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Summary. A fully discrete finite element method is used to approximate
the electric field equation derived from time-dependent Maxwell's equa-
tions in three dimensional polyhedral domains. Optimal energy-norm error
estimates are achieved for general Lipschitz polyhedral domains. Optimal
L?-norm error estimates are obtained for convex polyhedral domains.

Résune. Onrésout, dans un domaine pélyrique, legquations de Maxwell
temporelles. Une gthode pagléments finis dis@te en temps et en espace
est propoée pour calculer le cham@ectrique. Une estimation d’ordre op-
timal est obtenue pour I'erreur en norraeergie dans le caggeral. Pour
la normeL?, on obtient une estimation optimale dans le cas d’unguiry
convexe.
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1. Introduction

Many problems in sciences and industry involve the solutions of Maxwell’s
equations, for example, problems arising in plasma physics, microwave de-
vices, diffraction of electromagnetic waves. In this paper, we are interested in
the numerical solution of time-dependent Maxwell’s equations in a bounded
polyhedral domain in three dimensions. In the literature, one can find a great
deal of work on numerical approximations to time-dependent Maxwell’s
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194 P. Ciarlet, Jr, J. Zou

equations and also analyses on the convergence of numerical schemes for
stationary Maxwell's equations and related models. We refer readers to
Raviart [21], Assous et al [5], Hewett-Nielson [16], Degond-Raviart [11],
Ambrosiano-Brandon-Sonneriaker [2] and Ciarlet-Zou [8], etc. But to

our knowledge, it seems that there are few existing works on the convergence
analysis for semi-discrete or fully discrete numerical methods for the time-
dependent Maxwell systems. In [18], Monk obtained error estimates for a
semi-discrete finite element approximation to the time-dependent Maxwell’s
equations using BiElec’s elements, from which our current paper was initi-
ated. Furthermore, in [17] Makridakis-Monk proposed a fully discrete finite
element scheme and obtained the error estimates under strong regularities
on the solutions. This scheme involves solving coupled non-symmetric and
indefinite linear algebraic systems of both electric and magnetic fields.

The purpose of the current paper is to analyse the convergence of a
simple fully discrete finite element scheme for the electric field equation
derived from Maxwell's equations by eliminating the magnetic field. The
scheme is a fully discrete version of the semi-discrete scheme studied in
[18], and it is constructed in a way that involves only solving a symmetric
and positive definite linear algebraic system. One of our major interests here
is to investigate the convergence order of the fully discrete scheme without
making use of strong regularities on the solutions, which is certainly of
practical importance. Under appropriate assumptions on the regularity of
the continuous solutions, we derive for the concerned fully discrete scheme
the optimal energy-norm error estimates for general polyhedral domains and
optimal L2-norm error estimates for convex polyhedral domains.

We now introduce the Maxwell’'s equations to be considered in the paper.
Let 12 be a bounded Lipschitz continuous polyhedral domaRinE (x, t)
and H (x, t) the electric and magnetic fields respectively. Then Maxwell’s
eqguations can be formulated as follows:

(1) eEi+0E —curlH =J in2x(0,7),
2 pHi+curlE=0 in 2 x (0,7),

wheree(x) ando(x) are the dielectric constant and the conductivity of the
medium respectively, whilg(x) andJ (x, t) are the magnetic permeability

of the material inf2 and the applied current density respectively. Here, the
subscriptt denotes the time derivative. It is assumed that these coefficients
are piecewise smooth, real, bounded and positive, that is, there gxish
andp > 0 such that, for alle € £,

(3) g0 <e(x), po<p(x), and 0 <o(x).

Moreover, these coefficientsx), u(x) ando(x) may be discontinuous.
We assume that the boundary of the dom@irs a perfect conductor, that
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Fully discrete schemes for Maxwell’s equations 195
is,
4) Exn=0 on 0 x(0,7T).

We supplement Maxwell's equations with the initial conditions
E(x,0) = Eg(x) and H(xz,0) = Ho(x), x€ 1.

Instead of solving the coupled system (1)-(2) with both the electric and
magnetic fields as unknowns, we eliminate the magnetic fig|dy taking
the time derivative of (1) and using (2), to obtain the second order electric
field equation:

1 .
(5) eEy+oE;+ curl (—curl E) = J;, in 2x(0,T),
I

with the boundary condition still being (4) but the previous initial conditions
being replaced by

(6) E(x,0) = Eo(x) and E.(x,0) = E(x),
whereE;(x) = e 1 (J(x,0) + curl Ho(z) — o(x) Eo(x)).

Remark 1.1We have implicitly assumed that the electromagnetic field is
generated by a current with densify without any charge density: i.e. the
medium is locally electrically neutral, antlv J = 0. In the more general
case, the charge conservation equation reads:

pt +divd =0,

wherep is the charge density.
Therefore, ife = 0, we derive from (1) and (2) that

div (eE) = —p, and div(uH) =0,

when these relations hold for the initial data. In this case, one may con-
sider a saddle-point approach, like in Raviart [21] or Ciarlet-Zou [8], where
Darwin’s model of approximation to Maxwell’s equations was studied.

We end this section with the introduction of some notations used in the
paper. We define

H(div; Q) = {v € (L*(2))?; divv € L*(2)},
H(div0; 2) = {v € H(div; 2); divv = 0},

H(curl; 2) = {v € (L*(22))?; curlv € (L*(£2))*},
Hcurl; 2) = {v € (HY(2))3; curlv € (H*(12))*},
Hy(curl; 2) = {v € H(curl;2); vxn=0onI},
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196 P. Ciarlet, Jr, J. Zou

where o is a nonnegative real numbef/(div;(2), H(curl;{2) and
H%(curl; 2) are equipped with the norms

] 1/2

vlloai = ([1vIE + lldivv]ig)
1/2
Ivlloeun = (VI + lewt viid) ™,

1/2
¥l lacun = (|1vI12 + [leurl v[[2) .

Here and in the sequel of the papiér,||o will always mean th¢L?(£2) )3-

norm (orL?(£2)-norm if only scalar functions are involved). And in general,
we will use|| - ||, and| - |, to denote the norm and semi-norm in the Sobolev
space H(£2) )3 (or H*($2) if only scalar functions are involved). We refer

to Adams [1] and Grisvard [15] for more details on Sobolev spacesill
always denote a generic constant which is independent of both the time step
7 and the finite element mesh size

2. Fully discrete finite element schemes

We consider discretizing the electric field Cauchy problem (5)-(6) by the
implicit backward difference scheme in time together withddlec's finite
elements in space.

Let us first triangulate the space dom&lmnd assume th&t" is a shape
regular triangulation of? with a mesh sizé made of tetrahedra. An element
of 7" is denoted bykK, and the diameters df and its inscribed ball are
denoted byhx andpg respectively. As usual, we lét = maxgcrn hi.

As the triangulation is shape regular, we hayg/px < C (cf. Ciarlet [6]).
We then introduce the following &€lec’s H (curl ; 2)-conforming finite
element space

Vi, ={vn € H(curl; 2); vu|. € (P1)?, VK eT"}

whereP; is the space of linear polynomials. It was proved iedslec [20]
that any functionv in V}, can be uniquely determined by the degrees of
freedom in the moment s@fz(v) on each elemer € 7". HereMg(v)

is defined as follows:

Mg(v) = {/(V-T)qu; Vq € Pi(e) onany edge of K},

wherer is the unit vector along the edge
From[3],Lemma4.7, we know thatthe integrals required in the definition
of Mg (v) make sense for any € X, (K), with p > 2, where

X,(K) = {v € (IP(K))? curlv € (LP(K))? v x n € (LP(0K))*}.

Numerische Mathematik Electronic Edition
page 196 of Numer. Math. (1999) 82: 193-219



Fully discrete schemes for Maxwell’s equations 197

Thus we can define, for any € H/?%9(curl; £2)% with § > 0 (which
implies thatcurlv € (LPs(K))? andv € (LP5(0K))?3 for someps > 2
which depends on), an interpolation/I, v of v such thatlI,v € V}, and
IT,v has the same degrees of freedom (defined/hy(v)) asv on each
KecTh

In order to take the boundary conditi@ x n = 0 on 942 into account,
we define a subspace bf:

Vi ={vi €Vh; vipxmn=0o0ndR}.

This can be done simply by zeroing the degrees of freedom which correspond
to the boundary edges.

Next we divide the time intervdD, T') into M equally-spaced subinter-
vals by using nodal points

0=t"<t'<...<tM=1

with t" = n7, and denote the-th subinterval byl = (¢t"~! "]. For a
given sequencéu”}M  c L2(02) or (L?(£2))3, we introduce the first and
second order backward finite differences:

u — un—l aT u — 87— un—l

gyun = LT g2 =
T T

For a continuous mapping: [0, 7] — L2(§2) or (L?(£2))3, written asu €
C(0,T; (L%(£2))3) subsequently, we defing = u(-,n7)for 0 < n < M.

Using the above notation, our fully discrete finite element approximation
to the electric field equations (5)-(6) is formulated as follows:

(7) EY =II,Ey, E)-E;'=7I,E,
and forn = 1,2,---, M, find E} € V} such that

1
(e02E},v) + (00, E}, V) + (;curl Ey, curlv) = (0;J",v),
vv e VY.

(8)

Obviously, for eacm = 1,2,---, M, it is clear that, by Lax-Milgram
theorem, the system (8) has a unique solulijras its left-hand side defines
a symmetric positive definite bilinear form i (curl ; £2) with respect to
Ey . In addition, as (8) is symmetric and positive definite, it can be solved
by the well-known conjugate gradient method.

Remark 2.1Iinstead of the first order backward difference intime used in the
fully discrete scheme (7)-(8), one can also use some second order difference
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198 P. Ciarlet, Jr, J. Zou

approximation in time, e.g. the Crank-Nicolson scheme. In this case, the
whole discrete system can be taken as the following:

(9) E) =1,E,, E;-E;'=2rI,E,
and forn = 0,1,---,M — 1, find E}** € V0 such that

1 Fn
(e 62E},v) + (002, E},v) + (—curl B}, curl v) = (62,J", V),
L
vv e V.

(10)

wheres?u” = (u™ — 20" +u" 1) /72w = (U 4 un ) /2, 6o u =
(u™*t! —4™=1)/(27). Note that the scheme preserves the symmetry and the
positive definiteness. The first unknodd} can be solved by using the initial
approximation in (9) and (10) for = 0, and the resultant linear system

is also symmetric and positive definite. With this scheme we can achieve
similar convergence results as obtained in the paper, see Remark 4.3.

3. Interpolation properties

This section is devoted to some basic approximation properties of the finite
element interpolantl;, defined in Sect. 2, which will be needed in the later
error estimates for the finite element scheme (7)-(8). First of all, we know
the following properties of,: for anyu € (H?($2))3,

(11) lu — Iyullo < C h?Juls,
while for anyu € H'(curl; £2), we have
(12) ||curl (u — IIpu)|lo < Ch||curlull;.

The estimate (11) can be found in Girault[13] (Theorem 3.1) a&dkiec
[20] (Proposition 3). The estimate (12) was proved by Monk [18] (Lemma
2.3).

The estimates (11) and (12) stand for functions which are appropriately
smooth, i.e. for functions ifH2(£2))3 or H'(curl; £2). But usually the
solutions of the Maxwell system considered in the paper may not have such
kind of regularity, especially when the domaihis not convex and only
Lipschitz continuous. Next we are going to present some approximation
properties of the interpoladi;, under weak assumptions on regularity. We
first show a similar result to (12) but for tHe?-norm. Comparing with the
estimate (12) for theurl operator, we lose one error order. Similar results
were obtained in [12] for a different finite element (see Remark 3.3).
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Fully discrete schemes for Maxwell’s equations 199

Lemma 3.1 We have
|u— Ipullo < Chljullican, Yue H'(curl; ).

The proof of the lemma is omitted, since it can be inferred from that of
Lemmas 3.2 and 3.3 (see [9] for a detailed proof).

Lemma 3.2 We have, fol /2 < o < 1,
la = yullo < C A% [[ullacur, V€ H(curl; 2).

Remark 3.1 > 1/2 is needed for the definition of the moments in
ME(V7¢)'

Proof. For any elemenk € 7", letx = Bk + bx be the affine mapping
betweenk and the reference elemeht, and we define (cf. Bcelec [20]),

(13) u(z) = (Bj)"a(2) or a(#) = Bju(x),
where B, is the transpose of the matrixy. Let IT be the interpolant on
the reference elemeli, then
(14)  u— Iy Ze) < [Bxl [(Bio) ' I* o — a7, 4
Throughout the paperA| meangdet( A)| for any square matri¥.

Let us now boundua— HﬁHB(IA{). For that, le€ (respectivelyF') be any

edge (respectively face) df. Forp > 2 andp’ such thatl/p+1/p' =1,
on any edge of K we define

A M (v, 6
(15) ¥l = sup O
qbePl Hﬁwal 1/p', p/( 3
where M (v,¢) = [,(V - #)éds. Using the norm equivalence in finite

dlmenS|onaI spaces we have

M0 2y < C Y Tl = C ) [l

ecK eCK
< cfllewrlall ey + D I8 Al i |
FCK

where the last inequality is obtained by integration by parts and the standard
extension and lifting techniques (cf. Lemma 4.7 of [3]). This implies

I = 7760 iy < C{llewr ]y + 180 oy + D 1 % ol
FcK

(16) <C {||curlﬁHHa(f() + ||ﬁ|’Ha(K)} :
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As the left hand side does not change when repladithy G plus any
constant, we have

[0 — 714]| p2 ) < C{chrlﬁHHQ(k) + ) inff{)s [a+ ﬁIIHQ(m}-

€Po

) B (@) —w(@)? "
'W‘H“@_{/k o e —glpre g

it is clear thatw + Pliei) = |W|Ha(k) for all p € Py(K)?. From this
point, one can easily adapt the proof of Theorem 14.1 in [6] to obtain the
norm equivalence in the quotient spaéé /P,. Then one has

Note

17) [a— ﬁﬁ”]ﬁ(f() <C {||Cur1ﬁHHa(K) + |ﬁ|Ha(f()} :

There remains to bound the right-hand side in (17). Noting thaty|| <
|| Bk || || B! (2 — y)]|, we deduce

820 ) < |1BxIP2 B Plule o)

Similarly we have (see [9] for details)

leurla|f2, ) < ClIBxI[* B!l llewrlul 72 ), and

2
L2(K

eurlaf},, o) < C 1Bl By Plenrl ulfye .
This with (17) shows (fot| Bk || small)

< € max(|| B ||| B P 1Bx|I* 1B DIl o cur i) -

Using the bounds ol and the shape regularity ", we get from (14)
that

Hu - HhuH%P(K) < Ch%gHuHiIa(curl;K)'

Remark 3.2The following lemma is an improvement on the results obtained
in Nécelec [20] (Propositions 1 and 2) and Monk [18] (Lemma 2.3), where
only integersy > 1 were considered.

Lemma 3.3 For1/2 < a < 1, we have

[curl (u — ITpu)lo < Ch®|curlu|ga(m), Yue€ H*(curl;(2).
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Fully discrete schemes for Maxwell’s equations 201

Proof. We follow NéckElec [20] for the notation used below. L&}, be the
H(div 0; £2)-conforming space of degrée
On = {v e H(div0; 2); v|x € (Py)?, VK e T"},

and letr,, be the corresponding interpolant@y, with the moment set:
Mp(v) = {/ (v-m)qdo; VqePyo(F) onany facef" of K}.
F

There are four degrees of freedom attached to this finite element, but as
div v = 0 by definition, their sum (witly = 1) is equal to 0.

We can show
(18) rp(curlu) = curl (ITpu).

Indeedcurl (IT,u) € (Po)?, div (curl (IT,u)) = 0 and

/curl(ﬂhu)-ndcr:/curlp(Hhu)do*: IIhu-tds
F F OF

:/ u-Tds:/curlF(u)do
oF F
:/curlu~nda.
F
Hence

(19) [[curl (u — ITpu)llo = [|(curlu) — ry(curla)|o,

this with the following result (20) gives the lemma.
Next, we show that for any elemehAtand1/2 < a < 1,

||W — ThWHLQ(K) S Cha’W|Hu(K),

(20) : o o3
Vw e H(div0;£2) N H*(£2)°.

To prove this, we replace the degrees of freedof/j(v) (cf. [19] or [20])
by
2
{/(v-n)qda; Vgl € (Po)?, KeTh}
|Bk| Jr
Then the following transformation
x = Bgt+bg, w(x)=Bgw(),

preserves the interpolation and divergence, i.e.

AA

TwW(z) = rpw(x), (Tl;VAV(ﬂA?) = divw(x),

wheref is the reference interpolant di.
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Now consider the moment/,.(w,¢) = [(W - 7)) ds. Noting that
divw =0 impIieScﬂ;vv = 0, we have by integration by parts

|Mlg(w,¢3)|:‘/@W@dﬂ/ﬁ@éd@
‘/ W - grad¢dm

(21) < C||W||Lp([() Hgb”wlfl/p’,p’(ﬁ)

wherep’ is again the conjugate numberpfandé the extension by zero
from W1=1/7? (F) into W'~/ (9 K') combined with a lifting operator
from W1-1/7'2 (9K) ontow ' (K).

Using (21), we can bound

. |M,(W, 9)]
TR~
de(ro(0)3 9llwi-1m 0 ()

by ||W||Lp(k). This with the norm equivalence in finite dimensional spaces
gives

1%l oy < C Y Wl = C D I Wllar,
FeKk Fek
< ClWl oy < C Wl gra iy

that implies
(22) W =Wl 2y < ClWl o (i

As replacingw by w plus any constant does not change the left hand side,
we come to
||W_TWHL2 < C|W|H& K)

Thus we finally derive

Iw = w220y < 1 BiclPIBicl W = W [2, ) < CR3 W )

this proves (20)O0

Remark 3.3All the results of this paper are also valid for certain other
first order, H (curl; £2)-conforming, Necélec’s elements, e.g. the element
defined in [19], i.e. each element function has the fafiy}, € R (K) =

{ax +bg xx, (ax,bk) € RO}, with the related degrees of freedom. The
crucial step for the validity is to establish Lemmas 3.1-3.3 for this element.
In fact, Lemma 3.1 was established in ([12], Theorem 3.2). Lemmas 3.2-
3.3 can be extended to include this first order element by means of similar
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techniques as used in the present paper. Note, in addition, that higher order
finite elements are not considered here as we do not assume, for the solutions,
a stronger regularity thal“(curl; 2) with 1/2 < « < 1 in Subsect. 4.1
(energy-norm error estimates), or thaft(£2) in Subsect. 4.2 -norm

error estimates).

4. Finite element error estimates

We are now going to derive the error estimates for the fully discrete finite
element scheme (7)-(8) both in the energy-norm and.garorm. Through-
out this sectionE™ and E} will denote the solutions of the electric field
equations (5)-(6) and the finite element approximation (8) at time™.

For the error analysis, we need the solution funcibto be defined also
in the interval|—27, T'] in terms of the time variablé This can be done by
extendingE with some regularity from the time intervgl, 7' to the interval
[—27,T]. So we shall always implicitly assume thBtis well defined in
terms of time variable on the interval—2r, T'|. Furthermore, to achieve
the optimal energy-norm error estimates for the concerned fully discrete
finite element scheme, we introduce an important projection opeFator
Hy(curl; £2) — V0 defined by
(23) a(Pyu,v) = a(u,v), VveVW
wherea(u, v) is the scalar product associated wijth || ;1. Obviously,
Py, is well-defined inHy(curl ; £2).

By the definition of the projectiorP, in (23), we easily see that, for
a>1/2,

Hu - PhuHO,curl < ||u - HhuHO,(:urlv
Vu € Hy(curl; £2) N H%(curl; £2).
Later on, we will need the following identity

(24)

k k
(25) Z (am — am_l)bm = akbk — aobo - Z am_l(bm — bm—l)
m=1

m=1

and the following estimates fds = H'!(curl; 2) or B = (H*(£2))3 with
a >0,

1 [t

(26) joun < L / lw(®%dt, Vue H'(0,T; B),
T tn—l
1 [t

(27) jo2uny3 < L / luu(®)%dt, Vue HX0,T; B),
T tn—2

tn

(28) [0-ul — 2u" % < CT/ ()% dt, Ve HY0,T; B).
2

tn—
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4.1. Energy-norm error estimates

This subsection is devoted to the estimate on the energy-norm error for
E" — E7. For the purpose, we first analyse the enjfr= E} — P, E¥,

for 1 < k < n. Once we have estimates fgff, we can easily get the error
estimates fol£" — E}: by the triangle inequality, the projection properties
(24) and the interpolation properties discussed in Sect. 3.

We conduct our analysis only for the constant coefficients case, i.e., we
assume(x), u(x) ando (x) are all constants. It is straightforward to extend
the analysis to the non-constant or elementwise constant case by simply
keeping these coefficients inside the integrals or norms and bounding them
by taking their maximum or minimum values if necessary.

To analysey,’j, we multiply the equation (5) by /7 € V! and integrate
then the resultant ove® in space and ovel” in time to obtain

1
e (0-Ef,v) +0(0.EF v) + (/ curl E dt, curl V) = (0, J",v),
T Ik
(29) Vv e V.
Now subtracting (29) from (8) and making some rearrangements, we have
1
= (O7h,v) + - (curl g, curlv) + o (Dr, v)
_ (&(Ef 8, P,E"), v) n a(@T(Ek _ P,E), v)

1
—1—(/ curl (E — P, E¥) dt, curlv), Vv e VL.
T Ik

Then takingv = 70,1} = nf — ;" above and using(a — b) > a?/2 —
b?/2, for any real numberg andb, yield

orllomflig + (Sl10mk — Sliosnt ' 13)
+ (ibucurlnﬂo - g leurt 7t~ )
< m((aTEk — P, EY), am;j)
+7e(0-(B) - 0, 8"), 0.1
tre (aZEk — P,O2E"), aTn,’j)
+ (/ curl (E — E*) dt, curl amh)
(

+

TIAEI|~

curl (E* — P,E"), curl 8T77,]f)
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Fully discrete schemes for Maxwell’s equations 205

5

(30) =3 (),

=1

Next, we will estimate (I)for i = 1,2, 3,4, 5 one by one.
First for (1);, using Cauchy-Schwarz inequality, we have

1 1
(01 < 507l ]15 + 5 o7 [10-B* — Puor B3

A

1
< sorlomflig + Cor (10-E* — 11,0, B*|3 ) (by (24)

1
507’”87772”(2) +Corh®||0,E"|} .o (by (12) and Lemma 3.1)

IN

IN

1
5oI0 I+ C ot [ 1B i oy (26)

For the estimation of (}), by writing 9, (-)* into the integral of form
J7:(-)¢ dt and using Cauchy-Schwarz inequality, we easily come to

tk

1
0 < greloafld +Cer? [ Bl dr

The estimate for () is achieved using the same technique as used for

01,
1
()3 < serlldmflg + Ceh? /I Bl cun dt

To analyse (), we use Green’s formula and the boundary condition to
derive

_ 1 gk k
h, = . /Ik (curl curl (E — E ),877],1) dt

1 *
=—— curl curl Ey, aTnk dt’ dt,
wJre Ji "

then by Cauchy-Schwarz inequality we obtain

1 72
My < 576\\8717];\\% + 22 /Ik ||curl curl E4||3 dt.
Finally, we estimate (}). By the definition ofP;, in (23), we have

s = %(curl (Ek — PhEk),curl 8Tn,]§> = (Ek - PhEkﬁr??Z)v

T
W
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then applying the Cauchy-Schwarz inequality and (12), (24) and Lemma 3.1,
we come to

-
()5 < ;I!Ek — PuE"|lo [|0:n} 1o

T k k
< EH&'nhH(Z) +CTR? || EM| cun -
This completes all the estimates for, (i (30). Now summing both sides
in (30) overk = 1,2, ---,n and making use of the previous estimates for

(1); (1 <i<5), lead to

€ 1
§H3T77ﬁ|\3 + ﬂllcurlnﬁl\% < Cmo(E)(7° + b?) + d(1p)

@) +Cr Y (Iommkl + lewlnfl}).
k=1

whereC'is a constant depending on the coefficients andy, andm(E)
is an a priori bound ofF of the following form

mo(E) = max |E(t)

T
+/wmw,

-7

T
|hm%wmmmmeme

while d(n))) is the initial error

€ 1
d(np) = §H3m2||3 + ﬂllcuﬂnﬁllﬁ,

which can be analysed as follows:
First by the definitions oE% and the projectiorP;,, we have
|curln)|jo = ||curl (IT, E® — P, E®)||o = | curl P,(IT, E° — E%)|o
<N ILE® = E®|lo.con < C R [|E(0)]|1,cur
Then for the first term ini())), by definition ofr)), EY and E, ', we
know
Oty = 77 (T IR E(0) — PaE(0) + PLE(-7))
=7 'P,(E(~7) — E(0) + 7E;(0)) + P,(IT, E;(0) — E(0)),
using the property of the projectian,, we derive

“87772”0 < T_lHE(_T) - E(O) + 7_Ef(o)”o,curl
+”HhEt(O) - Et(o)’ 0,curl
< C7 sup [|Eulli + Ch|[E(0)]|1,cun -

(=7,0)
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Therefore, we get the estimates for the initial extoy)):

d(np) < C7° S IEwli +Ch* (IE(0)F ot + 1 E(0))]

%,curl ) .

Then substituting this into (31) and applying the well-known discrete Gron-
wall’s inequality, we conclude that

max (0B}, — PuE") + [lewr] (B}, — PLE")})

< Cmo(E) (r? + h?).
Finally, applying the triangle inequality to
0, B} — E} = (0,E} — P,0,E") + (P,0,E" — 0,E") + (0, E" — E})
and
Ey, — E" = (E;, — D,E") + (P, E" — E"),
we have proved the following energy-norm error estimates

Theorem 4.1 Let E and E} be the solutions of the electric field equa-
tions (5)-(6) and the finite element approximation (7)-(8) at time ¢",
respectively. Assume that

E € H*(0,T; Hy(curl; 2) 0 H'(curl; 2)) N H3(0,T; (L*(12))?).
Then we have

n __ gm|2 n |2 2 2
Jmax, ([10-B}, — B} 3 + fleurl (B}, — E"[F) < C (> + )
where(' is a constant independent of both the time stgqmd the meshsize
h.

Remark 4.1The error estimate in Theorem 4.1 is optimal both in terms of
time step size- and mesh sizé as we have used only thé! (curl; £2)-
regularity in space anél®(0, T')-regularity in time.

If the solutionE has no so much regularity in space as in Theorem 4.1 (cf.
Costabel [10], Assous et al [4]), we then have the following weaker error
estimates

Theorem 4.2 Let E and E}, be the solutions of the electric field equa-
tions (5)-(6) and the finite element approximation (7)-(8) at time t",
respectively. Assume that for some < o < 1,

E € H*(0,T; Ho(curl; £2) N H(curl; 2)) N H3(0,T; (L*(2))%).
Then we have

max ([10-Bj—B7 |3 +|lcurl (B~ E")|3) < € (r272h%D4p2),
1<n<M
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Proof. The proofis almostidentical to the one for Theorem 4.1 by replacing
H'(curl; 2) by H%(curl; §2), Lemma 3.1 by Lemmas 3.2-3.3, (12) by
Lemma 3.3. The only remaining term we have to re-estimate is the term
(1), in (30) as we now have no regularityirl (curl E;) in (L?(£2))% as

used in that proof. Instead we can bound the term as follows: by assumption
we haveE € HY(0,T; H*(curl; £2)), socurl E € HY(0,T; (H*(£2))?)

and thercurl (curl E) € HY(0,T; (H*"1(£2))?), whereH*~1(02) is the

dual space off' ~<(£2) (note that this is true as, whén< 1 — a < 1/2,
H'=(0) = Hy “(2)). Therefore, by Green’s formula and the inverse
inequality we have

1
hy = ; /[k <cur1 curl (E — Ek), 37772>HQ_I,H1_0 dt

_ = /
= /Ik /t <CUI'1 (CUI'I Et), 87—77h> sl fi-a dt'dt

-
< ; /Ik ||curl (curl Et)HHafl(Q)Harrnﬁqufa(Q)dt
< crha—lnam,’jno/ Jeurl (curl Ey)|| racs o dt
Ik
1
S Z”Wrﬁﬁ”% + CT2h2(a—1) /k chﬂ (Cul“l Et)H?'-[a—l(Q)dt
I

That completes the proof of Theorem 4C2.

Remark 4.2It is easy to see that if we taketo be the same magnitude as
h, then the error estimate in Theorem 4.2 is of optimal order(l(@&2?),
in the sense of the space regularity we have used.

Remark 4.3Theorems 4.1-4.2 can be extended to the Crank-Nicolson
scheme (9)-(10). The major difference in proving the related theorems is to
derive a similar equation as (29) and to choose an appropriate test function
For the former, we may multiply equation (5) at tithe- t" by v /7 € V}?

and then integrate the resulting equation o¥&rFor the latter, we may

choose the test function = 7™ — =1 = (1 — i) + (gt — ).

4.2. L%-norm error estimates

This subsection is dedicated to the derivation oftfherorm error estimates.
The basic technique used here is borrowed from Girault [13] and Monk [18],
where Necklec’s finite element methods were applied for stationary Navier-
Stokes equations and semi-discrete schemes vétkIMc's finite elements

for time-dependent Maxwell’'s equations, respectively.

Numerische Mathematik Electronic Edition
page 208 of Numer. Math. (1999) 82: 193-219



Fully discrete schemes for Maxwell’s equations 209

As usual, we assume the domdihis a convex polyhedron in order to
achieve the optimalL?-norm error estimates. If the domafnis a general
Lipschitz polyhedron, we have the following’-norm error estimates: for
E € H3(0,T; (L*(£2))?)andE € H?(0,T; Ho(curl ; 2)NH(curl; 2)),

E} — E"|o < h
max [ B}~ "o < C (7 +h).
which can be obtained immediately by applying the triangle inequality to
the relation

n
Ey — E" = (II,Eo — Eo) + 7Y (0. Ej — 0-E")
k=1
n

= (II,Ey — Eo) + 7Y _(0,E} — Ef)+ 7Y _(Ef — 0,EF)
k=1 k=1
and the results in Theorem 4.1.
A similar result, when E is only in H?(0,T; Hy(curl; 2)N
He(curl; 22)) andH3(0,T; (L*(£2))3),for1/2 < a < 1, is

E" — E"|, < Ch*
1g}%>§wll h lo < C R,

by using Theorem 4.2 and takingo be of ordetO(h).
But if the domains? is convex and the solutioR’ is more regular, we
can expect higher convergence order. We now show this is possible. We will
consider only the case that the coefficientndy are constants (we take
for simplicity) ando = 0. We need the following decomposition (cf. Ciarlet

[7])
(32) L()P3=Mao M+

whereM and M are two spaces defined by
M ={v=Vz z€ H}(2)}
and
M+ ={vel?2)3 (v,Vz)=0 VYze H}N)}=H(div0; ).

The last equality can be proved directly from definition.fAg convex, we
haveHy(curl; £2) N M+ c H'(2)3 (see [14]).
To introduce a discrete version of (32), we define a finite element space

Sh:{thHé(Q); Zh‘KG,PQ VKGTh}.

An L?(02) projection@;, onto S;, will be needed in our later analysis, i.e.
we defineQy, : L?(£2) — S, as follows

(Qnz, vp) = (2, vp), Yz € L*(2),vy € Sh.
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Now we can introduce the following discrete decomposition
(33) VY = My, ® Mj-
whereM, anthL are two spaces defined by
My, ={v =Vz; 2, € Sp}
and
Mt ={veVl (v,Vz,)=0 Vz, €Sy}

Note that, by definition) (resp.M},) is the kernel of theur]l operator
in Hy(curl; £2) (resp.Vy).

Before discussing our main results in this section, we introduce some
operators which are very useful in the lafét-norm error estimates. We
first define an operatdr. For anyu € M+, Tu € Hy(curl; 2) N M+ and
satisfies

(curl (T'a), curlv) = (u,v), Vv & Hy(curl; )N M=,

For a givenu, Tu can be regarded also as the solution, in variahléo the
following system (cf. Girault [13]):

(34) curl (curlw) =u in £,
(35) divw =0 in {2,
(36) wxn=0 onI.
The problem (34)-(36) is a particular case of the systefwif) p):
(37) curl (curlw’) + Vp =g in £,
(38) divw’ =0 in {2,
(39) w' xm=0onT,
(40) p=0onr,

foragiveng in (L?(£2))3. According to Lemma 4.1 in [13], the system (37)-
(40) has aunique solution’ € Hy(curl; 2)NH (div 0; 2) andp € H} ().
In addition, the following properties hold:
- w € H' ()3 and||w'||; < C|lcurlw/||o < C'||g||o-
— curlw’ € H'(£2)3 and||curl w'||; < C'||g]|o-
— Ipli < Cllgllo-
Clearly, ifg € M+, thenp = 0: this is the case witlg = u.

The discrete versioffy, : M+ — M;- of the operatofl” can be defined
by

(curl (Thu), curlvy) = (u,vy), Yuée Mt v, € M-

We now state some properties of the operaioend?},. The results (i)
and (ii) were established by Monk in [18], so we focuse on the proof of (iii)
and (iv). The property (iii) is an improvement over the result in [18].
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Lemma 4.1 Let(2 be a convex polyhedron and supp@ae € H?(12)3, for
u € Hy(curl; 2)NH (div 0; £2). Then there exists a constariindependent
of h andu such that
(i) [Jeurl (T = Tp)u)|jo < C h||curl (Tu)||1,

(i) [lcurl (Thu)llo < C [[ullo,

(iii) (T —Th)ullo < Ch?||Tul2,

() 117, *ullo < C [ullo.
Proof. Notice that by using Weber’s result [22], one easily gets that
||curl w||p defines a norm i, (curl ; £2) N H (div 0; £2) which is equivalent

to its canonical norm.
Now, asp = 0, w = T'u is the solution to:

(curlw, curlv) = (u,v), Vv e Hy(curl;(2),
andwj, = Tpu € MhL also satisfies the discrete variational formulation:
(curl wy, curlvy) = (u,vy), Vvy € V2 C Ho(curl; 2).

Therefore|curl (w — wy,)||o < ||curlw||op < C'||ullo.
We first prove the fourth inequality. We see

T2 = (Thu, w) = (Wi, w) = (wh — W, 1) + (w, ).

Defineq € H}(£2) by
(Vq, V) = (wn, Vi), Y € Hi(£).

Note thatVq andu belong to orthogonal subspacesicf(§2)3. Setv =
wyj, — Vg curlv = curlwy, divv = 0, v x n = 0 on I'. Therefore
wy, — Vg —w € Hy(curl; £2) N H(div 0; £2) and

llwp, — Vg —wl||o < Cllcurl (w, — w)]||o < C||curl wl|g < C'||ullo-

Also, ||[wl|p < C'||curlw||gp < C'||ul|o, which proves (iv).

Now we turn to the third inequality: take amyin L?(£2)? and solve
(37)-(40). Then

(gv Wh — W)
= (curl w/, curl (wy, — w)) + (Vp, wj, — w)
= (curl (W' — w}), curl (wy, — w)) + (V(p — pn), W, — W)
= (cwl (W' — wp), curl (w, = w)) + (V(p = pn), Wi, — ¥)
41) (Y~ pn),yn — W), VWi, yn € Vi, Vi € Sp.
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Setz;, = wy, — y;, and split upz, into z, = Vq + v, with ¢ € H(£2)
defined by

(Va, Vi) = (zn, Vi), Y € Hy(£2).
As usualv = z;, — Vg is an element of{y(curl; £2) N H(div 0; £2). As zy,
belongstd/}?, it has sufficient regularity for defining, z, = z,,. Therefore,
it can also be split up into

zp, = v + Vg, with g, € Sp,.

Remark 4.4To prove the splitting one can writ€, (Vq) asVgqy,, then use
(18) which leads taurl (17,(Vq)) = 0: thus there existg’ € H'(£2)
such thatlI,(Vq) = V¢'. Moreover, by definition/I;(Vq) is in V2, so
its restriction to any tetrahedrdii belongs tqP; )3. Putting these together
shows that/ is an element of},.

Now, the estimate ofV(p — py,), z,) proceeds as in Girault [13]: choose
for py, the H}-projection ofp into Sj,, hence

(42) |(V(p = pn)zn)| < lpli [[Tnv = v]|o.

We are going to estimatgll,v — v||o. First, following [3],

19 = 19 iy < LIV o ey + 19 ity + D 19 X Rl iy }-
FCK

But curlv = curlz, and (13) preserves theaurl. Therefore,curl v =
curl z;, which belongs to a finite dimensional space. Thus,

leurl ¥ 1 ) < € llewrl ¥ .
Using the norm equivalence in the quotient space Py, we come to
19 = 19 iy < © LNl ¥l gy + 911 iy

Thanks to the estimates which bound the right-hand side (cf. [9] and [6]), it
follows from (14) that

v — Ipvlli2 )y < Chi |V (k)
Thus

v — IInvl]lo < Ch|v]y = Chl|curl vl]|p
< Ch||curlzy|lo = C h||curl (wy, — yr)||o-

We then have from (42) that

[(V(p = pn)sza)l < Chlpl{|leur] (W, — w)[lo + [[curl (W — yn)llo} -

Numerische Mathematik Electronic Edition
page 212 of Numer. Math. (1999) 82: 193-219



Fully discrete schemes for Maxwell’s equations 213

Therefore, the last two terms in (41) are bounded by
Pl {C A ([[eur]l (wh — w)l[o + [lcurl (W —yu)llo) + [[W — yallo},
Yy € V0.
By assumptionw belongs toH ?(£2): choosingy;, = II,w gives
W = yallo < Ch?wla,
(43) lcurl (W — yp)|lo < C h||curl w|;.

And, with the help of (i), we obtain the final bound for the last two terms in
(42), that is

Ch*[pl [lwll2 < Ch?[|gllo w2

To conclude, asv’ belongs toH ! (curl ; £2) N Hy(curl ; £2), we can choose
w; = IIw’, and using (43) and (i), we have the final bound for the first
term in (41),

[(curl (W' —w}), curl (wy, — w))| < C B2 [g]lo |Iwlla.

This proves (jii).O

Now we are in a position to derive the main results in this section, i.e.
the L2-norm error estimate. By means of the decomposition (32), for any
J(t) € L*(£2),t € (0,T), we can write

(44) J=J,+Vz, JieMt zeH(Q).

This decomposition enables us to separate our error estimates into two parts,
i.e. Theorems 4.3 and 4.4.

The general principles of the proofs for these two theorems are similar
to those of the proofs for Theorems 4.1 and 4.2 in [18]. But as our scheme
is fully discrete, a lot of technical details need to be treated newly. We wiill
give only an outline for each proof but refer to [9] for details.

First we show

Theorem 4.3 Let E and E, be the solutions to (5)-(6) and (7)-(8). Assume
that J(t) € M+ fort € (0,7T), and thatE, and E; belong toM+ N
(H?(£2))3. Moreover we assume that

E € C'(0,T; (H*(2))*) N C*(0,T; (H'(2))*) N H*(0,T; (L*(£2))%).
Then we have
|E" — E}|jo < C(r+h?) forn=1,2--- M

where the constan®’' is independent of and h but may depend on the a
priori bounds onE.
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Proof. By the assumption, it is easy to derif#¢) ¢ M. Using (33), we
can wiiteEl = E, + VzF with E) € M}* andzk € S, for 1 < k < n.
Then

(45)E* — E} = (E* ~E)) - Vb =gk —V2F, for 1<k<n.

It suffices to estimate thB2-norms for bothy;)! andV ;.
We first analysév 2. Takingv = Vo, zF € M, foranyzF € S, in (8)
and the Cauchy-Schwarz inequality, we get

10-V 211§ < 10- V2~ G < -+ < [0V l[5-
But by orthogonality, we can write
10-Vzplls = (0, ER, 0,V 2]) = (- Ej, — 8-E°, 0,V 2}),
from which and the initial condition (7) we can show

(46) 10-Vzhllo < C(h*| Erllz +7 sup [ Ee(t)[lh).
0

te(—7,0)

Similarly, we have | V2! |o < C h?|Ey|2. Using this, (46) and the identity

n
Vel =Va) 471 Z 0. Vzk,
k=1

we derive that

@7) [V2illo < CR(| Erll2 + || Eoll2) + C7 P [ B (t)]]1-
te(—,0

Next we estimate); in (45). Takingv = Tj,¢y, in (8) with ¢, € M-,
we have, forl < k < n,

—=k —k
(48) (ZTWEy, ¢n) + (B on) = (0:Tnd", ), ¥ on € M.
A similar relation to (48) for the continuous solutidi can be derived

by multiplying (5) byv = 7~ 1T¢ with ¢ € M and then integrating over
I¥ in time and over? in space:

49) (0. TEF )+ (E",¢) = (0,TJ* ¢), VoM™,
whereE" = 7~ [ E(t) dt.

Note for anyg, € M-, we can writep, = ¢ + Vz, with ¢ € M+ and
z1 € H}(£2). Using this relation we obtain from (49) that

(50) (9, TEL, én) + (E*, é) = (0, TT*, dn), Ven € Mj-.
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Subtracting (48) from (50) and making some arrangements, we derive for
any¢y, € M;- that

(51) (2Tl én) + (nf, on)
= ((T = T)0-J*, ép) + (O*°THE* — TO.EY, ép,) + (E* — E", ¢y,),

then takingp;, = c’)TE’fL gives
(D2 Ty, D-mfy) + (s, Oy
—k
= (Thﬁ?_n,}i, aTEk) + (77];37 aTEk) + ((Th — T)@TJk, O Ey)
H(E" — EF 0,E}) + (0, TEY — 0>T, E*, 8,EY).

Note that, (52) holds actually for any;, < V,? by orthogonality. Then,
adding the previous equation to the equation (52) with= 17,0, E* € V2,
we get

(2Tt D) + (s, 1)
= (Tno?nf,0-E* — 11,0, E*) + (nf, 0. E* — 11,0, E¥)

(T — T)0.J% 0. E} — [1,0,E*) + (E' — E*,0.E} — 11,0, E")
+(0.TE — 0*T,E*, 0.E) — 11,0, E")

5
= Z (|)27

i=1
which implies, usingi(a — b) > 1a® — 5% for anya,b € R,

1 12 1172 _
(S0t - S ol 13

5
1 1, e
52) + {0k - SR} < 7 300
=1
Theterms (I),7 = 1,---,5 can be estimated one by one (cf. [9] for details).
With these estimates, we then sum up (52) ovet 1,---,n and finally
obtain

1/24 n n 1/2
Iy 2013 + 112 < 1T 20,003 + 113 + C(B) (72 + )
< C(E)<T2 + h4).

This with (45) and (47) implies the desired estimate of Theorem®.3.

Now we turn to the second part of tHe&-norm error estimate, i.e. we
are going to prove
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Theorem 4.4 Let E and E7, be the solutions to (5)-(6) and (7)-(8). Assume
that J is in HY(0,T; M N (H?(£2))?), and that E, and E; belong to
M N (H?(£2))3. Moreover we assume that

E € C*(0,T; (H*(2))°) N H*(0,T; (L*(2))?).
Then we have

|E" — E}o < C(r+h? forn=1,2,--- .M

where the constan®’ is independent of and h but may depend on the a
priori bounds onE.
Proof. By the assumption, it is easy to ge{t) € M. So we haveE (t) =
Vz(t) with 2 € H}(£2). Using (33), we can writd} = B+ V2F with
Eﬁ € MhL andz}’j e S, forl <k <n.NoteEge M,soE; = Vz for
somez, € H}(£2), thus we haveE$) = I1;, By = I1,Vz, = VZ' for some
20 € Sy, i.e. B, = 0. Similarly we haveE, ' = 0.

By means of these decompositions, we may write

n tk

E"-E}=(E'—E)) + Z/ (B — 0, Ef)dt
=1/t
n tk
= (EO — HhEo) + Z/ V(Zt — 87—Zh)dt
=1 tk*l
n tk i
— Z/ O E,dt
=1 Jt*!

which, with the factE(t) = Vz(t), thus

k g 2.\ /2 k k
IV (21 = Orzp)llo < T(/O \|Ett||0dt> + IV (2 = 0r23)llo,
implies
. . n n 71{:
IE" = Efllo < 7> _IV(zf = 0:28)llo + 7Y _ [0-Epllo
k=1 k=1
T 1/2
(53) 4 Bola ([ 1Balar) "
0

It remains to estimate the first and second terms in the right side of (53). Let
us first estimate the terlﬁﬁTFIZHg. Takingv = 87Ff’; € M; in (8), and
using orthogonality and () = Vg(t) for someg € Hi(12), we get

(ZﬁEZ, QTEZ) + (curlEZ, curl 8TE2) = (6, VgF, 8TE2),
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which implies

1, =k 1, =k-1

SI0-E4ll§ = S10-E, 115

2 2

1 —ko 1 _—k—19 [A—
+ §HCurlEhH0_ §||VEh o ¢ <7(0:Vg", 0-E}).

Summing up the above equations oket 1, - - -, n, we obtain

-=n -=n = —=k
10, Ep |3 + [[curl B |3 < 27 Z(@Tng, 0-E})
k=1
= —k
< 27—2 <v(8‘rgk - QhaTgk)a 87'Eh)
k=1
n T
—k
<Y 10BN+ ont [ il
k=1

That means by Gronwall’s inequality akit) = Vg that
11 11 T
(54) 0. B33 + leunl B3 < O [ 3.
0

Next, we are going to estimate the tejf¥ (zf — 0, 2F) o in (53). Taking
v = VyF for anyy? € Sy, in (29) and then subtracting it from (8) yields

(0:V(2F — 0:2F), Vyr) =0, YyF €Sy,
using this, we obtain
1 k INT k-1 h—1y(2
SIVGEE = 02D~ IV GEE" — e )IE
< 7(0:-V(zf — 0-21), V(2 —yp))

summing the equations ovér = 1,---,n and using (25) gives for any
k

IV (=5 = 8-21)II3
< V(= = 0:2p) ||0+TZ 2 = 0r2p), VoL (2f — 1))

+(V(z' = Orzp), V(Zt —yh))— (V(2f = 0rzp), V(2 — ).
(55)
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Now takingy,’j = Q,0-2", the terms in (55) can be bounded as follows:

tk

k_ k)12 < E,||2dt ht E,|2dt
V(' =)o < CT ,1” wllodt +C Org%! tladt,

tk
tk

k k
V0, (£ =) < Cr [ I Bulie + o Bl

and

IV(2) — 0:29)|lo < Ch? |Es.

Substituting these estimates into (55), we have
(56) IV (= = 0-20) 13 < C(E) (7 + hY).
Theorem 4.4 then follows from (53), (54) and (58).
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