−1gi‖2

H .
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It follows from (3.1) that

τi
(gi, Ĉ

−1gi)

(gi, H−1gi)
=

(Ĉ− 1

2 gi, Ĉ
− 1

2 gi)
2

(Ĉ− 1

2HĈ− 1

2 (Ĉ− 1

2 gi), Ĉ− 1

2 gi) (Ĉ
1

2H−1Ĉ
1

2 (Ĉ− 1

2 gi), Ĉ− 1

2 gi)

≥ 4λ′
1λ

′
2

(λ′
1 + λ′

2)
2
,

where λ′
1 and λ′

2 are the minimal and maximal eigenvalues of the matrix Ĉ− 1

2HĈ− 1

2 ,
respectively. Hence we obtain

‖τiĈ−1gi −H−1gi‖H ≤
{

1 − 4λ′
1λ

′
2

(λ′
1 + λ′

2)
2

} 1

2

‖H−1gi‖H = β‖H−1gi‖H .

This implies the existence of a symmetric positive definite m × m matrix GBi such
that

G−1
Bi gi = τiĈ

−1gi

and

‖I −H
1

2G−1
BiH

1

2 ‖ ≤ β.(3.3)

See Lemma 9 in [3], for example, for the existence of such a matrix GBi.
Now set Q−1

Bi = θiGBi; then

Q−1
Bi gi = θiτiĈ

−1gi,

and we know from (3.3) that all eigenvalues of the matrix H
1

2Q−1
BiH

1

2 lie in the interval
[θi(1 − β), θi(1 + β)].

To prove result (ii), let φ be an eigenvector of the matrix Q−1
BiC corresponding to

the eigenvalue λ. Then we can write

(Cφ, φ) = λ(QBiφ, φ),

or equivalently,

(Â
1

2A−1Â
1

2 (Â− 1

2Bφ), (Â− 1

2Bφ)) = λ(QBiφ, φ).

Using inequalities (2.6) and (2.8), we immediately derive

λ−1
0 (Â− 1

2Bφ, Â− 1

2Bφ) ≤ λ(QBiφ, φ) ≤ (Â− 1

2Bφ, Â− 1

2Bφ).

This can be written as

λ−1
0 (Hφ, φ) ≤ λ(QBiφ, φ) ≤ (Hφ, φ).

Note that Q−1
BiH has the same eigenvalues as the matrix H

1

2Q−1
BiH

1

2 ; thus by (3.3)
we have

λ−1
0 θi(1 − β)(QBiφ, φ) ≤ λ(QBiφ, φ) ≤ θi(1 + β)(QBiφ, φ),

which yields the desired eigenvalue bound.
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The two functions F (z) and ϕ(z) to be introduced below and their properties are
very helpful in achieving some sharper estimates in the subsequent convergence rate
analysis. F (z) is defined for two given positive numbers α, γ ∈ (0, 1) as follows:

F (z) =
1

2

(
az + b +

√
(az + b)2 − 4z

)
, z ∈ [0, 1),

where a = (1+γ)2 +γ2/α and b = αγ2 +(1−γ)2, and it has the following properties.
Lemma 3.3. The function F(z) can be bounded below and above as follows:

αγ2 + (1 − γ)2 ≤ F (z) ≤ F (α2) =
(
|c(γ, α)| +

√
c(γ, α)2 + 4α

)2

/4(3.4)

for all z ∈ [0, α2]. Here c(γ, α) is as given in Theorem 2.1.
Proof. Set f(z) = az + b. Then

F (z) =
1

2
[f(z) +

√
f2(z) − 4z].

Moreover, we have

f(α2) = α2(1 + γ)2 + 2αγ2 + (1 − γ)2 = c(γ, α)2 + 2α;

therefore
√

f2(α2) − 4α2 =
√

[f(α2) − 2α][f(α2) + 2α] = |c(γ, α)|
√
c(γ, α)2 + 4α.

Note that f(α2) can be written as

f(α2) =
1

2
c(γ, α)2 +

1

2
{c(γ, α)2 + 4α};

then

F (α2) =
1

2
[f(α2) +

√
f2(α2) − 4α2] =

(
|c(γ, α)| +

√
c(γ, α)2 + 4α

2

)2

.

It is easy to see that (3.4) is equivalent to

F (0) ≤ F (z) ≤ F (α2),

so it suffices to prove that F (z) is a real and monotone increasing function in the
interval [0, 1). First we see that

ab = [(1 + γ)2 + γ2/α] [αγ2 + (1 − γ)2]

= αγ2(1 + γ)2 + (1 − γ2)2 + γ4 +
γ2(1 − γ)2

α

= 1 +

[
√
αγ(1 + γ) − γ(1 − γ)√

α

]2

;

thus ab ≥ 1, and

(az + b)2 − 4z = (az + 2
√
z + b)

[(√
az − 1√

a

)2

+
ab− 1

a

]
≥ 0,
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which indicates that F (z) is real in the interval [0, 1).
On the other hand, taking the derivative of F , we have

F ′(z) =
f ′(z)[f(z) +

√
f2(z) − 4z] − 2

2
√
f2(z) − 4z

, z ∈ [0, 1);

then the condition that F ′(z) ≥ 0 is equivalent to

f ′(z)[
√
f2(z) − 4z] ≥ 2 − f ′(z)f(z), z ∈ [0, 1).(3.5)

Using ab ≥ 1, we obtain (note that f ′(z) = a)

z[f ′(z)]2 − f(z)f ′(z) + 1 = a2z − a(az + b) + 1 = 1 − ab ≤ 0, z ∈ [0, 1).

This implies

[f ′(z)]2[f2(z) − 4z] ≥ [2 − f ′(z)f(z)]2, z ∈ [0, 1),

which guarantees the inequality (3.5). (Note that f ′(z)
√
f2(z) − 4z ≥ 0.)

Lemma 3.4. Let γ be defined as in Theorem 2.1 and ϕ(z) = αz2 + (1− z)2; then

ϕ(z) ≤ ϕ(γ) for all z ∈
[
1 − β

2λ0
,

1 + β

2

]
.

Proof. We can directly verify that

ϕ′(z)





< 0, z < (1 + α)−1;
= 0, z = (1 + α)−1;
> 0, z > (1 + α)−1.

So the maximum value of ϕ(z) is

max

{
ϕ

(
1 − β

2λ0

)
, ϕ

(
1 + β

2

)}
.

By the direct calculations we have

ϕ

(
1 − β

2λ0

)
= 1 − 1 − β

λ0
+

(1 + α)(1 − β)2

4λ2
0

and

ϕ

(
1 + β

2

)
= 1 − (1 + β) +

(1 + α)(1 + β)2

4
.

Thus

ϕ

(
1 − β

2λ0

)
− ϕ

(
1 + β

2

)
=

[
1 − 1 + α

4

(
1 + β +

1 − β

λ0

)] [
(1 + β) − 1 − β

λ0

]
.

Note that λ0 ≥ 1 and α < 1; hence

1 − β

λ0
≤ 1 − β ≤ 1 + β
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and

1 + α

4

(
1 + β +

1 − β

λ0

)
≤ 1 + α

4
(1 + β + 1 − β) < 1,

and we have

ϕ

(
1 − β

2λ0

)
− ϕ

(
1 + β

2

)
≥ 0.(3.6)

So ϕ(z) reaches its maximum at z = (1 − β)/(2λ0). By the definition of γ it is easy
to see that

1 − β

2λ0
≥ γ;

this and the monotonicity of ϕ implies the desired estimate of Lemma 3.4.
The following spectral bounds will be directly used in the spectral estimates of

the propagation matrix associated with Algorithm 2.1.
Lemma 3.5. Let Q be a given symmetric positive definite matrix with its eigen-

values lying in the interval [ θi(1−β)
λ0

, θi(1 + β)] (cf. Lemma 3.2(ii)), and Fi is a matrix
given by

Fi =

(
αi(I + Q) −√

αQ√
α
−1

αiQ (I −Q)

)
.

Then the spectrum of Fi is bounded by ρ0 (defined in (2.7)), i.e., ‖Fi‖ ≤ ρ0 .
Proof. Let {λj}mj=1 be the positive eigenvalues of the matrix Q. It is easy to verify

that

‖Fi‖ = max
1≤j≤m

∣∣∣∣
∣∣∣∣
(

αi(1 + λj) −√
αλj√

α
−1

αiλj 1 − λj

)∣∣∣∣
∣∣∣∣ .(3.7)

To estimate ‖Fi‖, it suffices to estimate the maximum eigenvalue of the matrix F t
iFi

with

Fi =

(
αi(1 + λj) −√

αλj√
α
−1

αiλj 1 − λj

)
.

The determinant of the matrix F t
iFi can be simplified as follows:

[α2
i (1 + βj)

2 + α−1α2
iβ

2
j ] [(1 − βj)

2 + αβ2
j ] − {

√
α
−1

αiβj [1 − βj − α(1 + βj)]}2

= α2
i (1 − β2

j )
2 + αα2

iβ
2
j (1 + βj)

2 + α−1α2
iβ

2
j (1 − βj)

2 + α2
iβ

4
j

−α−1α2
iβ

2
j [(1 − βj)

2 − 2α(1 − β2
j ) + α2(1 + βj)

2]

= α2
i (1 − β2

j )
2 + αα2

iβ
2
j (1 + βj)

2 + α−1α2
iβ

2
j (1 − βj)

2 + α2
iβ

4
j

−α−1α2
iβ

2
j (1 − βj)

2 + 2α2
iβ

2
j (1 − β2

j ) − αα2
iβ

2
j (1 + βj)

2

= α2
i [(1 − β2

j )
2 + β4

j + 2β2
j (1 − β2

j )] = α2
i [(1 − β2

j ) + β2
j ]

2 = α2
i ;

hence the characteristic equation of F t
iFi is

λ2 − [α2
i (1 + λj)

2 + α−1α2
iλ

2
j + (1 − λj)

2 + αλ2
j ]λ + α2

i = 0.
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Then the desired maximum eigenvalue is

λ∗ =

(
f(αi, λj) +

√
f2(αi, λj) − 4α2

i

)
/2(3.8)

with f(αi, z) defined by

f(αi, z) = α2
i (1 + z)2 + α−1α2

i z
2 + (1 − z)2 + α z2.

For a fixed αi, the equation f ′(αi, z) = 0 has a unique solution:

z = β0 ≡ α(1 − α2
i )

αα2
i + α2

i + α2 + α
.

Moreover, we have f ′(αi, z) < 0 for z < β0 and f ′(αi, z) > 0 for z > β0. Thus using
the assumption on the range of the eigenvalues of Q, we have

max
1≤j≤m

{f(αi, λj)} ≤ max

{
f

(
αi,

θi(1 − β)

λ0

)
, f(αi, θi(1 + β))

}
.(3.9)

Noting that

αα2
i + α2

i + α2 + α ≤ α(1 + α)(1 + αi) < 2α(1 + αi),

it follows from Lemma 3.1 that

θi =
1 −

√
1 − ωi

2
≤ 1 − αi

2
≤ α(1 − α2

i )

αα2
i + α2

i + α2 + α
.(3.10)

Using this, one can verify directly that

f(αi, θi(1 − β)) ≥ f(αi, θi(1 + β)),

which, with the fact that λ0 ≥ 1, yields

f

(
αi,

θi(1 − β)

λ0

)
≥ f(αi, θi(1 + β)).(3.11)

On the other hand, Lemma 3.1 implies that
√

1 − ωi ≤
√

1 − λ−1
0 ; hence

θi =
1 −

√
1 − ωi

2
≥

1 −
√

1 − λ−1
0

2

or

θi(1 − β)

λ0
≥ (1 − β)

2λ0

(
1 −

√
1 − λ−1

0

)
= γ

with the γ given in Theorem 2.1. Therefore,

f

(
αi,

θi(1 − β)

λ0

)
≤ f(αi, γ);

this together with (3.9) and (3.11) leads to

f(αi, λj) ≤ f(αi, γ), j = 1, . . . ,m.(3.12)
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By (3.8), (3.12), and the definitions of f(αi, γ) and F (z), we have λ∗ ≤ F (α2
i ). This

result together with (3.7), Lemma 3.1, and the second inequality of Lemma 3.3 implies
‖Fi‖ ≤ ρ0.

With the help of Lemmas 3.1–3.5 above, we are now ready to show the convergence
results in Theorems 2.1 and 2.2.

Proof of Theorem 2.1. As is true for classical iterative methods, the convergence
proofs for most existing inexact Uzawa-type iterative methods are carried out with the
natural error vectors exi = x−xi and eyi = y−yi (cf. [3], [4], [17]). But this traditional
analysis seems to be very difficult to follow in our current case with variable relaxation
parameters, which is much more complicated technically. It is essential that we shall
first estimate the residual fi instead of the error vector exi . Clearly, the residuals fi
and gi can be represented in terms of exi and eyi :

fi = Aexi + Beyi , gi = −Btexi+1.(3.13)

By (2.3) and (3.13) we have

A
1

2 exi+1 = A
1

2 (exi − ωiÂ
−1fi) = (I − ωiA

1

2 Â−1A
1

2 )A− 1

2 fi −A− 1

2Beyi .(3.14)

Using (2.4), Lemma 3.2(i), and (3.14) we obtain

A− 1

2Beyi+1 = A− 1

2B(eyi − θiτiĈ
−1gi) = A− 1

2B(eyi + Q−1
BiB

texi+1)

= A− 1

2B[eyi + Q−1
BiB

tA− 1

2 ((I − ωiA
1

2 Â−1A
1

2 )A− 1

2 fi −A− 1

2Beyi )]

= A− 1

2BQ−1
BiB

tA− 1

2 (I − ωiA
1

2 Â−1A
1

2 )A− 1

2 fi

+(I −A− 1

2BQ−1
BiB

tA− 1

2 )A− 1

2Beyi ,(3.15)

while using (3.14) and (3.15) we have

A− 1

2 fi+1 = A
1

2 exi+1 + A− 1

2Beyi+1

= (I + A− 1

2BQ−1
BiB

tA− 1

2 )(I − ωiA
1

2 Â−1A
1

2 )A− 1

2 fi

−(A− 1

2BQ−1
BiB

tA− 1

2 )A− 1

2Beyi .(3.16)

Now let

BtA− 1

2 = UΣV t(3.17)

with Σ = (Σ0 0) being the singular value decomposition of the matrix BtA− 1

2 . As
usual, U is an orthogonal m ×m matrix and V is an orthogonal n × n matrix. The
diagonal entries of the matrix Σ0 are the singular values of BtA− 1

2 . Define

Exy
i =

√
αV tA− 1

2 fi, Ey
i = ΣtU teyi .

By (3.15) and (3.16), we obtain

Exy
i+1 = (I + V tA− 1

2BQ−1
BiB

tA− 1

2V )V t(I − ωiA
1

2 Â−1A
1

2 )V Exy
i

−
√
α(V tA− 1

2BQ−1
BiB

tA− 1

2V )Ey
i(3.18)
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and

Ey
i+1 =

1√
α

(V tA− 1

2BQ−1
BiB

tA− 1

2V )V t(I − ωiA
1

2 Â−1A
1

2 )V Exy
i

+ (I − V tA− 1

2BQ−1
BiB

tA− 1

2V )Ey
i .(3.19)

Set

Q1i ≡ V t(I − ωiA
1

2 Â−1A
1

2 )V

and

Q2i ≡ ΣtU tQ−1
BiUΣ = V tA− 1

2BQ−1
BiB

tA− 1

2V ;

then the propagation relations (3.18) and (3.19) may be written in the matrix form

(
Exy

i+1

Ey
i+1

)
=

(
(I + Q2i)Q1i −√

αQ2i√
α
−1

Q2iQ1i (I −Q2i)

)(
Exy

i

Ey
i

)
.(3.20)

Let E0y
i and Q0

2i denote the nonzero part of Ey
i and Q2i, respectively, namely,

E0y
i = Σ0U

teyi , Q0
2i = Σ0U

tQ−1
BiUΣ0,

and set Q̂2i = (Q0
2i, 0)t. Then we have from (3.20) that

(
Exy

i+1

E0y
i+1

)
=

(
(I + Q2i)Q1i −√

αQ̂2i√
α
−1

Q̂t
2iQ1i (I −Q0

2i)

)(
Exy

i

E0y
i

)
.(3.21)

Next we estimate the spectrum of the propagation matrix in (3.21). We first
consider two cases: fi = 0; fi 6= 0 but αi = 0. Then we have by the definition of Exy

i

and αi that

Q1iE
xy
i = 0 for fi = 0 or αi = 0.

So we can write (3.21) as

(
Exy

i+1

E0y
i+1

)
=

(
0 −√

αQ̂2i

0 (I −Q0
2i)

)(
Exy

i

E0y
i

)
≡ F0i

(
Exy

i

E0y
i

)
.

For the case that fi 6= 0 but αi = 0, an estimate of the norm ‖F0i‖ can be obtained
directly later on, so we consider only the case that fi = 0 at the moment. Since

F t
0iF0i =

(
0 0

−√
αQ̂t

2i (I −Q0
2i)

)(
0 −√

αQ̂2i

0 (I −Q0
2i)

)

=

(
0 0
0 α(Q0

2i)
2 + (I −Q0

2i)
2

)
,

it suffices to estimate the maximum eigenvalue of the matrix

Q0i = α(Q0
2i)

2 + (I −Q0
2i)

2.(3.22)

Using (1.2) and (3.17), we have

Q−1
BiC = Q−1

BiUΣV tV ΣtU t = Q−1
BiUΣ2

0U
t = (Σ0U

t)−1Q0
2i(Σ0U

t).(3.23)
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Thus the matrix Q0
2i has the same eigenvalues as the matrix Q−1

BiC, and Lemma 3.2(ii)
implies that the maximum eigenvalue of the matrix Q0i defined in (3.22) is bounded
above by the maximum of the function

ϕ(z) = αz2 + (1 − z)2, z ∈
[
(1 − β)

2λ0
,
(1 + β)

2

]
.

Here we have used the fact that θi = 1
2 for fi = 0 by definition. Using (3.22), (3.4),

and Lemmas 3.3 and 3.4 we have

‖F0i‖2 ≤ αγ2 + (1 − γ)2 ≤ F (α2) = ρ2
0 (when fi = 0).(3.24)

Next, we consider the case that fi 6= 0 and αi > 0. Write (3.21) in the form

(
Exy

i+1

E0y
i+1

)
=

(
αi(I + Q2i) −√

αQ̂2i√
α
−1

αiQ̂
t
2i (I −Q0

2i)

)(
α−1
i Q1i 0

0 I

)(
Exy

i

E0y
i

)
.

By the definitions of Q1i, E
xy
i , and αi, we have (note that V t is an orthogonal matrix)

‖α−1
i Q1iE

xy
i ‖2 = ‖α−1

i

√
αV t(I − ωiA

1

2 Â−1A
1

2 )A− 1

2 fi‖2

= α−2
i α‖(I − ωiA

1

2 Â−1A
1

2 )A− 1

2 fi‖2

= α−2
i αα2

i ‖A− 1

2 fi‖2

= ‖
√
αV tA− 1

2 fi‖2 = ‖Exy
i ‖2.

Thus
∥∥∥∥
(

α−1
i Q1i 0

0 I

)(
Exy

i

E0y
i

)∥∥∥∥ =

∥∥∥∥
(

α−1
i Q1iE

xy
i

E0y
i

)∥∥∥∥

=
(
‖α−1

i Q1iE
xy
i ‖2 + ‖E0y

i ‖2
) 1

2

=

∥∥∥∥
(

Exy
i

E0y
i

)∥∥∥∥ .

Therefore

∣∣∣∣
∣∣∣∣
(

Exy
i+1

E0y
i+1

)∣∣∣∣
∣∣∣∣ ≤

∣∣∣∣∣

∣∣∣∣∣

(
αi(I + Q2i) −√

αQ̂2i√
α
−1

αiQ̂
t
2i (I −Q0

2i)

)∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣
∣∣∣∣
(

Exy
i

E0y
i

)∣∣∣∣
∣∣∣∣ .

It is clear that

(
αi(I + Q2i) −√

αQ̂2i√
α
−1

αiQ̂
t
2i (I −Q0

2i)

)
=




αi(I + Q0
2i) 0 −√

αQ0
2i

0 αiI 0√
α
−1

αiQ
0
2i 0 (I −Q0

2i)


 .

Let Fi be the matrix defined in Lemma 3.5 but with Q replaced by Q0
2i; then we have

∣∣∣∣∣

∣∣∣∣∣

(
αi(I + Q2i) −√

αQ̂2i√
α
−1

αiQ̂
t
2i (I −Q0

2i)

)∣∣∣∣∣

∣∣∣∣∣ =
∣∣∣∣
∣∣∣∣
(

αiI 0
0 Fi

)∣∣∣∣
∣∣∣∣ = max{αi, ‖Fi‖} ≤ max{α, ‖Fi‖}.

Noting that α ≤ ρ0 by the definition of ρ0 and |c(γ, α)| ≥ 0, the desired estimate now
follows from Lemma 3.5.
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For the case that fi 6= 0 and αi = 0, F0i has the same form as Fi. Thus ‖F0i‖ ≤ ρ0

by Lemma 3.5. This proves (2.7) for all possible cases.
Finally we show (2.9). We first claim that

|1 − γ − α(1 + γ)| < 1 − α.(3.25)

In fact, since

λ0 ≥ κ1 =
1 + α

1 − α
,

we have
√

1 − 1

λ0
≥
√

2α

1 + α
≥ α.

Thus

γ =
1 − β

2λ0

(
1 −

√
1 − 1

λ0

)
< 1 − α,

which implies (3.25) using γ > 0 and α < 1. Now by (3.25) and the definition of ρ0

in (2.7)

ρ0 <
|1 − γ − α(1 + γ)| + (1 + α)

2
=

{
1−α−γ(1+α)+(1+α)

2 , 0 < γ ≤ 1−α
1+α ,

γ(1+α)−(1−α)+(1+α)
2 , 1−α

1+α < γ < 1 − α .

This completes the proof of Theorem 2.1.
Proof of Theorem 2.2. For ease of notation, we let

Q̃1i = I − ωiA
1

2 Â−1A
1

2 , Q̃2i = A− 1

2BQ−1
BiB

tA− 1

2 .

Then (3.16) can be written as (replacing i by i− 1)

A− 1

2 fi = (I + Q̃2i)Q̃1iA
− 1

2 fi−1 − Q̃2iA
− 1

2Beyi−1.

Applying Young’s inequality, we obtain for any positive η that

‖A− 1

2 fi‖2 ≤ (1 + η)‖(I + Q̃2i)Q̃1iA
− 1

2 fi−1‖2 + (1 + η−1)‖Q̃2iA
− 1

2Beyi−1‖2.(3.26)

By the proof of Theorem 2.1 we know that Q̃2i has the same positive eigenvalues as
the matrix Q−1

BiC. Hence, Lemma 3.2(ii) infers that the eigenvalues of Q̃2i lie in the
interval [0, 1], namely,

‖Q̃2i‖ ≤ 1, ‖I + Q̃2i‖ ≤ 2;

combining with (3.26) and Lemma 3.1, this leads to

‖A− 1

2 fi‖2 ≤ (1 + η)4α2‖A− 1

2 fi−1‖2 + (1 + η−1)‖A− 1

2Beyi−1‖2

= 4α(1 + η)‖
√
αA− 1

2 fi−1‖2 + (1 + η−1)‖eyi−1‖2
C ;

taking η = (4α)−1 and using Theorem 2.1, we have

‖A− 1

2 fi‖ ≤
√

1 + 4αρi−1|||E0|||.
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Now Theorem 2.2 follows immediately from the identity A
1

2 exi = A− 1

2 fi − A− 1

2Beyi ,
the triangle inequality, and Theorem 2.1.

We end this section with some remarks on the selection of the parameter θi in
Algorithm 2.1. As we see, the parameter θi has been used in the convergence rate
analysis (cf. the inequality (3.10)). We next illustrate in a more direct manner why
we have to introduce such a parameter and why we suggest choosing θi using (2.5).
It is easy to find out from the proof of Theorem 2.1 that the sufficient and necessary
condition for Algorithm 2.1 to converge is ‖Fi‖ < 1, where Fi is essentially the
propagation matrix of Algorithm 2.1. This is equivalent to the condition that λ∗ < 1
(cf. 3.8), that is,

√
f2(αi, λj) − 4α2

i < 2 − f(αi, λj)

or

f2(αi, λj) − 4α2
i < 4 − 4f(αi, λj) + f2(αi, λj), f(αi, λj) ≤ 2.

Namely,

f(αi, λj) < 1 + α2
i .

By the definition of f(αi, λj), this condition is equivalent to

0 < λj <
2α(1 − α2

i )

αα2
i + α2

i + α2 + α
.(3.27)

From Lemma 3.2(ii) and (3.23) we know that λj ∈ [θi(1 − β)/λ0, θi(1 + β)]. Clearly
(3.27) holds if θi is chosen such that

0 < θi <
2α(1 − α2

i )

(αα2
i + α2

i + α2 + α)(1 + β)
.(3.28)

But since the paramaters α, β, and αi are not easily computable, it is impractical to
choose θi using the criterion (3.28). To find a more practical way of choosing θi, we
further relax the condition (3.27). By Lemma 3.1, we know αi ≤ α; hence

αα2
i + α2

i + α2 + α = (1 + α)α
(
1 +

αi

α
αi

)
< 2α(1 + αi),(3.29)

so (3.27) is still satisfied if

0 < λj ≤ 1 − αi, j = 1, . . . ,m.(3.30)

For this we need to choose θi such that

0 < θi(1 + β) ≤ 1 − αi, j = 1, . . . ,m;(3.31)

this, with the relation αi <
√

1 − ωi from Lemma 3.1, yields the following selection
criterion for θi:

θi ≤
1 −

√
1 − ωi

2
.(3.32)

Namely, any positive θi satisfying (3.32) guarantees the convergence of Algorithm 2.1.
However, using (3.8) and the monotone decreasing property of f(αi, z) for z < β0 we
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know that the larger the parameter θi is, the faster Algorithm 2.1 converges, namely,
the choice

θi <
1 −

√
1 − ωi

2

(
≤ 1 − αi

2
≤ β0

)

will result in a convergence slower than the equality case. This is why we choose the
equality case for θi in Theorem 2.1.

Note that the condition (3.32) is very conservative and it is obtained under the
worst case: α → 1− (cf. (3.29)) and β → 1− (cf. (3.31)). Therefore the choice

θi >
1 −

√
1 − ωi

2

is also possible. We omit the detailed discussion about this possibility here.
Finally, we add the additional observation that when α is small the condition

(3.27) becomes 0 < λj < 2 (the last term of (3.27) tends to 2− as α → 0), which is
satisfied if θi(1 + β) < 2 or θi ≤ 1. Thus we can take θi = ωi ≤ 1 to speed up the
convergence of Algorithm 2.1 in this case.

Summarizing the above, and noting that

0.25ωi <
1 −

√
1 − ωi

2
< 0.5ωi ,

we can conclude that the convergence of Algorithm 2.1 will speed up in the following
order:

θi = 0.25ωi ,
1 −

√
1 − ωi

2
, 0.5ωi , ωi

in the case that Algorithm 2.1 converges with θi = 0.5ωi and ωi. This matches well
with our numerical results; see Tables 4.1 and 4.2.

4. Numerical experiments. In this section, we apply our new Algorithm 2.1
of section 2, Algorithm 1.1 of [4], and the preconditioned MINRES method [18] to
solve the two-dimensional generalized Stokes problem and a system of purely algebraic
equations. Let Ω be the unit square in R2, and L2

0(Ω) be the set of all square integrable
functions with zero mean values over Ω, and let H1(Ω) be the usual Sobolev space
of order one. The space H1

0 (Ω) consists of those functions in H1(Ω) with vanishing
traces on ∂Ω.

Our first example is the generalized Stokes problem whose variational formulation
reads as follows: Find (u, p) ∈ (H1

0 (Ω))2 × L2
0(Ω) such that

(µ(x)∇u,∇v) − (p,∇·v) = (f, v), for all v ∈ (H1
0 (Ω))2,(4.1)

(q,∇·u) = (q, g), for all q ∈ L2
0(Ω),(4.2)

where f ∈ (L2(Ω))2, g ∈ L2(Ω), and µ ∈ L∞(Ω) with µ(x)≥c > 0 almost everywhere
in Ω.

We use one of the well-known conforming Taylor–Hood elements, which have
been widely used in engineering, to solve the system (4.1)–(4.2). For any positive
integer N , a triangulation T h of Ω is obtained by dividing Ω into N ×N subsquares
with side lengths of h = 1/N . Let Xh ⊂ H1

0 (Ω) and Mh ⊂ H1(Ω) ∩ L2
0(Ω) be

the usual continuous Q2 and Q1 finite element spaces defined on T h, respectively
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Table 4.1
Number of iterations for Algorithm 2.1.

N θi = ω−1
i

θi = 1 θi = ωi θi = 0.5ωi θi =
1−
√

1−ωi

2
θi = 0.25ωi

8 638 203 35 39 41 46
16 154 44 36 41 42 46
32 153 45 36 40 42 46
48 154 45 37 40 41 47
64 154 44 36 41 42 46

Table 4.2
Number of iterations for Algorithm 1.1 (left) and the MINRES method (right).

N 8 16 32 48 64
Alg. 1.1 917 300 58 93 95

N 8 16 32 48 64
MINRES 63 55 51 50 50

N 8 16 32 48 64
Alg. 1.1 92 85 76 75 75

N 8 16 32 48 64
MINRES 56 65 65 66 66

(cf. [6, 10]). The total number of unknowns for this finite element is n+m = [2(2N −
1)2] + [(N + 1)2 − 1]; e.g., the total unknowns are 36482 for N = 64. The finite
element approximation of the above Stokes system can be formulated as follows: Find
(uh, ph) ∈ X2

h ×Mh such that

(µ(x)∇uh,∇v) − (ph,∇·v) = (f, v), for all v ∈ X2
h,(4.3)

(q,∇·uh) = (q, g), for all q ∈ Mh.(4.4)

It is known that the inf-sup condition is satisfied by the pair (X2
h,Mh) (see [6]), thus

the Schur complement matrix C = BtA−1B associated with the system (4.3)–(4.4) has
a condition number independent of h. As in [5], [18], we take the variable coefficient
µ to be µ = 1+x1x2 +x2

1 −x2
2/2. We know that the corresponding matrix A is block

diagonal with two copies of a discrete Laplace operator on the diagonal if µ = 1, and
so it can be solved by the fast Poisson solver. Therefore it is natural to choose this
fast solver Â as the preconditioner of A. In fact, the matrix Â−1A is well-conditioned
since we have

0.5 (Âz, z) ≤ (Az, z) ≤ 2.5 (Âz, z).(4.5)

Thus the matrix BtÂ−1B is also well-conditioned. In fact, it is spectrally equivalent
to h2I (cf. [19]); that is, we can choose Ĉ = h2I.

In most applications, the condition numbers κ1 and κ2 are not very large; other-
wise all iterative methods for the saddle-point problems perform without any essential
difference. It is clear that the parameter ωi has a small range in this case, and we can
roughly estimate the maximum and minimum eigenvalues of the matrix Â−1A based
on several values of ωi. In fact, when the system (4.3)–(4.4) is solved by Algorithm
2.1 with these preconditioners, the computational results (set θi = 1) indicate that
the parameter ωi lies between 0.46 and 0.93 for 1≤i ≤ 4, which reflects roughly the
range of the eigenvalues of the matrix Â−1A.

In order to see whether assumption (2.6) is necessary for the convergence of
Algorithm 2.1, we do not scale the preconditioner Â, so condition (2.6) is violated.
The numerical results show that our Algorithm 2.1 converges well; the number of
iterations is listed in Table 4.1. Note that all the initial guesses for the algorithms
tested in this section are taken to be zero and the algorithms are terminated when
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the following relative error reaches 1.0 × 10−5:

ε =
‖Mui − b‖
‖Mu0 − b‖ ,

where M and b = (b1 b2)
t are the coefficient matrix and the right-hand side vector of

the algebraic system corresponding to (4.3)–(4.4) and ui = (xi yi)
t is the ith iterate

of the algorithms to be tested. Here we take the vector b = Mu with the solution
u = (x y)t, and x and y are two vectors with all components being 1.0 and 0.5,
respectively. From Table 4.1 we can see the importance of choosing a different θi
other than θi = ω−1

i . Also, one can find out that the convergence of Algorithm 2.1 is
nearly independent of the mesh size h.

The inexact Uzawa Algorithm 1.1 is convergent if the two preconditioners for A
and C satisfy the conditions (3.2) and (2.3) of [4]. Using (4.5), one can verify that
these two conditions are indeed satisfied if we take the two preconditioners to be 2.5Â
and 2I for A and C, respectively. Thus, we can also apply Algorithm 1.1 to solve the
system (4.3)–(4.4). However, the convergence is a bit slow; see Table 4.2 (upper left).
When the preconditioner 2I for C is replaced by h2I, which is spectrally equivalent
to C (cf. [19]), Algorithm 1.1 converges slightly faster; see Table 4.2 (lower left). The
main reason for the slow convergence in this case is that the parameter γ defined by
(2.4) of [4] is close to one. Also it is difficult to achieve an accurate estimate on this
parameter γ because of the difficulty of estimating the maximum eigenvalue of the
matrix Ĉ−1C.

Then we applied the preconditioned MINRES method (cf. [16], [18]) with a block
diagonal preconditioner with diagonal blocks being Â and Ĉ = 0.01I or Ĉ = h2I
(spectrally equivalent to C; cf. [19]) to solve the system (4.3)–(4.4). The number of
iterations is listed in the upper right of Table 4.2 for Ĉ = 0.01I and in the lower right
for Ĉ = h2I. We remark that different constant scalings for Ĉ affect the convergence
of the MINRES method greatly; see the comments at the end of this section.

Our second example is a system of purely algebraic equations. We define the
matrices A = (aij)n×n and B = (bij)n×m (n ≥ m) in (1.1) as follows:

aij =





i + 1, i = j,
1, |i− j| = 1,
0, otherwise;

bij =

{
j, i = j + n−m,
0, otherwise.

The preconditioners Â = (âij)n×n and Ĉ = (ĉij)m×m are defined by

âij =

{
i + 2, i = j ,

0, i 6= j ;
ĉij =

{
k (i2 + 3), i = j ,

0, i 6= j ,

where k is a scaling constant. The right-hand side vectors f and g are taken such
that the exact solutions x and y are both vectors with all components being 1.

Assumption (2.6) is violated again with this example. However, Algorithm 2.1
still converges well; see the number of iterations listed in Table 4.3. The convergence
of Algorithm 1.1 and the preconditioned MINRES method with two different scaling
constants, k = 1, 1/200, are reported in Tables 4.4 and 4.5.
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Table 4.3
Number of iterations for Algorithm 2.1.

n m θi = ω−1
i

θi = 1 θi = ωi θi = 0.5ωi θi =
1−
√

1−ωi

2
θi = 0.25ωi

200 150 15 15 15 17 19 38
400 300 16 16 16 17 18 38
800 600 17 17 17 18 18 38
1600 1200 17 17 17 17 18 39

Table 4.4
Iterations for Algorithm 1.1 with different scalings: k = 1, 1/200.

n 200 400 800 1600
m 150 300 600 1200

k = 1 1892 3759 > 5000 > 5000

n 200 400 800 1600
m 150 300 600 1200

k = 1/200 diverge 24 34 71

Table 4.5
Iterations for the preconditioned MINRES method with different scalings k = 1, 1/200.

n 200 400 800 1600
m 150 300 600 1200

k = 1 33 35 38 39

n 200 400 800 1600
m 150 300 600 1200

k = 1/200 22 22 22 23

From the above numerical results and many more tests we have not reported
here, one can observe that different scalings for the preconditioner Ĉ greatly affect
the convergence of Algorithm 1.1 and the preconditioned MINRES method. For
example, Algorithm 1.1 converges (slowly) when the scaling constant k = 1, but
it may diverge (the errors do not decrease) when k = 1/200; see Table 4.4. Such
behaviors also happen for the preconditioned MINRES method (cf. [16], [18] and also
see Table 4.5), whose convergence rate is known to depend on the ratio λmin/λ

′
min,

where λmin and λ′
min are, respectively, the minimal eigenvalues of Â−1A and Ĉ−1H

with H = BtÂ−1B (cf. [18]). So it is important for these algorithms to have good
a priori estimates on the minimum or maximum eigenvalues of the matrix Ĉ−1C or
Ĉ−1H in order to find an effective scaling for the preconditioner Ĉ. But such a priori
estimates are usually very difficult to achieve in practical applications, even when
Ĉ−1C is well-conditioned; e.g., this is the case with our first example; see the system
(4.3)–(4.4). One of the advantages of our Algorithm 2.1 is to have relieved such a
troublesome estimate, and different scalings for the preconditioner Ĉ do not affect the
convergence of our Algorithm 2.1, which is easily seen from the algorithm itself.
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