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Summary. A fully discrete finite element method is used to approximate
the electric field equation derived from time-dependent Maxwell’s equa-
tions in three dimensional polyhedral domains. Optimal energy-norm error
estimates are achieved for general Lipschitz polyhedral domains. Optimal
L2-norm error estimates are obtained for convex polyhedral domains.

Résuḿe. On ŕesout, dans un domaine polyédrique, leśequations de Maxwell
temporelles. Une ḿethode paŕeléments finis discr̀ete en temps et en espace
est propośee pour calculer le chamṕelectrique. Une estimation d’ordre op-
timal est obtenue pour l’erreur en norme-énergie dans le cas géńeral. Pour
la normeL2, on obtient une estimation optimale dans le cas d’un polyèdre
convexe.

Mathematics Subject Classification (1991):65N30, 35L15

1. Introduction

Many problems in sciences and industry involve the solutions of Maxwell’s
equations, for example, problems arising in plasma physics, microwave de-
vices, diffraction of electromagnetic waves. In this paper, we are interested in
the numerical solution of time-dependent Maxwell’s equations in a bounded
polyhedral domain in three dimensions. In the literature, one can find a great
deal of work on numerical approximations to time-dependent Maxwell’s
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194 P. Ciarlet, Jr, J. Zou

equations and also analyses on the convergence of numerical schemes for
stationary Maxwell’s equations and related models. We refer readers to
Raviart [21], Assous et al [5], Hewett-Nielson [16], Degond-Raviart [11],
Ambrosiano-Brandon-Sonnendrücker [2] and Ciarlet-Zou [8], etc. But to
our knowledge, it seems that there are few existing works on the convergence
analysis for semi-discrete or fully discrete numerical methods for the time-
dependent Maxwell systems. In [18], Monk obtained error estimates for a
semi-discrete finite element approximation to the time-dependent Maxwell’s
equations using Ńed́elec’s elements, from which our current paper was initi-
ated. Furthermore, in [17] Makridakis-Monk proposed a fully discrete finite
element scheme and obtained the error estimates under strong regularities
on the solutions. This scheme involves solving coupled non-symmetric and
indefinite linear algebraic systems of both electric and magnetic fields.

The purpose of the current paper is to analyse the convergence of a
simple fully discrete finite element scheme for the electric field equation
derived from Maxwell’s equations by eliminating the magnetic field. The
scheme is a fully discrete version of the semi-discrete scheme studied in
[18], and it is constructed in a way that involves only solving a symmetric
and positive definite linear algebraic system. One of our major interests here
is to investigate the convergence order of the fully discrete scheme without
making use of strong regularities on the solutions, which is certainly of
practical importance. Under appropriate assumptions on the regularity of
the continuous solutions, we derive for the concerned fully discrete scheme
the optimal energy-norm error estimates for general polyhedral domains and
optimalL2-norm error estimates for convex polyhedral domains.

We now introduce the Maxwell’s equations to be considered in the paper.
LetΩ be a bounded Lipschitz continuous polyhedral domain inR

3, E(x, t)
andH(x, t) the electric and magnetic fields respectively. Then Maxwell’s
equations can be formulated as follows:

εEt + σE − curlH = J in Ω × (0, T ),(1)

µHt + curlE = 0 in Ω × (0, T ),(2)

whereε(x) andσ(x) are the dielectric constant and the conductivity of the
medium respectively, whileµ(x) andJ(x, t) are the magnetic permeability
of the material inΩ and the applied current density respectively. Here, the
subscriptt denotes the time derivative. It is assumed that these coefficients
are piecewise smooth, real, bounded and positive, that is, there existε0 > 0
andµ0 > 0 such that, for allx ∈ Ω,

ε0 ≤ ε(x), µ0 ≤ µ(x), and 0 ≤ σ(x).(3)

Moreover, these coefficientsε(x), µ(x) andσ(x) may be discontinuous.
We assume that the boundary of the domainΩ is a perfect conductor, that
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Fully discrete schemes for Maxwell’s equations 195

is,
E × n = 0 on ∂Ω × (0, T ).(4)

We supplement Maxwell’s equations with the initial conditions

E(x, 0) = E0(x) and H(x, 0) = H0(x), x ∈ Ω.

Instead of solving the coupled system (1)-(2) with both the electric and
magnetic fields as unknowns, we eliminate the magnetic fieldH, by taking
the time derivative of (1) and using (2), to obtain the second order electric
field equation:

εEtt + σEt + curl (
1
µ

curlE) = J t, in Ω × (0, T ),(5)

with the boundary condition still being (4) but the previous initial conditions
being replaced by

E(x, 0) = E0(x) and Et(x, 0) = E1(x),(6)

whereE1(x) = ε−1(J(x, 0) + curlH0(x) − σ(x)E0(x)).

Remark 1.1We have implicitly assumed that the electromagnetic field is
generated by a current with densityJ , without any charge density: i.e. the
medium is locally electrically neutral, anddiv J = 0. In the more general
case, the charge conservation equation reads:

ρt + div J = 0,

whereρ is the charge density.
Therefore, ifσ = 0, we derive from (1) and (2) that

div (εE) = −ρ, and div (µH) = 0,

when these relations hold for the initial data. In this case, one may con-
sider a saddle-point approach, like in Raviart [21] or Ciarlet-Zou [8], where
Darwin’s model of approximation to Maxwell’s equations was studied.

We end this section with the introduction of some notations used in the
paper. We define

H(div ;Ω) = {v ∈ (L2(Ω))3; div v ∈ L2(Ω)},

H(div 0;Ω) = {v ∈ H(div ;Ω); divv = 0},

H(curl ;Ω) = {v ∈ (L2(Ω))3; curlv ∈ (L2(Ω))3},

Hα(curl ;Ω) = {v ∈ (Hα(Ω))3; curlv ∈ (Hα(Ω))3},

H0(curl ;Ω) = {v ∈ H(curl ;Ω); v × n = 0 onΓ},
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where α is a nonnegative real number.H(div ;Ω), H(curl ;Ω) and
Hα(curl ;Ω) are equipped with the norms

||v||0,div =
(
||v||20 + ||div v||20

)1/2
,

||v||0,curl =
(
||v||20 + ||curlv||20

)1/2
,

||v||α,curl =
(
||v||2α + ||curlv||2α

)1/2
.

Here and in the sequel of the paper,‖ · ‖0 will always mean the(L2(Ω) )3-
norm (orL2(Ω)-norm if only scalar functions are involved). And in general,
we will use‖ ·‖α and| · |α to denote the norm and semi-norm in the Sobolev
space(Hα(Ω) )3 (orHα(Ω) if only scalar functions are involved). We refer
to Adams [1] and Grisvard [15] for more details on Sobolev spaces.C will
always denote a generic constant which is independent of both the time step
τ and the finite element mesh sizeh.

2. Fully discrete finite element schemes

We consider discretizing the electric field Cauchy problem (5)-(6) by the
implicit backward difference scheme in time together with Néd́elec’s finite
elements in space.

Let us first triangulate the space domainΩ and assume thatT h is a shape
regular triangulation ofΩ with a mesh sizeh made of tetrahedra. An element
of T h is denoted byK, and the diameters ofK and its inscribed ball are
denoted byhK andρK respectively. As usual, we leth = maxK∈T h hK .
As the triangulation is shape regular, we havehK/ρK ≤ C (cf. Ciarlet [6]).
We then introduce the following Ńed́elec’sH(curl ;Ω)-conforming finite
element space

Vh = {vh ∈ H(curl ;Ω); vh|K ∈ (P1)3, ∀K ∈ T h}
whereP1 is the space of linear polynomials. It was proved in Néd́elec [20]
that any functionv in Vh can be uniquely determined by the degrees of
freedom in the moment setME(v) on each elementK ∈ T h. HereME(v)
is defined as follows:

ME(v) = {
∫

e
(v · τ) q ds; ∀ q ∈ P1(e) on any edgee of K},

whereτ is the unit vector along the edgee.
From [3], Lemma 4.7, we know that the integrals required in the definition

of ME(v) make sense for anyv ∈ Xp(K), with p > 2, where

Xp(K) = {v ∈ (Lp(K))3; curlv ∈ (Lp(K))3; v × n ∈ (Lp(∂K))3}.
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Fully discrete schemes for Maxwell’s equations 197

Thus we can define, for anyv ∈ H1/2+δ(curl ;Ω)3 with δ > 0 (which
implies thatcurlv ∈ (Lpδ(K))3 andv ∈ (Lpδ(∂K))3 for somepδ > 2
which depends onδ), an interpolationΠhv of v such thatΠhv ∈ Vh and
Πhv has the same degrees of freedom (defined byME(v)) asv on each
K ∈ T h.

In order to take the boundary conditionE × n = 0 on∂Ω into account,
we define a subspace ofVh:

V 0
h = {vh ∈ Vh; vh × n = 0 on∂Ω}.

This can be done simply by zeroing the degrees of freedom which correspond
to the boundary edges.

Next we divide the time interval(0, T ) into M equally-spaced subinter-
vals by using nodal points

0 = t0 < t1 < · · · < tM = T

with tn = nτ , and denote then-th subinterval byIn = (tn−1, tn]. For a
given sequence{un}M

n=0 ⊂ L2(Ω) or (L2(Ω))3, we introduce the first and
second order backward finite differences:

∂τ un =
un − un−1

τ
, ∂2

τ un =
∂τ un − ∂τ un−1

τ
.

For a continuous mappingu : [0, T ] → L2(Ω) or (L2(Ω))3, written asu ∈
C(0, T ; (L2(Ω))3) subsequently, we defineun = u(·, nτ) for 0 ≤ n ≤ M .

Using the above notation, our fully discrete finite element approximation
to the electric field equations (5)-(6) is formulated as follows:

E0
h = ΠhE0, E0

h − E−1
h = τ ΠhE1,(7)

and forn = 1, 2, · · · , M , find En
h ∈ V 0

h such that

(ε∂2
τ En

h,v) + (σ∂τE
n
h,v) + (

1
µ

curlEn
h, curlv) = (∂τJ

n,v),

∀v ∈ V 0
h .

(8)

Obviously, for eachn = 1, 2, · · · , M , it is clear that, by Lax-Milgram
theorem, the system (8) has a unique solutionEn

h as its left-hand side defines
a symmetric positive definite bilinear form inH(curl ;Ω) with respect to
En

h. In addition, as (8) is symmetric and positive definite, it can be solved
by the well-known conjugate gradient method.

Remark 2.1Instead of the first order backward difference in time used in the
fully discrete scheme (7)-(8), one can also use some second order difference
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approximation in time, e.g. the Crank-Nicolson scheme. In this case, the
whole discrete system can be taken as the following:

E0
h = ΠhE0, E1

h − E−1
h = 2τ ΠhE1,(9)

and forn = 0, 1, · · · , M − 1, find En+1
h ∈ V 0

h such that

(ε δ2
τE

n
h,v) + (σ δ2τE

n
h,v) + (

1
µ

curl Ēn
h, curlv) = (δ2τJ

n,v),

∀v ∈ V 0
h .

(10)

whereδ2
τu

n = (un+1−2un+un−1)/τ2, ūn = (un+1+un−1)/2, δ2τu
n =

(un+1 −un−1)/(2τ). Note that the scheme preserves the symmetry and the
positive definiteness. The first unknownE1

h can be solved by using the initial
approximation in (9) and (10) forn = 0, and the resultant linear system
is also symmetric and positive definite. With this scheme we can achieve
similar convergence results as obtained in the paper, see Remark 4.3.

3. Interpolation properties

This section is devoted to some basic approximation properties of the finite
element interpolantΠh defined in Sect. 2, which will be needed in the later
error estimates for the finite element scheme (7)-(8). First of all, we know
the following properties ofΠh: for anyu ∈ (H2(Ω))3,

‖u − Πhu‖0 ≤ C h2|u|2,(11)

while for anyu ∈ H1(curl ;Ω), we have

‖curl (u − Πhu)‖0 ≤ C h ‖curlu‖1.(12)

The estimate (11) can be found in Girault [13] (Theorem 3.1) and Néd́elec
[20] (Proposition 3). The estimate (12) was proved by Monk [18] (Lemma
2.3).

The estimates (11) and (12) stand for functions which are appropriately
smooth, i.e. for functions in(H2(Ω))3 or H1(curl ;Ω). But usually the
solutions of the Maxwell system considered in the paper may not have such
kind of regularity, especially when the domainΩ is not convex and only
Lipschitz continuous. Next we are going to present some approximation
properties of the interpolantΠh under weak assumptions on regularity. We
first show a similar result to (12) but for theL2-norm. Comparing with the
estimate (12) for thecurl operator, we lose one error order. Similar results
were obtained in [12] for a different finite element (see Remark 3.3).
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Fully discrete schemes for Maxwell’s equations 199

Lemma 3.1 We have

‖u − Πhu‖0 ≤ C h ||u||1,curl , ∀u ∈ H1(curl ;Ω).

The proof of the lemma is omitted, since it can be inferred from that of
Lemmas 3.2 and 3.3 (see [9] for a detailed proof).

Lemma 3.2 We have, for1/2 < α ≤ 1,

‖u − Πhu‖0 ≤ C hα ||u||α,curl , ∀u ∈ Hα(curl ;Ω).

Remark 3.1α > 1/2 is needed for the definition of the moments in
ME(v, φ).

Proof. For any elementK ∈ T h, letx = BK x̂ + bK be the affine mapping
betweenK and the reference elementK̂, and we define (cf. Ńed́elec [20]),

u(x) = (B∗
K)−1û(x̂) or û(x̂) = B∗

Ku(x),(13)

whereB∗
K is the transpose of the matrixBK . Let Π̂ be the interpolant on

the reference element̂K, then

‖u − Πhu‖2
L2(K) ≤ |BK | ‖(B∗

K)−1‖2 ‖û − Π̂û‖2
L2(K̂).(14)

Throughout the paper,|A| means|det(A)| for any square matrixA.
Let us now bound‖û−Π̂û‖L2(K̂). For that, let̂e (respectivelyF̂ ) be any

edge (respectively face) of̂K. Forp > 2 andp′ such that1/p + 1/p′ = 1,
on any edgêe of K̂ we define

||v̂||Mê
= sup

φ̂∈P1(ê)3

|Mê(v̂, φ̂)|
||φ̂||W 1−1/p′,p′ (ê)

(15)

whereMê(v̂, φ̂) =
∫
ê(v̂ · τ̂)φ̂ds. Using the norm equivalence in finite

dimensional spaces, we have

‖Π̂û‖L2(K̂) ≤ C
∑
ê⊂K̂

‖Π̂û‖Mê
= C

∑
ê⊂K̂

‖û‖Mê

≤ C
{

‖ĉurl û‖Lp(K̂) +
∑
F̂⊂K̂

‖û × n̂‖Lp(F̂ )

}
,

where the last inequality is obtained by integration by parts and the standard
extension and lifting techniques (cf. Lemma 4.7 of [3]). This implies

‖û − Π̂û‖L2(K̂) ≤ C
{

‖ĉurl û‖Lp(K̂) + ‖û‖L2(K̂) +
∑
F̂⊂K̂

‖û × n̂‖Lp(F̂ )

}

≤ C
{

‖ĉurl û‖Hα(K̂) + ‖û‖Hα(K̂)

}
.(16)
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As the left hand side does not change when replacingû by û plus any
constant, we have

‖û − Π̂û‖L2(K̂) ≤ C
{

‖ĉurl û‖Hα(K̂) + inf
p̂∈P0(K̂)3

‖û + p̂‖Hα(K̂)

}
.

Note

|ŵ|Hα(K̂) =
{∫

K̂

∫
K̂

||ŵ(x̂) − ŵ(ŷ)||2
||x̂ − ŷ||3+2α

dx̂dŷ

}1/2

,

it is clear that|ŵ + p̂|Hα(K̂) = |ŵ|Hα(K̂) for all p̂ ∈ P0(K̂)3. From this
point, one can easily adapt the proof of Theorem 14.1 in [6] to obtain the
norm equivalence in the quotient spaceHα/P0. Then one has

‖û − Π̂û‖L2(K̂) ≤ C
{

‖ĉurl û‖Hα(K̂) + |û|Hα(K̂)

}
.(17)

There remains to bound the right-hand side in (17). Noting that||x−y|| ≤
||BK || ||B−1

K (x − y)||, we deduce

|û|2
Hα(K̂) ≤ ||BK ||5+2α|B−1

K |2|u|2Hα(K).

Similarly we have (see [9] for details)

||ĉurl û||2
L2(K̂) ≤ C||BK ||4 |B−1

K | ||curlu||2L2(K), and

|ĉurl û|2
Hα(K̂) ≤ C ||BK ||7+2α|B−1

K |2|curlu|2Hα(K).

This with (17) shows (for||BK || small)

‖û − Π̂û‖2
L2(K̂)

≤ C max(||BK ||5+2α|B−1
K |2, ||BK ||4 |B−1

K |)||u||2Hα(curl ;K).

Using the bounds onBK and the shape regularity ofT h, we get from (14)
that

‖u − Πhu‖2
L2(K) ≤ C h2α

K ||u||2Hα(curl ;K). 2

Remark 3.2The following lemma is an improvement on the results obtained
in Néd́elec [20] (Propositions 1 and 2) and Monk [18] (Lemma 2.3), where
only integersα ≥ 1 were considered.

Lemma 3.3 For 1/2 < α ≤ 1, we have

‖curl (u − Πhu)‖0 ≤ Chα|curlu|Hα(Ω), ∀u ∈ Hα(curl ;Ω).
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Proof. We follow Néd́elec [20] for the notation used below. LetΘh be the
H(div 0;Ω)-conforming space of degree0:

Θh = {v ∈ H(div 0;Ω); v|K ∈ (P0)3, ∀K ∈ T h},

and letrh be the corresponding interpolant toΘh with the moment set:

M ′
F (v) = {

∫
F
(v · n) q dσ; ∀ q ∈ P0(F ) on any faceF of K}.

There are four degrees of freedom attached to this finite element, but as
div v = 0 by definition, their sum (withq = 1) is equal to 0.

We can show
rh(curlu) = curl (Πhu).(18)

Indeed,curl (Πhu) ∈ (P0)3, div (curl (Πhu)) = 0 and

∫
F

curl (Πhu) · n dσ =
∫

F
curl F (Πhu) dσ =

∫
∂F

Πhu · τ ds

=
∫

∂F
u · τ ds =

∫
F

curl F (u) dσ

=
∫

F
curlu · n dσ.

Hence
‖curl (u − Πhu)‖0 = ‖(curlu) − rh(curlu)‖0,(19)

this with the following result (20) gives the lemma.
Next, we show that for any elementK and1/2 < α ≤ 1,

‖w − rhw‖L2(K) ≤ Chα|w|Hα(K),

∀w ∈ H(div 0;Ω) ∩ Hα(Ω)3.
(20)

To prove this, we replace the degrees of freedom inM ′
F (v) (cf. [19] or [20])

by

{ 2
|BK |

∫
F
(v · n)qdσ; ∀ q|K ∈ (P0)3, K ∈ T h}.

Then the following transformation

x = BK x̂ + bK , w(x) = BKŵ(x̂),

preserves the interpolation and divergence, i.e.

r̂ŵ(x̂) = rhw(x), d̂iv ŵ(x̂) = divw(x),

wherer̂ is the reference interpolant on̂K.

Numerische Mathematik Electronic Edition
page 201 of Numer. Math. (1999) 82: 193–219



202 P. Ciarlet, Jr, J. Zou

Now consider the momentM ′
F̂
(ŵ, φ̂) =

∫
F̂ (ŵ · n̂)φ̂ dσ̂. Noting that

div w = 0 impliesd̂iv ŵ = 0, we have by integration by parts

|M ′
F̂
(ŵ, φ̂)| =

∣∣∣ ∫
K̂

d̂iv ŵ φ̂ dx̂ +
∫

K̂
ŵ · ĝradφ̂ dx̂

∣∣∣
=

∣∣∣ ∫
K̂

ŵ · ĝradφ̂ dx̂
∣∣∣

≤ C ||ŵ||Lp(K̂) ||φ̂||W 1−1/p′,p′ (F̂ )(21)

wherep′ is again the conjugate number ofp and φ̂ the extension by zero

from W 1−1/p′,p′
(F̂ ) into W 1−1/p′,p′

(∂K̂) combined with a lifting operator
from W 1−1/p′,p′

(∂K̂) ontoW 1,p′
(K̂).

Using (21), we can bound

||ŵ||M ′
F̂

= sup
φ̂∈(P0(F̂ ))3

|M ′
F̂
(ŵ, φ̂)|

||φ̂||W 1−1/p′,p′ (F̂ )

by ‖ŵ‖Lp(K̂). This with the norm equivalence in finite dimensional spaces
gives

‖r̂ŵ‖L2(K̂) ≤ C
∑
F̂∈K̂

‖r̂ŵ‖M ′
F̂

= C
∑
F̂∈K̂

‖ŵ‖M ′
F̂

≤ C ‖ŵ‖Lp(K̂)3 ≤ C ‖ŵ‖Hα(K̂),

that implies
‖ŵ − r̂ŵ‖L2(K̂) ≤ C‖ŵ‖Hα(K̂).(22)

As replacingŵ by ŵ plus any constant does not change the left hand side,
we come to

‖ŵ − r̂ŵ‖L2(K̂) ≤ C|ŵ|Hα(K̂).

Thus we finally derive

‖w − rhw‖2
L2(K) ≤ ‖BK‖2|BK | ‖ŵ − r̂ŵ‖2

L2(K̂) ≤ Ch2α
K |w|2Hα(K),

this proves (20).2

Remark 3.3All the results of this paper are also valid for certain other
first order,H(curl ;Ω)-conforming, Ńed́elec’s elements, e.g. the element
defined in [19], i.e. each element function has the formvh|K ∈ R1(K) =
{aK +bK ×x, (aK ,bK) ∈ R

6}, with the related degrees of freedom. The
crucial step for the validity is to establish Lemmas 3.1-3.3 for this element.
In fact, Lemma 3.1 was established in ([12], Theorem 3.2). Lemmas 3.2-
3.3 can be extended to include this first order element by means of similar
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techniques as used in the present paper. Note, in addition, that higher order
finite elements are not considered here as we do not assume, for the solutions,
a stronger regularity thanHα(curl ;Ω) with 1/2 < α ≤ 1 in Subsect. 4.1
(energy-norm error estimates), or thanH2(Ω) in Subsect. 4.2 (L2-norm
error estimates).

4. Finite element error estimates

We are now going to derive the error estimates for the fully discrete finite
element scheme (7)-(8) both in the energy-norm and theL2-norm. Through-
out this section,En andEn

h will denote the solutions of the electric field
equations (5)-(6) and the finite element approximation (8) at timet = tn.

For the error analysis, we need the solution functionE to be defined also
in the interval[−2τ, T ] in terms of the time variablet. This can be done by
extendingE with some regularity from the time interval[0, T ] to the interval
[−2τ, T ]. So we shall always implicitly assume thatE is well defined in
terms of time variablet on the interval[−2τ, T ]. Furthermore, to achieve
the optimal energy-norm error estimates for the concerned fully discrete
finite element scheme, we introduce an important projection operatorPh :
H0(curl ;Ω) → V 0

h defined by

a(Phu,v) = a(u,v), ∀v ∈ V 0
h(23)

wherea(u,v) is the scalar product associated with‖ · ‖0,curl . Obviously,
Ph is well-defined inH0(curl ;Ω).

By the definition of the projectionPh in (23), we easily see that, for
α > 1/2,

‖u − Phu‖0,curl ≤ ‖u − Πhu‖0,curl ,

∀u ∈ H0(curl ;Ω) ∩ Hα(curl ;Ω).
(24)

Later on, we will need the following identity

k∑
m=1

(am − am−1)bm = akbk − a0b0 −
k∑

m=1

am−1(bm − bm−1)(25)

and the following estimates forB = H1(curl ;Ω) or B = (Hα(Ω))3 with
α ≥ 0,

‖∂τun‖2
B ≤ 1

τ

∫ tn

tn−1
‖ut(t)‖2

B dt, ∀u ∈ H1(0, T ;B),(26)

‖∂2
τu

n‖2
B ≤ 1

τ

∫ tn

tn−2
‖utt(t)‖2

B dt, ∀u ∈ H2(0, T ;B),(27)

‖∂τun
t − ∂2

τu
n‖2

B ≤ Cτ

∫ tn

tn−2
‖uttt(t)‖2

B dt, ∀u ∈ H3(0, T ;B).(28)
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4.1. Energy-norm error estimates

This subsection is devoted to the estimate on the energy-norm error for
En − En

h. For the purpose, we first analyse the errorηk
h = Ek

h − PhEk,
for 1 ≤ k ≤ n. Once we have estimates forηn

h , we can easily get the error
estimates forEn − En

h by the triangle inequality, the projection properties
(24) and the interpolation properties discussed in Sect. 3.

We conduct our analysis only for the constant coefficients case, i.e., we
assumeε(x), µ(x) andσ(x) are all constants. It is straightforward to extend
the analysis to the non-constant or elementwise constant case by simply
keeping these coefficients inside the integrals or norms and bounding them
by taking their maximum or minimum values if necessary.

To analyseηk
h, we multiply the equation (5) byv/τ ∈ V 0

h and integrate
then the resultant overΩ in space and overIk in time to obtain

ε (∂τE
k
t ,v) + σ(∂τE

k,v) +
1
τµ

( ∫
Ik

curlE dt, curlv
)

= (∂τJ
k,v),

∀v ∈ V 0
h .(29)

Now subtracting (29) from (8) and making some rearrangements, we have

ε (∂2
τ ηk

h,v) +
1
µ

(curl ηk
h, curlv) + σ(∂τη

k
h,v)

= ε
(
∂τ (Ek

t − ∂τPhEk),v
)

+ σ
(
∂τ (Ek − PhEk),v

)
+

1
τµ

( ∫
Ik

curl (E − PhEk) dt, curlv
)
, ∀v ∈ V 0

h .

Then takingv = τ∂τη
k
h = ηk

h − ηk−1
h above and usinga(a − b) ≥ a2/2 −

b2/2, for any real numbersa andb, yield

στ ‖∂τη
k
h‖2

0 +
(ε

2
‖∂τη

k
h‖2

0 − ε

2
‖∂τη

k−1
h ‖2

0

)
+

( 1
2µ

‖curl ηk
h‖2

0 − 1
2µ

‖curl ηk−1
h ‖2

0

)
≤ τσ

(
(∂τE

k − Ph∂τE
k), ∂τη

k
h

)
+τε

(
∂τ (Ek

t − ∂τE
k), ∂τη

k
h

)
+τε

(
∂2

τ Ek − Ph∂2
τ Ek), ∂τη

k
h

)
+

1
µ

( ∫
Ik

curl (E − Ek) dt, curl ∂τη
k
h

)
+

τ

µ

(
curl (Ek − PhEk), curl ∂τη

k
h

)
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≡:
5∑

i=1

(I)i.(30)

Next, we will estimate (I)i for i = 1, 2, 3, 4, 5 one by one.
First for (I)1, using Cauchy-Schwarz inequality, we have

(I)1 ≤ 1
2
στ‖∂τη

k
h‖2

0 +
1
2

στ ‖∂τE
k − Ph∂τE

k‖2
0

≤ 1
2
στ‖∂τη

k
h‖2

0 + C σ τ
(
‖∂τE

k − Πh∂τE
k‖2

0,curl

)
(by (24))

≤ 1
2
στ‖∂τη

k
h‖2

0 + C σ τ h2 ‖∂τE
k‖2

1,curl (by (12) and Lemma 3.1)

≤ 1
2
στ‖∂τη

k
h‖2

0 + C σ h2
∫

Ik

‖Et‖2
1,curl dt (by (26)).

For the estimation of (I)2, by writing ∂τ (·)k into the integral of form∫
Ik(·)t dt and using Cauchy-Schwarz inequality, we easily come to

(I)2 ≤ 1
2
τε‖∂τη

k
h‖2

0 + C ετ2
∫ tk

tk−2
‖Ettt‖2

0 dt.

The estimate for (I)3 is achieved using the same technique as used for
(I)1,

(I)3 ≤ 1
2
ετ‖∂τη

k
h‖2

0 + C ε h2
∫

Ik

‖Ett‖2
1,curl dt.

To analyse (I)4, we use Green’s formula and the boundary condition to
derive

(I)4 =
1
µ

∫
Ik

(
curl curl (E − Ek), ∂τη

k
h

)
dt

= − 1
µ

∫
Ik

∫ tk

t

(
curl curlEt, ∂τη

k
h

)
dt′ dt,

then by Cauchy-Schwarz inequality we obtain

(I)4 ≤ 1
2
τε‖∂τη

k
h‖2

0 +
τ2

2εµ2

∫
Ik

‖curl curlEt‖2
0 dt.

Finally, we estimate (I)5. By the definition ofPh in (23), we have

(I)5 =
τ

µ

(
curl (Ek − PhEk), curl ∂τη

k
h

)
= − τ

µ

(
Ek − PhEk, ∂τη

k
h

)
,
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then applying the Cauchy-Schwarz inequality and (12), (24) and Lemma 3.1,
we come to

(I)5 ≤ τ

µ
‖Ek − PhEk‖0 ‖∂τη

k
h‖0

≤ τ

µ2 ‖∂τη
k
h‖2

0 + C τ h2 ‖Ek‖2
1,curl .

This completes all the estimates for (I)i in (30). Now summing both sides
in (30) overk = 1, 2, · · · , n and making use of the previous estimates for
(I)i (1 ≤ i ≤ 5), lead to

ε

2
‖∂τη

n
h‖2

0 +
1
2µ

‖curl ηn
h‖2

0 ≤ C m0(E)(τ2 + h2) + d(η0
h)

+C τ

n∑
k=1

(
‖∂τη

k
h‖2

0 + ‖curl ηk
h‖2

0

)
,(31)

whereC is a constant depending on the coefficientsε, σ andµ, andm0(E)
is an a priori bound ofE of the following form

m0(E) = max
0≤t≤T

‖E(t)‖2
1,curl +

∫ T

0
(‖Ett‖2

1,curl + ‖curl curlEt‖2
0) dt

+
∫ T

−τ
‖Ettt‖2

0 dt,

while d(η0
h) is the initial error

d(η0
h) =

ε

2
‖∂τη

0
h‖2

0 +
1
2µ

‖curl η0
h‖2

0,

which can be analysed as follows:
First by the definitions ofE0

h and the projectionPh, we have

‖curl η0
h‖0 = ‖curl (ΠhE0 − PhE0)‖0 = ‖curlPh(ΠhE0 − E0)‖0

≤ ‖ΠhE0 − E0‖0,curl ≤ C h ‖E(0)‖1,curl .

Then for the first term ind(η0
h), by definition ofη0

h, E0
h andE−1

h , we
know

∂τη
0
h = τ−1(τΠhEt(0) − PhE(0) + PhE(−τ))

= τ−1Ph(E(−τ) − E(0) + τEt(0)) + Ph(ΠhEt(0) − Et(0)),

using the property of the projectionPh, we derive

‖∂τη
0
h‖0 ≤ τ−1‖E(−τ) − E(0) + τEt(0)‖0,curl

+‖ΠhEt(0) − Et(0)‖0,curl

≤ C τ sup
(−τ,0)

‖Ett‖1 + C h ‖Et(0)‖1,curl .
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Therefore, we get the estimates for the initial errord(η0
h):

d(η0
h) ≤ C τ2 sup

(−τ,0)
‖Ett‖2

1 + C h2 (‖E(0)‖2
1,curl + ‖Et(0)‖2

1,curl
)
.

Then substituting this into (31) and applying the well-known discrete Gron-
wall’s inequality, we conclude that

max
1≤n≤M

(
‖∂τ (En

h − PhEn)‖2
0 + ‖curl (En

h − PhEn)‖2
0

)
≤ C m0(E) (τ2 + h2).

Finally, applying the triangle inequality to

∂τE
n
h − En

t = (∂τE
n
h − Ph∂τE

n) + (Ph∂τE
n − ∂τE

n) + (∂τE
n − En

t )

and
En

h − En = (En
h − PhEn) + (PhEn − En),

we have proved the following energy-norm error estimates

Theorem 4.1 Let E and En
h be the solutions of the electric field equa-

tions (5)-(6) and the finite element approximation (7)-(8) at timet = tn,
respectively. Assume that

E ∈ H2(0, T ;H0(curl ;Ω) ∩ H1(curl ;Ω) ) ∩ H3(0, T ; (L2(Ω))3 ).

Then we have

max
1≤n≤M

(
‖∂τE

n
h − En

t ‖2
0 + ‖curl (En

h − En)‖2
0

)
≤ C (τ2 + h2)

whereC is a constant independent of both the time stepτ and the meshsize
h.

Remark 4.1The error estimate in Theorem 4.1 is optimal both in terms of
time step sizeτ and mesh sizeh as we have used only theH1(curl ;Ω)-
regularity in space andH3(0, T )-regularity in time.

If the solutionE has no so much regularity in space as in Theorem 4.1 (cf.
Costabel [10], Assous et al [4]), we then have the following weaker error
estimates

Theorem 4.2 Let E and En
h be the solutions of the electric field equa-

tions (5)-(6) and the finite element approximation (7)-(8) at timet = tn,
respectively. Assume that for some1/2 < α < 1,

E ∈ H2(0, T ;H0(curl ;Ω) ∩ Hα(curl ;Ω) ) ∩ H3(0, T ; (L2(Ω))3 ).

Then we have

max
1≤n≤M

(
‖∂τE

n
h−En

t ‖2
0+‖curl (En

h−En)‖2
0

)
≤ C (τ2+τ2h2(α−1)+h2α).
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Proof. The proof is almost identical to the one for Theorem 4.1 by replacing
H1(curl ;Ω) by Hα(curl ;Ω), Lemma 3.1 by Lemmas 3.2-3.3, (12) by
Lemma 3.3. The only remaining term we have to re-estimate is the term
(I)4 in (30) as we now have no regularitycurl (curlEt) in (L2(Ω))3 as
used in that proof. Instead we can bound the term as follows: by assumption
we haveE ∈ H1(0, T ;Hα(curl ;Ω) ), socurlE ∈ H1(0, T ; (Hα(Ω))3 )
and thencurl (curlE) ∈ H1(0, T ; (Hα−1(Ω))3 ), whereHα−1(Ω) is the
dual space ofH1−α(Ω) (note that this is true as, when0 < 1 − α < 1/2,
H1−α(Ω) = H1−α

0 (Ω)). Therefore, by Green’s formula and the inverse
inequality we have

(I)4 =
1
µ

∫
Ik

〈
curl curl (E − Ek), ∂τη

k
h

〉
Hα−1,H1−α

dt

= − 1
µ

∫
Ik

∫ tk

t

〈
curl (curlEt), ∂τη

k
h

〉
Hα−1,H1−α

dt′dt

≤ τ

µ

∫
Ik

‖curl (curlEt)‖Hα−1(Ω)‖∂τη
k
h‖H1−α(Ω)dt

≤ Cτ hα−1‖∂τη
k
h‖0

∫
Ik

‖curl (curlEt)‖Hα−1(Ω)dt

≤ 1
4
τε‖∂τη

k
h‖2

0 + Cτ2h2(α−1)
∫

Ik

‖curl (curlEt)‖2
Hα−1(Ω)dt.

That completes the proof of Theorem 4.2.2

Remark 4.2It is easy to see that if we takeτ to be the same magnitude as
h, then the error estimate in Theorem 4.2 is of optimal order, i.e.O(h2α),
in the sense of the space regularity we have used.

Remark 4.3Theorems 4.1-4.2 can be extended to the Crank-Nicolson
scheme (9)-(10). The major difference in proving the related theorems is to
derive a similar equation as (29) and to choose an appropriate test functionv.
For the former, we may multiply equation (5) at timet = tn by v/τ ∈ V 0

h
and then integrate the resulting equation overΩ. For the latter, we may
choose the test functionv = ηn+1

h − ηn−1
h = (ηn+1

h − ηn
h) + (ηn

h − ηn−1
h ).

4.2.L2-norm error estimates

This subsection is dedicated to the derivation of theL2-norm error estimates.
The basic technique used here is borrowed from Girault [13] and Monk [18],
where Ńed́elec’s finite element methods were applied for stationary Navier-
Stokes equations and semi-discrete schemes with Néd́elec’s finite elements
for time-dependent Maxwell’s equations, respectively.
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As usual, we assume the domainΩ is a convex polyhedron in order to
achieve the optimalL2-norm error estimates. If the domainΩ is a general
Lipschitz polyhedron, we have the followingL2-norm error estimates: for
E ∈ H3(0, T ; (L2(Ω))3 )andE ∈ H2(0, T ;H0(curl ;Ω)∩H1(curl ;Ω) ),

max
1≤n≤M

‖En
h − En‖0 ≤ C (τ + h),

which can be obtained immediately by applying the triangle inequality to
the relation

En
h − En = (ΠhE0 − E0) + τ

n∑
k=1

(∂τE
k
h − ∂τE

k)

= (ΠhE0 − E0) + τ
n∑

k=1

(∂τE
k
h − Ek

t ) + τ
n∑

k=1

(Ek
t − ∂τE

k)

and the results in Theorem 4.1.
A similar result, when E is only in H2(0, T ;H0(curl ;Ω)∩

Hα(curl ;Ω) ) andH3(0, T ; (L2(Ω))3 ), for 1/2 < α < 1, is

max
1≤n≤M

‖En
h − En‖0 ≤ C hα,

by using Theorem 4.2 and takingτ to be of orderO(h).
But if the domainΩ is convex and the solutionE is more regular, we

can expect higher convergence order. We now show this is possible. We will
consider only the case that the coefficientsε andµ are constants (we take1
for simplicity) andσ = 0. We need the following decomposition (cf. Ciarlet
[7])

L2(Ω)3 = M ⊕ M⊥(32)

whereM andM⊥ are two spaces defined by

M = {v = ∇z; z ∈ H1
0 (Ω)}

and

M⊥ = {v ∈ L2(Ω)3; (v,∇z) = 0 ∀ z ∈ H1
0 (Ω)} = H(div 0;Ω).

The last equality can be proved directly from definition. AsΩ is convex, we
haveH0(curl ;Ω) ∩ M⊥ ⊂ H1(Ω)3 (see [14]).

To introduce a discrete version of (32), we define a finite element space

Sh = {zh ∈ H1
0 (Ω); zh|K ∈ P2 ∀K ∈ T h}.

An L2(Ω) projectionQh ontoSh will be needed in our later analysis, i.e.
we defineQh : L2(Ω) 7→ Sh as follows

(Qhz, vh) = (z, vh), ∀ z ∈ L2(Ω), vh ∈ Sh.
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Now we can introduce the following discrete decomposition

V 0
h = Mh ⊕ M⊥

h(33)

whereMh andM⊥
h are two spaces defined by

Mh = {v = ∇zh; zh ∈ Sh}
and

M⊥
h = {v ∈ V 0

h ; (v,∇zh) = 0 ∀ zh ∈ Sh}.

Note that, by definition,M (resp.Mh) is the kernel of thecurl operator
in H0(curl ;Ω) (resp.V 0

h ).
Before discussing our main results in this section, we introduce some

operators which are very useful in the laterL2-norm error estimates. We
first define an operatorT . For anyu ∈ M⊥, Tu ∈ H0(curl ;Ω)∩M⊥ and
satisfies

(curl (Tu), curlv) = (u,v), ∀v ∈ H0(curl ;Ω) ∩ M⊥.

For a givenu, Tu can be regarded also as the solution, in variablew, to the
following system (cf. Girault [13]):

curl (curlw) = u in Ω,(34)

div w = 0 in Ω,(35)

w × n = 0 onΓ.(36)

The problem (34)-(36) is a particular case of the system in(w′, p):

curl (curlw′) + ∇ p = g in Ω,(37)

div w′ = 0 in Ω,(38)

w′ × n = 0 onΓ,(39)

p = 0 onΓ,(40)

for a giveng in (L2(Ω))3. According to Lemma 4.1 in [13], the system (37)-
(40) has a unique solutionw′ ∈ H0(curl ;Ω)∩H(div 0;Ω)andp ∈ H1

0 (Ω).
In addition, the following properties hold:

– w′ ∈ H1(Ω)3 and||w′||1 ≤ C ||curlw′||0 ≤ C ||g||0.
– curlw′ ∈ H1(Ω)3 and||curlw′||1 ≤ C ||g||0.
– |p|1 ≤ C ||g||0.

Clearly, if g ∈ M⊥, thenp = 0: this is the case withg = u.
The discrete versionTh : M⊥ → M⊥

h of the operatorT can be defined
by

(curl (Thu), curlvh) = (u,vh), ∀u ∈ M⊥, vh ∈ M⊥
h .

We now state some properties of the operatorsT andTh. The results (i)
and (ii) were established by Monk in [18], so we focuse on the proof of (iii)
and (iv). The property (iii) is an improvement over the result in [18].
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Lemma 4.1 LetΩ be a convex polyhedron and supposeTu ∈ H2(Ω)3, for
u ∈ H0(curl ;Ω)∩H(div 0;Ω). Then there exists a constantC independent
of h andu such that

(i) ‖curl ((T − Th)u)‖0 ≤ C h ‖curl (Tu)‖1,

(ii) ‖curl (Thu)‖0 ≤ C ‖u‖0,

(iii) ‖(T − Th)u‖0 ≤ C h2‖Tu‖2,

(iv) ‖T
1/2
h u‖0 ≤ C ‖u‖0.

Proof. Notice that by using Weber’s result [22], one easily gets that
||curlw||0 defines a norm inH0(curl ;Ω)∩H(div 0;Ω) which is equivalent
to its canonical norm.

Now, asp = 0, w = Tu is the solution to:

(curlw, curlv) = (u,v), ∀v ∈ H0(curl ;Ω),

andwh = Thu ∈ M⊥
h also satisfies the discrete variational formulation:

(curlwh, curlvh) = (u,vh), ∀vh ∈ V 0
h ⊂ H0(curl ;Ω).

Therefore,‖curl (w − wh)‖0 ≤ ||curlw||0 ≤ C ||u||0.
We first prove the fourth inequality. We see

||T 1/2
h u||20 = (Thu,u) = (wh,u) = (wh − w,u) + (w,u).

Defineq ∈ H1
0 (Ω) by

(∇q, ∇µ) = (wh,∇µ), ∀µ ∈ H1
0 (Ω).

Note that∇q andu belong to orthogonal subspaces ofL2(Ω)3. Setv =
wh − ∇q: curlv = curlwh, div v = 0, v × n = 0 on Γ . Therefore
wh − ∇q − w ∈ H0(curl ;Ω) ∩ H(div 0;Ω) and

||wh − ∇q − w||0 ≤ C ||curl (wh − w)||0 ≤ C ||curlw||0 ≤ C ||u||0.
Also, ||w||0 ≤ C ||curlw||0 ≤ C ||u||0, which proves (iv).

Now we turn to the third inequality: take anyg in L2(Ω)3 and solve
(37)-(40). Then

(g,wh − w)
= (curlw′, curl (wh − w)) + (∇p,wh − w)
= (curl (w′ − w∗

h), curl (wh − w)) + (∇(p − ph),wh − w)
= (curl (w′ − w∗

h), curl (wh − w)) + (∇(p − ph),wh − yh)
+(∇(p − ph),yh − w), ∀w∗

h,yh ∈ V 0
h , ∀ ph ∈ Sh.(41)
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Setzh = wh − yh and split upzh into zh = ∇q + v, with q ∈ H1
0 (Ω)

defined by
(∇q, ∇µ) = (zh,∇µ), ∀µ ∈ H1

0 (Ω).

As usualv = zh − ∇q is an element ofH0(curl ;Ω) ∩ H(div 0;Ω). Aszh

belongs toV 0
h , it has sufficient regularity for definingΠhzh = zh. Therefore,

it can also be split up into

zh = Πhv + ∇qh, with qh ∈ Sh.

Remark 4.4To prove the splitting one can writeΠh(∇q) as∇qh, then use
(18) which leads tocurl (Πh(∇q)) = 0: thus there existsq′ ∈ H1(Ω)
such thatΠh(∇q) = ∇q′. Moreover, by definition,Πh(∇q) is in V 0

h , so
its restriction to any tetrahedronK belongs to(P1)3. Putting these together
shows thatq′ is an element ofSh.

Now, the estimate of(∇(p − ph), zh) proceeds as in Girault [13]: choose
for ph theH1

0 -projection ofp into Sh, hence

|(∇(p − ph), zh)| ≤ |p|1 ||Πhv − v||0.(42)

We are going to estimate||Πhv − v||0. First, following [3],

‖v̂ − Π̂v̂‖L2(K̂) ≤ C
{

‖ĉurl v̂‖Lp(K̂) + ‖v̂‖L2(K̂) +
∑
F̂⊂K̂

‖v̂ × n̂‖Lp(F̂ )

}
.

But curlv = curl zh and (13) preserves thecurl . Therefore,ĉurl v̂ =
ĉurl ẑh which belongs to a finite dimensional space. Thus,

‖ĉurl v̂‖Lp(K̂) ≤ Ĉ ‖ĉurl v̂‖L2(K̂).

Using the norm equivalence in the quotient spaceH1/P0, we come to

‖v̂ − Π̂v̂‖L2(K̂) ≤ C
{

‖ĉurl v̂‖L2(K̂) + |v̂|H1(K̂)

}
.

Thanks to the estimates which bound the right-hand side (cf. [9] and [6]), it
follows from (14) that

‖v − Πhv‖L2(K) ≤ C hK |v|H1(K).

Thus

‖v − Πhv‖0 ≤ C h |v|1 = C h ||curlv||0
≤ C h ||curl zh||0 = C h ||curl (wh − yh)||0.

We then have from (42) that

|(∇(p − ph), zh)| ≤ C h |p|1 {||curl (wh − w)||0 + ||curl (w − yh)||0} .
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Therefore, the last two terms in (41) are bounded by

|p|1 {C h (||curl (wh − w)||0 + ||curl (w − yh)||0) + ||w − yh||0} ,

∀yh ∈ V 0
h .

By assumption,w belongs toH2(Ω): choosingyh = Πhw gives

‖w − yh‖0 ≤ C h2|w|2,
‖curl (w − yh)‖0 ≤ C h ‖curlw‖1.(43)

And, with the help of (i), we obtain the final bound for the last two terms in
(41), that is

C h2 |p|1 ‖w‖2 ≤ C h2 ||g||0 ‖w‖2.

To conclude, asw′ belongs toH1(curl ;Ω) ∩ H0(curl ;Ω), we can choose
w∗

h = Πhw′, and using (43) and (i), we have the final bound for the first
term in (41),∣∣(curl (w′ − w∗

h), curl (wh − w))
∣∣ ≤ C h2 ||g||0 ||w||2.

This proves (iii).2

Now we are in a position to derive the main results in this section, i.e.
theL2-norm error estimate. By means of the decomposition (32), for any
J(t) ∈ L2(Ω), t ∈ (0, T ), we can write

J = J1 + ∇z, J1 ∈ M⊥, z ∈ H1
0 (Ω).(44)

This decomposition enables us to separate our error estimates into two parts,
i.e. Theorems 4.3 and 4.4.

The general principles of the proofs for these two theorems are similar
to those of the proofs for Theorems 4.1 and 4.2 in [18]. But as our scheme
is fully discrete, a lot of technical details need to be treated newly. We will
give only an outline for each proof but refer to [9] for details.

First we show

Theorem 4.3 LetE andEn
h be the solutions to (5)-(6) and (7)-(8). Assume

that J(t) ∈ M⊥ for t ∈ (0, T ), and thatE0 and E1 belong toM⊥ ∩
(H2(Ω))3. Moreover we assume that

E ∈ C1(0, T ; (H2(Ω))3) ∩ C2(0, T ; (H1(Ω))3) ∩ H3(0, T ; (L2(Ω))3).

Then we have

‖En − En
h‖0 ≤ C (τ + h2) for n = 1, 2, · · · , M

where the constantC is independent ofτ andh but may depend on the a
priori bounds onE.
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Proof. By the assumption, it is easy to deriveE(t) ∈ M⊥. Using (33), we

can writeEk
h = E

k
h + ∇zk

h with E
k
h ∈ M⊥

h andzk
h ∈ Sh, for 1 ≤ k ≤ n.

Then

Ek − Ek
h = (Ek − E

k
h) − ∇zk

h ≡ ηk
h − ∇zk

h, for 1 ≤ k ≤ n.(45)

It suffices to estimate theL2-norms for bothηn
h and∇zn

h .
We first analyse∇zn

h . Takingv = ∇∂τz
k
h ∈ Mh for anyzk

h ∈ Sh in (8)
and the Cauchy-Schwarz inequality, we get

‖∂τ∇zn
h‖2

0 ≤ ‖∂τ∇zn−1
h ‖2

0 ≤ · · · ≤ ‖∂τ∇z0
h‖2

0.

But by orthogonality, we can write

‖∂τ∇z0
h‖2

0 = (∂τE
0
h, ∂τ∇z0

h) = (∂τE
0
h − ∂τE

0, ∂τ∇z0
h),

from which and the initial condition (7) we can show

‖∂τ∇z0
h‖0 ≤ C(h2‖E1‖2 + τ sup

t∈(−τ,0)
‖Ett(t)‖1).(46)

Similarly, we have‖∇z0
h‖0 ≤ C h2 |E0|2. Using this, (46) and the identity

∇zn
h = ∇z0

h + τ

n∑
k=1

∂τ∇zk
h,

we derive that

‖∇zn
h‖0 ≤ C h2(‖E1‖2 + ‖E0‖2) + Cτ sup

t∈(−τ,0)
‖Ett(t)‖1.(47)

Next we estimateηk
h in (45). Takingv = Thφh in (8) with φh ∈ M⊥

h ,
we have, for1 ≤ k ≤ n,

(∂2
τ ThE

k
h, φh) + (Ek

h, φh) = (∂τThJk, φh), ∀φh ∈ M⊥
h .(48)

A similar relation to (48) for the continuous solutionE can be derived
by multiplying (5) byv = τ−1Tφ with φ ∈ M⊥ and then integrating over
Ik in time and overΩ in space:

(∂τTEk
t , φ) + (Ẽ

k
, φ) = (∂τTJk, φ), ∀φ ∈ M⊥,(49)

whereẼ
k

= τ−1 ∫
Ik E(t) dt.

Note for anyφh ∈ M⊥
h , we can writeφh = φ + ∇z1 with φ ∈ M⊥ and

z1 ∈ H1
0 (Ω). Using this relation we obtain from (49) that

(∂τTEk
t , φh) + (Ẽ

k
, φh) = (∂τTJk, φh), ∀φh ∈ M⊥

h .(50)
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Subtracting (48) from (50) and making some arrangements, we derive for
anyφh ∈ M⊥

h that

(∂2
τ Thηk

h, φh) + (ηk
h, φh)(51)

= ( (T − Th)∂τJ
k, φh) + (∂2

τ ThEk − T∂τE
k
t , φh) + (Ek − Ẽ

k
, φh),

then takingφh = ∂τE
k
h gives

(∂2
τ Thηk

h, ∂τη
k
h) + (ηk

h, ∂τη
k
h)

= (Th∂2
τ ηk

h, ∂τE
k) + (ηk

h, ∂τE
k) + ( (Th − T )∂τJ

k, ∂τE
k
h)

+(Ẽ
k − Ek, ∂τE

k
h) + (∂τTEk

t − ∂2
τ ThEk, ∂τE

k
h).

Note that, (52) holds actually for anyφh ∈ V 0
h by orthogonality. Then,

adding the previous equation to the equation (52) withφh = Πh∂τE
k ∈ V 0

h ,
we get

(∂2
τ Thηk

h, ∂τη
k
h) + (ηk

h, ∂τη
k
h)

= (Th∂2
τ ηk

h, ∂τE
k − Πh∂τE

k) + (ηk
h, ∂τE

k − Πh∂τE
k)

+( (Th − T )∂τJ
k, ∂τE

k
h − Πh∂τE

k) + (Ẽ
k − Ek, ∂τE

k
h − Πh∂τE

k)

+(∂τTEk
t − ∂2

τ ThEk, ∂τE
k
h − Πh∂τE

k)

≡:
5∑

i=1

(I)i,

which implies, usinga(a − b) ≥ 1
2a2 − 1

2b2, for anya, b ∈ R,{
1
2
‖T

1/2
h ∂τη

k
h‖2

0 − 1
2
‖T

1/2
h ∂τη

k−1
h ‖2

0

}

+
{

1
2
‖ηk

h‖2
0 − 1

2
‖ηk−1

h ‖2
0

}
≤ τ

5∑
i=1

(I)i.(52)

The terms (I)i, i = 1, · · · , 5 can be estimated one by one (cf. [9] for details).
With these estimates, we then sum up (52) overk = 1, · · · , n and finally
obtain

‖T
1/2
h ∂τη

n
h‖2

0 + ‖ηn
h‖2

0 ≤ ‖T
1/2
h ∂τη

0
h‖2

0 + ‖η0
h‖2

0 + C(E)(τ2 + h4)

≤ C(E)(τ2 + h4).

This with (45) and (47) implies the desired estimate of Theorem 4.3.2

Now we turn to the second part of theL2-norm error estimate, i.e. we
are going to prove
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Theorem 4.4 LetE andEn
h be the solutions to (5)-(6) and (7)-(8). Assume

that J is in H1(0, T ;M ∩ (H2(Ω))2), and thatE0 and E1 belong to
M ∩ (H2(Ω))3. Moreover we assume that

E ∈ C2(0, T ; (H2(Ω))3) ∩ H3(0, T ; (L2(Ω))3).

Then we have

‖En − En
h‖0 ≤ C (τ + h2) for n = 1, 2, · · · , M

where the constantC is independent ofτ andh but may depend on the a
priori bounds onE.

Proof. By the assumption, it is easy to getE(t) ∈ M . So we haveE(t) =
∇z(t) with z ∈ H1

0 (Ω). Using (33), we can writeEk
h = E

k
h + ∇zk

h with

E
k
h ∈ M⊥

h andzk
h ∈ Sh, for 1 ≤ k ≤ n. NoteE0 ∈ M , soE0 = ∇z0 for

somez0 ∈ H1
0 (Ω), thus we haveE0

h = ΠhE0 = Πh∇z0 = ∇z0
h for some

z0
h ∈ Sh, i.e.E

0
h = 0. Similarly we haveE

−1
h = 0.

By means of these decompositions, we may write

En − En
h = (E0 − E0

h) +
n∑

k=1

∫ tk

tk−1
(Et − ∂τE

k
h)dt

= (E0 − ΠhE0) +
n∑

k=1

∫ tk

tk−1
∇(zt − ∂τz

k
h)dt

−
n∑

k=1

∫ tk

tk−1
∂τE

k
hdt.

which, with the factE(t) = ∇z(t), thus

‖∇(zt − ∂τz
k
h)‖0 ≤ τ

( ∫ T

0
‖Ett‖2

0dt
)1/2

+ ‖∇(zk
t − ∂τz

k
h)‖0,

implies

‖En − En
h‖0 ≤ τ

n∑
k=1

‖∇(zk
t − ∂τz

k
h)‖0 + τ

n∑
k=1

‖∂τE
k
h‖0

+Ch2 |E0|2 + τ
( ∫ T

0
‖Ett‖2

0dt
)1/2

.(53)

It remains to estimate the first and second terms in the right side of (53). Let

us first estimate the term‖∂τE
k
h‖0. Takingv = ∂τE

k
h ∈ M⊥

h in (8), and
using orthogonality andJ(t) = ∇g(t) for someg ∈ H1

0 (Ω), we get

(∂2
τ E

k
h, ∂τE

k
h) + (curlEk

h, curl ∂τE
k
h) = (∂τ∇gk, ∂τE

k
h),
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which implies{
1
2
‖∂τE

k
h‖2

0 − 1
2
‖∂τE

k−1
h ‖2

0

}

+
{

1
2
‖curlEk

h‖2
0 − 1

2
‖∇E

k−1
h ‖2

0

}
≤ τ(∂τ∇gk, ∂τE

k
h).

Summing up the above equations overk = 1, · · · , n, we obtain

‖∂τE
n
h‖2

0 + ‖curlEn
h‖2

0 ≤ 2τ

n∑
k=1

(∂τ∇gk, ∂τE
k
h)

≤ 2τ
n∑

k=1

(
∇(∂τg

k − Qh∂τg
k), ∂τE

k
h

)

≤ τ2
n∑

k=1

‖∂τE
k
h‖2

0 + Ch4
∫ T

0
‖gt‖2

3dt.

That means by Gronwall’s inequality andJ(t) = ∇g that

‖∂τE
n
h‖2

0 + ‖curlEn
h‖2

0 ≤ Ch4
∫ T

0
‖J t‖2

2dt.(54)

Next, we are going to estimate the term‖∇(zk
t −∂τz

k
h)‖0 in (53). Taking

v = ∇yk
h for anyyk

h ∈ Sh in (29) and then subtracting it from (8) yields

(∂τ∇(zk
t − ∂τz

k
h), ∇yk

h) = 0, ∀ yk
h ∈ Sh,

using this, we obtain

1
2
‖∇(zk

t − ∂τz
k
h)‖2

0 − 1
2
‖∇(zk−1

t − ∂τz
k−1
h )‖2

0

≤ τ(∂τ∇(zk
t − ∂τz

k
h), ∇(zk

t − yk
h) ).

summing the equations overk = 1, · · · , n and using (25) gives for any
yk

h ∈ Sh,

‖∇(zn
t − ∂τz

n
h)‖2

0

≤ ‖∇(z0
t − ∂τz

0
h)‖2

0 + τ
n∑

k=1

(∇(zk
t − ∂τz

k
h), ∇∂τ (zk

t − yk
h) )

+(∇(zn
t − ∂τz

n
h), ∇(zn

t − yn
h) ) − (∇(z0

t − ∂τz
0
h), ∇(z0

t − y0
h) ).

(55)
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Now takingyk
h = Qh∂τz

k, the terms in (55) can be bounded as follows:

‖∇(zk
t − yk

h)‖2
0 ≤ Cτ

∫ tk

tk−1
‖Ett‖2

0dt + Ch4 max
0≤t≤T

|Et|22dt,

‖∇∂τ (zk
t − yk

h)‖2
0 ≤ Cτ

∫ tk

tk−1
‖Ettt‖2

0dt + Ch4 max
0≤t≤T

|Ett|22,
and

‖∇(z0
t − ∂τz

0
h)‖0 ≤ Ch2 |E1|2.

Substituting these estimates into (55), we have

‖∇(zn
t − ∂τz

n
h)‖2

0 ≤ C(E)(τ2 + h4).(56)

Theorem 4.4 then follows from (53), (54) and (56).2
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